夏春燕,郭曉暉,李富華,陳 龍,趙國(guó)華,2,明 建,2,3,*
細(xì)胞抗氧化活性方法在食物抗氧化活性評(píng)價(jià)中的研究進(jìn)展
夏春燕1,郭曉暉1,李富華1,陳 龍1,趙國(guó)華1,2,明 建1,2,3,*
(1.西南大學(xué)食品科學(xué)學(xué)院,重慶 400715; 2.西南大學(xué) 國(guó)家食品科學(xué)與工程實(shí)驗(yàn)教學(xué)中心,重慶 400715;3.農(nóng)業(yè)部農(nóng)產(chǎn)品貯藏保鮮質(zhì)量安全風(fēng)險(xiǎn)評(píng)估實(shí)驗(yàn)室(重慶),重慶 400715)
由體內(nèi)過(guò)剩自由基引起的心腦血管疾病和癌癥病人日漸增加,通過(guò)抗氧化物質(zhì)的作用清除體內(nèi)過(guò)量的自由基是減少此類疾病發(fā)生的最主要而有效的方法。大量研究證實(shí),植物化學(xué)物質(zhì)具有顯著的抗氧化作用,這些物質(zhì)的最好來(lái)源是水果、蔬菜和谷物等,其在體內(nèi)的抗氧化效果及活性評(píng)價(jià)是當(dāng)前功能食品研究的熱點(diǎn)。細(xì)胞抗氧化活性(CAA)測(cè)定方法是目前建立起的能有效預(yù)測(cè)植物化學(xué)物質(zhì)在生物系統(tǒng)中抗氧化活性的評(píng)價(jià)方法,被廣泛用于食物中抗氧化活性物質(zhì)的功能評(píng)價(jià)。本文綜述國(guó)內(nèi)外關(guān)于CAA測(cè)定方法及其在抗氧化功能食品評(píng)價(jià)中的研究進(jìn)展。
細(xì)胞抗氧化活性;果蔬;谷物
由于抗氧化物質(zhì)與促氧化物質(zhì)的平衡失調(diào)而導(dǎo)致機(jī)體細(xì)胞長(zhǎng)期處于氧化應(yīng)激狀態(tài),這種失調(diào)會(huì)導(dǎo)致細(xì)胞內(nèi)大分子物質(zhì)(如蛋白質(zhì)、脂質(zhì)、糖類、DNA)的積累性氧化損傷,加速人體細(xì)胞的衰老或病變。有研究[1]總結(jié)了體內(nèi)氧化應(yīng)激是誘導(dǎo)多種慢性疾病(心血管疾病和癌癥等)發(fā)生、發(fā)展的主要機(jī)制:體內(nèi)(尤其是血液中)所載細(xì)胞外脂類物質(zhì)被自由基氧化后,產(chǎn)生有毒性的氧化產(chǎn)物干擾細(xì)胞正常功能,從而引發(fā)炎癥(inflammation),導(dǎo)致各種慢性疾病的發(fā)生。如心臟病是由高含量的低密度脂蛋白(LDL)導(dǎo)致高發(fā)生率的膽固醇氧化,產(chǎn)生高含量的膽固醇氧化產(chǎn)物改變了膽固醇新陳代謝有關(guān)細(xì)胞的功能,從而導(dǎo)致心血管板塊的形成。而流行病學(xué)研究證實(shí),經(jīng)常攝入富含抗氧化物質(zhì)的食物(如果蔬、谷物等)可有效降低慢性疾病的發(fā)病幾率[2-4]。
食物抗氧化是指食物中的抗氧化活性成分(如多酚類植物化學(xué)物質(zhì)及VA、VE、VC等)清除體內(nèi)過(guò)多自由基或抑制自由基活動(dòng)的作用。為了評(píng)價(jià)該作用的大小(即抗氧化活性的強(qiáng)弱),研究者不斷建立起多種食物抗氧化的化學(xué)評(píng)價(jià)方法,這些體外的化學(xué)模型是評(píng)價(jià)植物化學(xué)氧化功能抑制體內(nèi)毒性氧化產(chǎn)物和炎癥的一個(gè)重要指標(biāo)。但已有的大部分研究中,反應(yīng)介質(zhì)通常只是針對(duì)某一類的植物化學(xué)物質(zhì)的理化特性(如水溶性或脂溶性)做出抗氧化能力測(cè)定,而且不以易被自由基氧化與疾病密切相關(guān)的脂類為參照底物,所以結(jié)果很難與人體實(shí)際情況相比擬。最新研究用水脂乳狀液模擬人體生理體液作為化學(xué)模型介質(zhì),加自由基誘導(dǎo)膽固醇和脂肪酸氧化,很好地解決了這兩個(gè)問(wèn)題,從而更可靠地判斷各類植物化學(xué)物質(zhì)(如酚類化合物)的體內(nèi)抗氧化和抗炎癥能力[5]。為了更能反映食物抗氧化劑在生理?xiàng)l件、細(xì)胞或體內(nèi)產(chǎn)生的效應(yīng),應(yīng)用細(xì)胞為基礎(chǔ)的抗氧化活性評(píng)價(jià)方法,如抗癌細(xì)胞增殖實(shí)驗(yàn),逐步得到采用。美國(guó)康奈爾大學(xué)劉瑞海教授率先建立了細(xì)胞抗氧化活性(cellular antioxidant activity,CAA)評(píng)價(jià)方法[6]。CAA方法以人體肝癌細(xì)胞HepG-2為實(shí)驗(yàn)?zāi)P?,觀察抗氧化物質(zhì)在細(xì)胞中的反應(yīng)情況,如抗氧化成分在細(xì)胞內(nèi)的生物利用率、吸收和代謝情況,比傳統(tǒng)的化學(xué)方法更具有生物相關(guān)性,比動(dòng)物模型和臨床研究更經(jīng)濟(jì)、快捷,該方法的建立被認(rèn)為是抗氧化劑研究方法中的革命。
20世紀(jì)90年代中期,隨著純化合物、食物和膳食補(bǔ)充劑的總抗氧化活性測(cè)定方法的建立,抗氧化活性評(píng)價(jià)方法得到了廣泛應(yīng)用??寡趸钚缘脑u(píng)價(jià)方法分為體內(nèi)(動(dòng)物實(shí)驗(yàn))和體外(化學(xué)分析法)方法,后者主要包括Trolox當(dāng)量的抗氧化能力(trolox equivalent antioxidant capacity,TEAC)[7]、總氧自由基清除能力(total oxyradical scavenging capacity,TOSC)[8]、總自由基捕獲抗氧化參數(shù) (total radical-trapping antioxidant parameter,TRAP)[9]、1,1-二苯基-2-三硝基苯肼(DPPH)[10]、羥自由基清除能力(peroxyl radical scavenging capacity,PSC)[11]和氧化自由基吸收能力(oxygen radical absorbance capacity,ORAC)[12]等方法。這些方法在食物抗氧化活性評(píng)價(jià)中起到了非常重要的作用,但同時(shí)也存在一些缺陷:如DPPH方法易受光強(qiáng)度、氧濃度、溶劑類型[13]等條件影響,某些被測(cè)物與DPPH存在光譜重疊和反應(yīng)可逆現(xiàn)象[14];凡是能生成電子且電勢(shì)低于氧化還原對(duì)Fe(III)/Fe(II)的非抗氧化劑會(huì)影響FRAP方法的測(cè)定結(jié)果,某些抗氧化物質(zhì)(如體內(nèi)重要的抗氧化劑谷胱甘肽)不能還原Fe(III),導(dǎo)致被測(cè)物質(zhì)抗氧化活性被低估;TEAC法中產(chǎn)生的自由基不穩(wěn)定,將低估抗氧化能力;ORAC方法的熒光指示劑對(duì)pH值敏感,pH<7時(shí)熒光強(qiáng)度顯著降低[15]。
表1 細(xì)胞生物方法測(cè)定食品抗氧化活性的原理和應(yīng)用Table 1 Principle and application of cell-based bioassays for food antioxidant activity
食物中往往含有多種抗氧化成分,不同的膳食成分之間會(huì)發(fā)生附加和協(xié)同效應(yīng)[16],化學(xué)方法通常只適用于幾種單一化學(xué)物質(zhì)抗氧化活性的比較,難以評(píng)價(jià)整個(gè)食物的抗氧化效果;由于抗氧化活性物質(zhì)往往會(huì)受到體內(nèi)環(huán)境(如溫度、pH值、微生物等)的影響,其生物利用率和代謝又是研究抗氧化作用效果的重要問(wèn)題[17](食物抗氧化成分之間的相互作用及食品加工等條件對(duì)其生物利用率有影響,且各成分消化吸收后的形式和活性都可能發(fā)生改變,導(dǎo)致最終表現(xiàn)出的總抗氧化活性也改變)。并且,化學(xué)抗氧化方法僅關(guān)注食物的抗氧化值,而沒(méi)有考慮到抗氧化成分在細(xì)胞內(nèi)的生物利用率、吸收和代謝等情況,因此不能反映細(xì)胞生理?xiàng)l件[18];此外,抗氧化劑的作用機(jī)理在預(yù)防疾病和促進(jìn)健康的過(guò)程中遠(yuǎn)不止是清除自由基,它還可通過(guò)抑制自由基產(chǎn)生或提高內(nèi)源性抗氧化物質(zhì)的水平來(lái)達(dá)到抗氧化效果,因而試管內(nèi)進(jìn)行的抗氧化實(shí)驗(yàn)是非常單一的;動(dòng)物模型和臨床研究是評(píng)估抗氧化劑體內(nèi)實(shí)際效果較好的方法,但它們既昂貴又耗時(shí),不適于大批量檢樣的初篩操作。于是一種新的抗氧化活性評(píng)價(jià)方法——基于細(xì)胞的生物方法,即CAA方法被建立起來(lái)并得到廣泛的應(yīng)用和發(fā)展。
Eberhardt等[19-20]較早應(yīng)用細(xì)胞培養(yǎng)來(lái)測(cè)定物質(zhì)的抗細(xì)胞增殖活性,CAA實(shí)驗(yàn)將抗氧化活性的評(píng)價(jià)提升到一個(gè)新的水平,是抗氧化研究領(lǐng)域的突破。繼CAA方法建立后,許多研究小組在CAA方法的基礎(chǔ)上建立了其他細(xì)胞模型(如Caco-2、RBC、AGS)的抗氧化活性評(píng)價(jià)方法,使細(xì)胞抗氧化方法得到豐富和發(fā)展,常用的測(cè)定食物中抗氧化活性的細(xì)胞生物方法主要有4種,其原理和應(yīng)用見(jiàn)表1。
2.1 CAA方法的基本原理
圖1 CAA方法原理[6]Fig.1 Principle of cellular antioxidant activity assay[6]
CAA方法的基本原理如圖1所示。細(xì)胞用抗氧化劑混合物(AOx)或水果提取物以及本身無(wú)熒光的指示劑混合物2’,7’-二氯熒光黃雙乙酸鹽(DCFH-DA)預(yù)處理,抗氧化劑結(jié)合在細(xì)胞膜上并通過(guò)細(xì)胞膜進(jìn)入細(xì)胞,DCFH-DA穿過(guò)細(xì)胞膜進(jìn)入細(xì)胞內(nèi),細(xì)胞酯酶分解DCFH-DA形成極性更強(qiáng)的還原型二氯熒光素 (DCFH)。然后用2,2,-偶氮二異丁基脒二鹽酸鹽 (ABAP)處理細(xì)胞,ABAP分散在細(xì)胞中并自發(fā)分解形成過(guò)氧化自由基ROO*,這些過(guò)氧化自由基攻擊細(xì)胞膜產(chǎn)生更多自由基或活性氧(ROS*)。細(xì)胞內(nèi)的DCFH極易被氧自由基或活性氧氧化成熒光物氧化型二氯熒光素 (DCH),熒光物DCH可通過(guò)分光光度法測(cè)定??寡趸瘎┛稍诩?xì)胞膜外部結(jié)合氧自由基而阻止其進(jìn)入細(xì)胞,或者在細(xì)胞膜內(nèi)部與ROS*和ROO*結(jié)合而阻斷DCFH氧化成DCF的過(guò)程,從而減少DCF的形成。CAA方法測(cè)定抗氧化劑阻止人體HepG-2癌細(xì)胞中ABAP產(chǎn)生的氧自由基導(dǎo)致DFC形成的能力,與對(duì)照組相比,細(xì)胞熒光物質(zhì)的減少量就能反映該化合物的抗氧化能力。
2.2 CAA的操作方法
根據(jù)文獻(xiàn)[6,32-33],總結(jié)了CAA的操作方法如下:測(cè)定前對(duì)肝癌細(xì)胞HepG-2進(jìn)行傳代培養(yǎng),VE培養(yǎng)基添加5%牛胎血清(PBS)、10mmol/L羥乙基哌嗪乙硫磺酸、2mmol/L L-谷氨酰胺、5μg/mL胰島素、0.05μg/mL皮質(zhì)醇、50μg/mL青霉素、50μg/mL鏈霉素和100μg/mL慶大霉素,于37℃、5% CO2且具有較高濕度條件下培養(yǎng),培養(yǎng)基每2~3d更換一次。
圖2 CAA方法流程圖Fig.2 Flow chart of cellular antioxidant activity assay
CAA方法流程如圖2所示,HepG-2細(xì)胞在96孔板上按6×104個(gè)/孔的密度接種,接種24h后除去培養(yǎng)基,用100μL PBS洗滌一次。用100μL含有不同濃度抗氧化物與25μmol/L DCFH-DA的溶液處理1h(37℃)。然后去除DCFH-DA,用100μL PBS洗滌一次。再用100μL 600μmol/L ABAP處理,最后用熒光酶標(biāo)儀(538nm)每5min測(cè)一次熒光值,持續(xù)1h。每個(gè)平板上對(duì)照組用DCFH-DA和ABAP處理,空白組只用DCFH-DA處理。經(jīng)過(guò)空白調(diào)零和熒光度初值調(diào)零后,可譜出熒光值隨時(shí)間的變化曲線,由曲線下的面積便可計(jì)算出抗氧化物質(zhì)的CAA值,計(jì)算公式為CAA unit=1-(∫SA/∫CA)。式中:∫SA為樣品熒光值相對(duì)于時(shí)間曲線下的完整面積;∫CA為對(duì)照組曲線下的完整面積。
CAA實(shí)驗(yàn)中將槲皮素作為標(biāo)準(zhǔn)物,純植物化學(xué)物質(zhì)的CAA值以mmol QE(槲皮素當(dāng)量)/100μmol化合物表示,食物提取物的CAA值以mmol QE/100g食物表示。研究發(fā)現(xiàn),CAA值與被測(cè)樣品的總酚含量緊密相關(guān),CAA值可用于準(zhǔn)確地反映總酚含量[6,34]。另外,CAA值可由EC50(半數(shù)有效量)按每100μmol純植物化學(xué)物質(zhì)或100g樣品含多少μmol QE轉(zhuǎn)換而來(lái),EC50越小,CAA值越高,抗氧化活性則越好。
細(xì)胞抗氧化測(cè)定方法往往通過(guò)抗細(xì)胞增殖能力來(lái)反映其體內(nèi)抗氧化效果,主要用于食物如果蔬、谷物、豆類和純植物化學(xué)物質(zhì)等的抗氧化活性的評(píng)價(jià)。
果蔬抗氧化活性成分是當(dāng)前科學(xué)研究的熱點(diǎn),國(guó)外研究者相繼從多種果蔬中提取并鑒定出抗氧化成分,并測(cè)定其抗氧化能力。Eberhardt等[20]對(duì)蘋(píng)果抑制Caco-2和HepG-2細(xì)胞增殖的能力進(jìn)行了研究,結(jié)果表明,帶皮和去皮的蘋(píng)果水提物質(zhì)量濃度各為50mg/mL時(shí),對(duì)Caco-2的抑制率分別為(43±1)%和(29±4.1)%,對(duì)HepG-2的抑制率分別為(57±0.21)%和(40±0.64)%,說(shuō)明帶皮蘋(píng)果的提取物較去皮蘋(píng)果的提取物抑制癌細(xì)胞增殖的能力強(qiáng)。進(jìn)一步研究[35-38]表明,蘋(píng)果皮的提取物比蘋(píng)果果肉提取物抑制癌細(xì)胞增殖的能力更強(qiáng),比較4個(gè)蘋(píng)果品種(Rome Beauty、Idared、Cortland、Golden Delicious)發(fā)現(xiàn),Rome Beauty蘋(píng)果果皮提取物質(zhì)量濃度在(12.4± 0.4)mg/mL時(shí),能抑制50%的HepG-2細(xì)胞生長(zhǎng),具有相對(duì)較高的抑制癌細(xì)胞增殖能力[39]。Meyers等[40]研究發(fā)現(xiàn),草莓的抗細(xì)胞增殖能力僅次于蘋(píng)果,8個(gè)不同品種的草莓提取物質(zhì)量濃度各為50mg/mL時(shí),對(duì)HepG-2癌細(xì)胞的抑制率分別為:Earliglow(8 9.1±0.9)%、Evangeline(88.7±0.7)%、Sable(86.1±5.0)%、Jewel (83.2±2.7)%、Sparkle(78.5±3.3)%、Mesabi(76.4± 1.7)%、Allstar(72.2±2.2)%、Annapolis(68.2±0.0)%。常見(jiàn)水果中,蔓越橘、檸檬、蘋(píng)果、草莓、葡萄、香蕉、桃子對(duì)HepG-2細(xì)胞增殖抑制的EC50值依次增加,即抑制細(xì)胞增殖的能力依次減弱[41];常見(jiàn)蔬菜中,菠菜、大白菜、紅辣椒、洋蔥、花椰菜、土豆和甜菜的EC50值依次增加,即抑制HepG-2細(xì)胞增殖的能力依次減弱[42]。大量實(shí)驗(yàn)證實(shí),被測(cè)物的提取濃度與抑制細(xì)胞增殖的能力是存在劑量-效應(yīng)關(guān)系的,濃度越大,抗增殖能力越強(qiáng)。Wolfe[33]、Song Wei[34]等測(cè)定了幾十種常見(jiàn)果蔬提取物的抗氧化活性,發(fā)現(xiàn)兩種不同處理方法(不用PBS和用PBS)測(cè)得蘋(píng)果的CAA值分別為(21.9± 4.0)μmol QE/100g和(17.2±2.0)μmol QE/100g,野生藍(lán)莓的CAA值分別為(292±11)μmol QE/100g和(74.1± 12.5)μmol QE/100g。漿果類一般具有較高的CAA值,如野生藍(lán)莓、草莓、黑莓、樹(shù)莓等,而瓜果類的CAA值較低,如哈密瓜等。蔬菜中則是甜菜、花椰菜和紅辣椒的CAA值較高。CAA值高低與總酚含量是密切相關(guān)的。
谷物中也含有酚酸、黃酮、單寧等酚類化合物,含量和種類與果蔬中的相當(dāng),與果蔬不同的是谷物中的酚大多是結(jié)合酚,很多實(shí)驗(yàn)都證明谷物如有色稻米等具有抗氧化活性[43]。研究發(fā)現(xiàn),米糠提取物對(duì)細(xì)胞HL-60和MOL-4的IC50值分別為2.3mg/kg和2.8mg/kg[44]。Hu Chun等[21]用RAW264.7細(xì)胞系證明了深藍(lán)色粒小麥的麥麩能使H2O2自由基氧化產(chǎn)生的熒光迅速減少,且存在劑量-效應(yīng)關(guān)系。
CAA方法用于評(píng)價(jià)純植物化學(xué)物質(zhì)的抗氧化活性時(shí)發(fā)現(xiàn):具有3,,4,-O-二羥基、2,3雙鍵結(jié)合的4-酮基、3-羥基結(jié)構(gòu)的類黃酮具有較高的CAA值[45];不同純植物化學(xué)物質(zhì)中,槲皮素的CAA值最高,山奈酚、表沒(méi)食子兒茶素沒(méi)食子酸酯(EGCG)、楊梅酮、木犀草素次之[6]。以Wolfe等[45]的CAA方法以及Honzel等[46]的基于人體血紅細(xì)胞的CAP-e方法(cell-based antioxidant protection assay utilising erythrocytes)為基礎(chǔ),Blasa等[31]建立了CAA-RBC方法(cellular antioxidant activity utilising red blood cells),用該方法對(duì)各種純黃酮類物質(zhì)進(jìn)行分析,發(fā)現(xiàn)異鼠李素、楊梅酮、山奈酚表現(xiàn)出較高細(xì)胞抗氧化活性,而木犀草素、EGCG、白藜蘆醇、芹菜素和兒茶素表現(xiàn)出較低活性,與上述CAA方法的結(jié)果有一定差異。
此外,CAA方法在豆類[47]、咖啡[48]、茶葉(茶多酚)[49]等提取物的細(xì)胞抗氧化活性研究中也有應(yīng)用。
細(xì)胞抗氧化實(shí)驗(yàn)反映了抗氧化物質(zhì)在細(xì)胞內(nèi)的吸收、代謝和分布等方面,比化學(xué)抗氧化方法更具有生物相關(guān)性,能更好地預(yù)測(cè)物質(zhì)在體內(nèi)的抗氧化活性,目前被廣泛用于果蔬等食物細(xì)胞抗氧化活性的評(píng)價(jià)。細(xì)胞抗氧化實(shí)驗(yàn)在評(píng)估其他各種抗氧化劑、具有抗氧化活性的食物和膳食補(bǔ)充劑上具有廣闊的應(yīng)用前景。
細(xì)胞抗氧化實(shí)驗(yàn)也面臨著一些挑戰(zhàn)。Girard-Lalancette等[29]實(shí)驗(yàn)證明,大多數(shù)果蔬汁提取物(如胡蘿卜、花椰菜、桃子、草莓、藍(lán)莓)在質(zhì)量濃度大于6.25mg/mL時(shí)能顯著增加DCF熒光的猝滅,因此測(cè)定物質(zhì)抗氧化活性之前要先測(cè)定其對(duì)熒光的猝滅作用,否則不能準(zhǔn)確評(píng)估抗氧化劑清除自由基的能力。實(shí)驗(yàn)過(guò)程中,細(xì)胞用DCFH處理之前一般先用不含DCFH的溶液處理,因而細(xì)胞內(nèi)的DCFH、DCF水平降低了,反之,細(xì)胞外的水平則增加了,這將在一定程度上影響實(shí)驗(yàn)結(jié)果。細(xì)胞模型介質(zhì)中很多對(duì)脂溶性植物化學(xué)不相溶的,一般都需要用二巰甲基過(guò)渡,因引入了不必要的干擾物質(zhì),影響了實(shí)驗(yàn)結(jié)果,所以對(duì)照的做法很重要。CAA值與總酚或總抗氧化活性具有較強(qiáng)的相關(guān)性,比ORAC值更能預(yù)測(cè)總酚的含量,但體外細(xì)胞培養(yǎng)模式并不能完全代表抗氧化物質(zhì)在生物體內(nèi)的代謝和作用情況,因?yàn)椴皇侨魏沃参锘瘜W(xué)物質(zhì)經(jīng)消化后都能被吸收進(jìn)入人體肝臟細(xì)胞或到達(dá)上述的有關(guān)細(xì)胞,所以大部分細(xì)胞抗氧化實(shí)驗(yàn)直接用提取物做細(xì)胞模型可能與人體的攝入含植物化學(xué)物質(zhì)的食物后的實(shí)際情況有很大差別,一般先要經(jīng)人體各種消化酶和消化條件降解后,或腸胃細(xì)菌酵解后再做細(xì)胞模型測(cè)試結(jié)果相對(duì)可靠。因此細(xì)胞抗氧化實(shí)驗(yàn)面臨的最大挑戰(zhàn)就是將CAA的結(jié)果與體內(nèi)方法(動(dòng)物實(shí)驗(yàn))的結(jié)果相聯(lián)系,判斷其是否能預(yù)測(cè)體內(nèi)實(shí)驗(yàn)的結(jié)果。
[1]XU Lijia, HOWARD L R, XU Zhimin. Analysis of antioxidant-rich phytochemicals[M]. New York: John Wiley & Sons Inc, 2012: 3-4.
[2]HERTOG M G, BUENO-de-MESQUITA H B, FEHILY A M, et al. Fruit and vegetable consumption and cancer mortality in the caerphilly study[J]. Cancer Epidemiology Biomarkers and Prevention, 1996, 5(9): 673-677.
[3]DJURIC Z, DEPPER J B, UHLEY V, et al. Oxidative DNA damage levels in blood from women at high risk for breast cancer are associated with dietary intakes of meats, vegetables, and fruits[J]. Journal of the American Dietetic Association, 1998, 98(5): 524- 528.
[4]JOSHIPURA K J, HU F B, MANSON J E, et al. The effect of fruit and vegetable intake on risk for coronary heart disease[J]. Annals of Internal Medicine, 2001, 134(12): 1106-1114.
[5]TIAN L, WANG H, ABDALLAH A M, et al. Red and white wines inhibit cholesterol oxidation induced by free radicals[J]. Journal of Agricultural and Food Chemistry, 2011, 59(12): 6453-6458.
[6]WOLFE K L, LIU Ruihai. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements[J]. Journal of Agricultural and Food Chemistry, 2007, 55(22): 8896-8907.
[7]MILLER N J, RICE-EVANS C, DAVIES M J, et al. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates[J]. Clinical Science, 1993, 84 (4): 407-412.
[8]WINSTON G W, REGOLI F, DUGAS A J, Jr, et al. A rapid gas chromatographic assay for determining oxyradical scavenging capacity of antioxidants and biological fluids[J]. Free Radical Biology and Medicine, 1998, 24(3): 480-493.
[9]GHISELLI A, SERAFINI M, MAIANI G, et al. A fluorescence-based method for measuring total plasma antioxidant capability[J]. Free Radical Biology and Medicine, 1995, 18(1): 29-36.
[10]BRAND-WILLIAMS W, CUVELIER M E, BERSET C. Use of a free radical method to evaluate antioxidant activity[J]. LWT-Food Science and Technology, 1995, 28(1): 25-30.
[11]ADOM K K, LIU Ruihai. Rapid peroxyl radical scavenging capacity (PSC) assay for assessing both hydrophilic and lipophilic antioxidants [J]. Journal of Agricultural and Food Chemistry, 2005, 53(17): 6572-6580.
[12]CAO Guohua, ALESSIO H M, CUTLER R G. Oxygen-radical absorbance capacity assay for antioxidants[J]. Free Radical Biology and Medicine, 1993, 14(3): 303-311.
[13]APAK R,K, DEMIRATA B, et al. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay[J]. Molecules, 2007, 12(7): 1496-1547.
[14]HUANG D J, OU B X, PRIOR R L. The chemistry behind antioxidant capacity assays[J]. Journal of Agricultural and Food Chemistry, 2005, 53(6): 1841-1856.
[15]KARADAG A, OZCELIK B, SANER S. Review of methods to determine antioxidant capacities[J]. Food Analytical Methods, 2009, 2(1): 41-60.
[16]LIU Ruihai. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals[J]. The American Journal of Clinical Nutrition, 2003, 78(3): 517S-520S.
[17]LIU Ruihai, FINLEY J. Potential cell culture models for antioxidant research[J]. Journal of Agricultural and Food Chemistry, 2005, 53(10): 4311- 4314.
[18]MERMELSTEIN N H. Determining antioxidant activity[J]. Food Technology, 2008, 11: 63-66.
[19]EBERHARDT M V, KOBIRA K, KECK A S, et al. Correlation analyses of phytochemical composition, chemical, and cellular measures of antioxidant activity of broccoli (Brassica oleracea L. Var. italica)[J]. Journal of Agricultural and Food Chemistry, 2005, 53(19): 7421-7431. [20]EBERHARDT M V, LEE C Y, LIU Ruihai. Nutrition: antioxidant activity of fresh apples[J]. Nature, 2000, 405: 903-904.
[21]HU Chun, CAI Yizhong, LI Wende, et al. Anthocyanin characterization and bioactivity assessment of a dark blue grained wheat (Triticum aestivum L. cv. Hedong Wumai) extract[J]. Food Chemistry, 2007, 104 (3): 955-961.
[22]HEO H J, CHOI S J, CHOI S G, et al. Effects of banana, orange, and apple on oxidative stress-induced neurotoxicity in PC12 cells[J]. Journal of Food Science, 2008, 73(2): 28-32.
[23]KHONKARN R, OKONOGI S, AMPASAVATE C, et al. Investigation of fruit peel extracts as sources for compounds with antioxidant and antiproliferative activities against human cell lines[J]. Food and Chemical Toxicology, 2010, 48(8/9): 2122-2129.
[24]SERRA A T, MATIAS A A, FRADE R F M, et al. Characterization of traditional and exotic apple varieties from Portugal. Part 2: antioxidant and antiproliferative activities[J]. Journal of Functional Foods, 2010, 2 (1): 46-53.
[25]FUSI E, REBUCCI R, PECORINI C, et al. Alpha-tocopherol counteracts the cytotoxicity induced by ochratoxin A in primary porcine fibroblasts [J]. Toxins, 2010, 2(6): 1265-1278.
[26]GOYA L, MARTIN M A, RAMOS S, et al. A cell culture model for the assessment of the chemopreventive potential of dietary compounds[J]. Current Nutrition and Food Science, 2009, 5(1): 56-64.
[27]ELISIA I, HU C, POPOVICH D G, et al. Antioxidant assessment of an anthocyanin-enriched blackberry extract[J]. Food Chemistry, 2007, 101 (3): 1052-1058.
[28]JENSEN G S, WU X L, PATTERSON K M, et al. in vitro and in vivo antioxidant and anti-inflammatory capacities of an antioxidant-rich fruit and berry juice blend. Results of a pilot and randomized, double-blinded, placebo-controlled, crossover study[J]. Journal of Agricultural and Food Chemistry, 2008, 56(18): 8326-8333.
[29]GIRARD-LALANCETTE K, PICHETTE A, LEGAULT J. Sensitive cell-based assay using DCFH oxidation for the determination of pro-and antioxidant properties of compounds and mixtures: analysis of fruit andvegetable juices[J]. Food Chemistry, 2009, 115(2): 720-726.
[30]XU Baojun, CHANG S K C. Phenolic substance characterization and chemical and cell-based antioxidant activities of 11 lentils grown in the northern United States[J]. Journal of Agricultural and Food Chemistry, 2010, 58(3): 1509-1517.
[31]BLASA M, ANGELINO D, GENNARI L, et al. The cellular antioxidant activity in red blood cells (CAA-RBC): a new approach to bioavailability and synergy of phytochemicals and botanical extracts[J]. Food Chemistry, 2011, 125(2): 685-691.
[32]費(fèi)洪新, 孫麗慧, 張濤, 等. 人肝癌HepG2細(xì)胞培養(yǎng)的體會(huì)[J]. 衛(wèi)生職業(yè)教育, 2007, 25(8): 138-139.
[33]WOLFE K L, KANG Xinmei, HE Xiangjiu, et al. Cellular antioxidant activity of common fruits[J]. Journal of Agricultural and Food Chemistry, 2008, 56(18): 8418-8426.
[34]SONG Wei, DERITO C M, LIU M K, et al. Cellular antioxidant activity of common vegetables[J]. Journal of Agricultural and Food Chemistry, 2010, 58(11): 6621-6629.
[35]HE Xiangjiu, LIU Ruihai. Phytochemicals of apple peels: isolation, structure elucidation, and their antiproliferative and antioxidant activities [J]. Journal of Agricultural and Food Chemistry, 2008, 56(21): 9905-9910.
[36]YANG Jun, LIU Ruihai. Synergistic effect of apple extracts and quercetin 3-β-D-glucoside combination on antiproliferative activity in MCF-7 human breast cancer cells in vitro[J]. Journal of Agricultural and Food Chemistry, 2009, 57(18): 8581-8586.
[37]HE Xiangjiu, LIU Ruihai. Triterpenoids isolated from apple peels have potent antiproliferative activity and may be partially responsible for apple,s anticancer activity[J]. Journal of Agricultural and Food Chemistry, 2007, 55(11): 4366-4370.
[38]YOON H, LIU Ruihai. Effect of selected phytochemicals and apple extracts on NF-κB activation in human breast cancer MCF-7 cells [J]. Journal of Agricultural and Food Chemistry, 2007, 55(8): 3167-3173.
[39]WOLFE K, WU Xianzhong, LIU Ruihai. Antioxidant activity of apple peels[J]. Journal of Agricultural and Food Chemistry, 2003, 51(3): 609-614.
[40]MEYERS K J, WATKINS C B, PRITTS M P, et al. Antioxidant and antiproliferative activities of strawberries[J]. Journal of Agricultural and Food Chemistry, 2003, 51(23): 6887-6892.
[41]SUN Jie, CHU Yifang, WU Xianzhong, et al. Antioxidant and antiproliferative activities of common fruits[J]. Journal of Agricultural and Food Chemistry, 2002, 50(25): 7449-7454.
[42]CHU Yifang, SUN Jie, WU Xianzhong, et al. Antioxidant and antiproliferative activities of common vegetables[J]. Journal of Agricultural and Food Chemistry, 2002, 50(23): 6910-6916.
[43]ZHANG M W, ZHANG R F, ZHANG F X, et al. Phenolic profiles and antioxidant activity of black rice bran of different commercially available varieties[J]. Journal of Agricultural and Food Chemistry, 2010, 58(13): 7580-7587.
[44]PARRADO J, MIRAMONTES E, JOVER M, et al. Preparation of a rice bran enzymatic extract with potential use as functional food[J]. Food Chemistry, 2006, 98(4): 742-748.
[45]WOLFE K L, LIU Ruihai. Structureactivity relationships of flavonoids in the cellular antioxidant activity assay[J]. Journal of Agricultural and Food Chemistry, 2008, 56(18): 8404-8411.
[46]HONZEL D, CARTER S G, REDMAN K A, et al. Comparison of chemical and cell-based antioxidant methods for evaluation of foods and natural products: generating multifaceted data by parallel testing using erythrocytes and polymorphonuclear cells[J]. Journal of Agricultural and Food Chemistry, 2008, 56(18): 8319-8325.
[47]XU Baojun, CHANG S K C. Reduction of antiproliferative capacities, cell-based antioxidant capacities and phytochemical contents of common beans and soybeans upon thermal processing[J]. Food Chemistry, 2011, 129(3): 974-981.
[48]CHU Yifang, CHEN Yumin, BLACK R M, et al. Type 2 diabetes-related bioactivities of coffee: assessment of antioxidant activity, NF-κB inhibition, and stimulation of glucose uptake[J]. Food Chemistry, 2011, 124(3): 914-920.
[49]HAN D H, JEONG J H, KIM J H. Anti-proliferative and apoptosis induction activity of green tea polyphenols on human promyelocytic leukemia HL-60 cells[J]. Anticancer Research, 2009, 29(4): 1417-1421.
Research Progress of Cellular Antioxidant Activity Assay for Antioxidant Evaluation of Foods
XIA Chun-yan1,GUO Xiao-hui1,LI Fu-hua1,CHEN Long1,ZHAO Guo-hua1,2,MING Jian1,2,3,*
(1. College of Food Science, Southwest University, Chongqing 400715, China;2. National Food Science and Engineering Experimental Teaching Center, Southwest University, Chongqing 400715, China;3. Laboratory of Quality and Safety Risk Assessment for Agro-products on Storage and Preservation(Chongqing), Ministry of Agriculture, Chongqing 400715, China)
It is well known that increasing cardiovascular diseases and cancers were caused by excessive free radicals in vivo. Scavenging of excessive free radicals by antioxidants is one of the effective methods to reduce such diseases. Numerous studies have demonstrated that phytochemicals from fruits, vegetables and whole grains, possess strong antioxidant activity. Therefore, studies on antioxidant effects in vivo or antioxidant activity evaluation of these substances have become a hot topic in the field of functional foods. Cellular antioxidant activity (CAA) assay has been established and widely applied in antioxidant evaluation of functional foods, which can effectively predict the antioxidant activity of phytochemicals in biological system. In this paper, the current research progress of CAA in China and other countries and its application in antioxidant evaluation of functional foods are reviewed in this paper.
cellular antioxidant activity;fruits and vegetables;grains
TS201.2
A
1002-6630(2012)15-0297-06