亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        反芻家畜瘤胃微生物群體感應(yīng)

        2012-03-14 05:33:48譚支良
        關(guān)鍵詞:球菌瘤胃分子

        冉 濤 譚支良

        (1.中國(guó)科學(xué)院亞熱帶農(nóng)業(yè)生態(tài)研究所,中國(guó)科學(xué)院亞熱帶農(nóng)業(yè)生態(tài)過程重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)沙410125;2.中國(guó)科學(xué)院研究生院,北京100049)

        群體感應(yīng)(quorum-sensing,QS)是微生物通過分泌信號(hào)分子來感知細(xì)胞(群體)密度的行為,當(dāng)信號(hào)分子達(dá)到一定濃度閾值時(shí),通過啟動(dòng)或抑制特定基因的表達(dá),達(dá)到協(xié)調(diào)微生物群體行為的目的。通常,微生物在生長(zhǎng)過程中會(huì)不斷地分泌信號(hào)分子并釋放到微生物細(xì)胞外,同時(shí)在其生存環(huán)境中累積。而信號(hào)分子的分泌與微生物細(xì)胞密度密切相關(guān):當(dāng)細(xì)胞密度較低時(shí),微生物只能分泌一定水平的信號(hào)分子;隨著微生物細(xì)胞密度的增加,胞外信號(hào)分子的濃度也不斷增加。當(dāng)胞外信號(hào)分子的濃度達(dá)到一定閾值時(shí),信號(hào)分子就能被微生物細(xì)胞膜上的受體識(shí)別,或經(jīng)特異性的轉(zhuǎn)運(yùn)載體轉(zhuǎn)運(yùn)至微生物細(xì)胞內(nèi),與細(xì)胞質(zhì)中相應(yīng)的受體結(jié)合,形成信號(hào)分子-受體復(fù)合物。該復(fù)合物能與DNA鏈特定區(qū)域結(jié)合或使阻遏物從DNA鏈上脫落,從而激活信號(hào)分子的自誘導(dǎo)合成和靶基因表達(dá)(表1)。微生物群體的行為可隨著靶基因的大量表達(dá)實(shí)現(xiàn)同步化,從而使整個(gè)微生物群體能更好地適應(yīng)生存環(huán)境的劇烈變化,并在與其他種群微生物的競(jìng)爭(zhēng)或協(xié)同過程中發(fā)揮功能[1-7]。目前,研究發(fā)現(xiàn) QS在微生物毒素分泌[8-12]、Ti質(zhì)粒轉(zhuǎn)移[13]、生物膜的 形 成[14]、生 物 發(fā) 光[15-16]、抗 生 素合成[17]、次級(jí)代謝產(chǎn)物的生成[18]和抗微生物肽合成[19]等生理生化過程中發(fā)揮了重要作用,甚至連微生物的細(xì)胞程序性死亡(programmed cell death,PCD)也受到QS調(diào)控[20]。近年來,研究人員發(fā)現(xiàn)QS不僅在細(xì)菌、真菌的生理生化過程中發(fā)揮作用,而且在微生物與其宿主之間的相互作用中也發(fā)揮著重要功能[21]。

        至今,已經(jīng)有多種QS信號(hào)分子被發(fā)現(xiàn),其中分布最為廣泛、研究最為深入的有N-?;呓z氨酸內(nèi)酯(N-acyl homoserine lactones,AHLs)、自誘導(dǎo)肽(autoinducing peptides,AIPs)和自體誘導(dǎo)物-2(autoinducer-2,AI-2)3大類,它們的結(jié)構(gòu)見圖1。AHLs和AIPs分別介導(dǎo)革蘭氏陰性菌和革蘭氏陽性菌的QS[23-25];而由于革蘭氏陽性菌和革蘭氏陰性菌兩者均可分泌AI-2,因此AI-2被認(rèn)為是介導(dǎo)微生物種間交流的通用信號(hào)語言[26-28]。其他信號(hào)分子,如腎上腺素-去甲腎上腺素類似物(AI-3)[5]、二 酮 哌 嗪 類 (diketopiperazines,DKPs)[29]、假單 孢 菌 屬 喹 諾 酮 信 號(hào) (Pseudomonas quinolone signal,PQS)[30-31]、鏈霉菌屬 γ-丁內(nèi)酯(γ-butyrolactones)及吲哚(indole)[32-33]等,與前述3種信號(hào)分子相比在微生物QS發(fā)生過程中并不普遍。

        表1 微生物群體感應(yīng)的發(fā)生過程及其關(guān)鍵因子Table 1 General steps and key components of quorum-sensing system[22]

        圖1 3類主要QS信號(hào)分子的結(jié)構(gòu)示意圖Fig.1 Schematic of the structure of three main kinds of quorum-sensing signals[34]

        微生物通常采用不同的方式對(duì)不同信號(hào)分子進(jìn)行識(shí)別,如細(xì)胞質(zhì)轉(zhuǎn)錄激活因子用于識(shí)別AHLs類信號(hào)分子,而膜結(jié)合雙組分信號(hào)轉(zhuǎn)導(dǎo)系統(tǒng)則識(shí)別AIPs和AI-2類信號(hào)分子。例如,對(duì)由AHLs介導(dǎo)的費(fèi)氏弧菌(Vibrio fischeri)生物發(fā)光現(xiàn)象研究相對(duì)較早且較透徹,因此AI-2的LuxI/LuxR系統(tǒng)也常被用作研究革蘭氏陰性菌QS的模式系統(tǒng)[35]。LuxI與LuxR分別由luxI和luxR基因編碼。LuxI是AHLs合成酶,而LuxR既是AHLs的特異性受體,同時(shí)也是一種DNA結(jié)合轉(zhuǎn)錄激活元件,二者共同組成LuxI/LuxR信號(hào)系統(tǒng)(圖2-A)。AIPs常由相應(yīng)的前體物經(jīng)過翻譯后修飾或在轉(zhuǎn)運(yùn)至胞外的過程中經(jīng)剪切加工而成為成熟的信號(hào)分子。成熟的AIPs信號(hào)分子常含有5~17個(gè)氨基酸殘基,AIPs分子不能自由通過細(xì)胞膜,需要借助ATP結(jié)合盒(ATP-binding cassette,ABC)轉(zhuǎn)運(yùn)載體或其他載體、膜通道蛋白的幫助才能到達(dá)胞外,如金黃色葡萄球菌(Staphylococcus aureus)和糞腸球菌(E.faecalis)分別用附屬基因調(diào)節(jié)子B(accessory gene regulator B,AgrB)和FsrB來轉(zhuǎn)運(yùn)AIPs信號(hào)分子[36-37]。黃色葡萄球菌常作為革蘭氏陽性菌QS研究的模式菌株[32],由其產(chǎn)生的AIPs被膜上的雙 組 份 信 號(hào) 轉(zhuǎn) 導(dǎo) 系 統(tǒng) (two-component-signaltransduction system)識(shí)別而發(fā)揮作用(圖2-B)。AI-2是由4,5-二羥基-2,3-戊二酮(dihydroxypentanedione,DPD)衍生產(chǎn)生的可相互轉(zhuǎn)化的呋喃酮類物質(zhì),通常由底物S-腺苷甲硫氨酸(SAM)經(jīng)過3步酶促反應(yīng)(甲基轉(zhuǎn)移酶、Pfs和LuxS)合成[26,38]。

        圖2 群體感應(yīng)發(fā)生過程示意圖Fig.2 Schematic of the quorum-sensing system[39]

        QS在致病微生物領(lǐng)域的研究相對(duì)深入,致病微生物QS的發(fā)生對(duì)宿主而言是有害的。但是,反芻家畜瘤胃內(nèi)棲息了大量的微生物,對(duì)宿主本身的能量和蛋白質(zhì)營(yíng)養(yǎng)與代謝具有重要生理意義。因此,動(dòng)物營(yíng)養(yǎng)學(xué)家關(guān)于瘤胃微生物QS研究的出發(fā)點(diǎn)主要集中在以下幾個(gè)方面:第一,瘤胃內(nèi)微生物是否存在QS?第二,瘤胃微生物對(duì)營(yíng)養(yǎng)物質(zhì)的消化與代謝是否通過QS來調(diào)節(jié)種間協(xié)同作用?第三,瘤胃微生物種間的競(jìng)爭(zhēng)是否受QS調(diào)控?而在其他與瘤胃纖維降解菌有相似活性的微生物中,一些胞外酶的表達(dá)是受QS調(diào)控的,如胡蘿卜軟腐歐文氏菌(Erwinia carotovora)中纖維素酶、果膠酶、多聚半乳糖醛酸酶的表達(dá),青紫色素桿菌(Chromobacterium violaceum)中幾丁質(zhì)酶的表達(dá)等[9,40]。因此,在對(duì)瘤胃微生物 QS進(jìn)行探索時(shí),瘤胃內(nèi)纖維降解菌[黃色瘤胃球菌(Ruminococcus flavefaciens)、白 色 瘤 胃 球 菌 (Ruminococcus albus)、產(chǎn)琥珀酸絲狀桿菌和溶纖維丁酸弧菌(B.fibrisolvens)等]成為重點(diǎn)研究對(duì)象,旨在解析上述3個(gè)方面的問題。盡管研究人員很早之前就從纖維降解菌中克隆到纖維素酶基因[41-42],但是到目前為止對(duì)這些酶的表達(dá)調(diào)控機(jī)制仍不清楚。鑒于此,瘤胃內(nèi)微生物分泌的AHLs、AIPs和AI-2等3類主要QS信號(hào)分子及各自的信號(hào)通路等方面的研究就顯得尤其重要。

        1 瘤胃微生物AHLs介導(dǎo)的QS

        Erickson等[43]首次對(duì)瘤胃微生物分泌的AHLs類信號(hào)分子介導(dǎo)的QS進(jìn)行了探索,在其研究中采用青紫色素桿菌CV026和根癌土壤桿菌(Agrobacterium tumefaciens)A136 (pCF372)(pCF272)作為報(bào)告菌,對(duì)飼喂不同精粗比飼糧的牛和鹿的飼前1h和飼后2h的瘤胃液分別進(jìn)行檢測(cè),在80%的試驗(yàn)動(dòng)物瘤胃液中檢測(cè)到了AHLs信號(hào)分子,且發(fā)現(xiàn)飼前與飼后檢測(cè)結(jié)果無差別。經(jīng)過高效液相色譜分析,發(fā)現(xiàn)AHLs信號(hào)分子具有與N-己酰-L-高絲氨酸內(nèi)酯(N-h(huán)exanoyl-L-h(huán)omoserine lactone,HHL)、N-3氧己酰-L- 高 絲 氨 酸 內(nèi) 酯 (N-3-oxo-h(huán)exanoyl-L-h(huán)omoserine lactone,OHHL)和N-辛酰-L-高絲氨酸內(nèi) 酯 (N-octanoyl-L-h(huán)omoserine lactone,OHL)相似的色譜性質(zhì)。與此同時(shí),將瘤胃微生物單菌[纖維桿 菌 (Fibrobacter succinogenes)S85、Prevotella albensis 223/M2/7、白色瘤胃球菌B199、黃色瘤胃球菌和牛瘤胃鏈球菌(Streptococcus bovis)YM150等]在實(shí)驗(yàn)室條件下進(jìn)行培養(yǎng),在上清液中并沒有檢測(cè)到AHLs信號(hào)分子。此外,由于Erickson等[43]并沒有在所有試驗(yàn)動(dòng)物的瘤胃液中檢測(cè)到AHLs信號(hào)分子,因此認(rèn)為分泌AHLs信號(hào)分子的微生物不一定是瘤胃內(nèi)的必需微生物;且認(rèn)為由于缺乏瘤胃內(nèi)某些特有因子的刺激,單一菌群在實(shí)驗(yàn)室條件下不能分泌AHLs,而試驗(yàn)動(dòng)物瘤胃中檢測(cè)到的AHLs可能是由某些在實(shí)驗(yàn)室條件下不能培養(yǎng)的微生物所分泌的。Edrington等[44]研究了季節(jié)對(duì)反芻家畜胃腸道不同部位微生物分泌AHLs類信號(hào)分子的影響。在春夏秋冬分別從屠宰場(chǎng)采集了牛瘤胃液和直腸內(nèi)容物樣品,利用根癌土壤桿菌作為報(bào)告菌,采用β-半乳糖苷酶活性法對(duì)樣品進(jìn)行了AHLs信號(hào)分子檢測(cè)。發(fā)現(xiàn)在春夏秋3個(gè)季節(jié)所采集的瘤胃液樣品中均能檢測(cè)到AHLs信號(hào)分子,而在冬季采集的瘤胃液及直腸內(nèi)容物樣品中均未檢測(cè)到AHLs信號(hào)分子。據(jù)此認(rèn)為可從2方面來解釋這一現(xiàn)象:其一,可能是后腸道內(nèi)的pH偏堿性,使AHLs信號(hào)分子發(fā)生開環(huán)失活;其二,可能是腸道內(nèi)缺乏產(chǎn)生AHLs信號(hào)分子的微生物。

        Edrington等[44]和 Hughes等[45]對(duì)出血性大腸桿菌(EHEC)與其宿主牛的共生關(guān)系進(jìn)行了研究。EHEC是引起出血性腹瀉和溶血性尿毒癥綜合征在全球范圍內(nèi)爆發(fā)的主要因素,然而作為EHEC的天然宿主,牛卻不表現(xiàn)出任何癥狀。同時(shí),EHEC能從牛的胃腸道中脫落并隨糞便一起排出,若牛糞便處理不當(dāng)則會(huì)造成環(huán)境污染且對(duì)人類健康構(gòu)成潛在威脅[46]。EHEC與埃希大腸桿菌(E.coli)一樣,本身不能產(chǎn)生AHLs類信號(hào)分子,但是擁有能感應(yīng)這類信號(hào)分子的受體SdiA[47]。SdiA是LuxR的同源蛋白質(zhì),不同的是LuxR在微生物種內(nèi)交流中發(fā)揮作用,SdiA在微生物種間交流中發(fā)揮功能。Edrington等[44]采用14只斷奶羔羊作為試驗(yàn)動(dòng)物,對(duì)其接種EHEC,飼養(yǎng)8d后屠宰尸檢并采集胃腸道內(nèi)容物樣品,發(fā)現(xiàn)所有樣品均呈 AHLs陰性。Hughes等[45]指出,SdiA識(shí)別AHLs后能夠調(diào)控EHEC中促進(jìn)其在宿主體內(nèi)的定植基因的表達(dá),并認(rèn)為這種QS可能是共生細(xì)菌感應(yīng)并適應(yīng)其宿主環(huán)境的一種普遍機(jī)制。Edrington等[44]和 Hughes等[45]的研究均證實(shí)對(duì)于反芻家畜消化道微生物而言只有瘤胃內(nèi)微生物能分泌AHLs信號(hào)分子。上述研究為對(duì)AHLs-SdiA介導(dǎo)的EHEC在牛消化道內(nèi)定植進(jìn)行有效控制,進(jìn)而為降低肉、奶產(chǎn)品及產(chǎn)品深加工時(shí)交叉污染的幾率,并減少EHEC的環(huán)境排放帶來了曙光。

        Erickson等[43]的研究還發(fā)現(xiàn)盡管牛飼糧精粗比與檢測(cè)到的瘤胃內(nèi)AHLs信號(hào)分子水平?jīng)]有相關(guān)性,但是飼喂高精料的試驗(yàn)動(dòng)物瘤胃微生物所分泌的AHLs比飼喂高粗料的試驗(yàn)動(dòng)物瘤胃微生物所分泌的AHLs具有更長(zhǎng)的側(cè)鏈。據(jù)此結(jié)果應(yīng)該可以理解為牛瘤胃內(nèi)可能存在多種能產(chǎn)生AHLs信號(hào)分子的微生物,在飼喂不同精粗比飼糧時(shí),瘤胃內(nèi)具有不同的優(yōu)勢(shì)微生物種群:飼喂高精粗比飼糧時(shí),分泌長(zhǎng)鏈AHLs的微生物為優(yōu)勢(shì)種群;而飼喂低精粗比飼糧時(shí),分泌短鏈AHLs的微生物為優(yōu)勢(shì)種群。但是,在瘤胃微生物降解利用不同營(yíng)養(yǎng)物質(zhì)時(shí)分泌不同AHLs信號(hào)分子的微生物是直接參與營(yíng)養(yǎng)物質(zhì)降解還是感應(yīng)其他微生物種群發(fā)揮降解功能,需要在未來的研究中不僅對(duì)分泌不同AHLs信號(hào)分子的瘤胃微生物種群進(jìn)行甄別,而且要對(duì)其功能及機(jī)制進(jìn)行進(jìn)一步探索。

        2 瘤胃微生物AI-2介導(dǎo)的QS

        Mitsumori等[48]對(duì)瘤胃微生物能否產(chǎn)生 AI-2類信號(hào)分子進(jìn)行了研究。利用哈氏弧菌(Vibrio harveyi)BB170作為報(bào)告菌,發(fā)現(xiàn)在瘤胃液和溶纖維丁酸弧菌、反芻真桿菌(E.ruminantium)、黃色瘤胃球菌、溶淀粉琥珀酸單孢菌(S.amylolytica)等純培養(yǎng)物上清液中均檢測(cè)到了AI-2類似物。Lukas等[49]在對(duì)腸道共生細(xì)菌中AI-2信號(hào)分子進(jìn)行檢測(cè)時(shí),也發(fā)現(xiàn)白色瘤胃球菌和黃色瘤胃球菌能夠分泌AI-2類似物。

        已知LuxS是由luxS基因編碼的AI-2信號(hào)分子合成酶,因此,luxS基因常作為判斷某種微生物是否具有AI-2介導(dǎo)的QS的指標(biāo)之一。研究中常根據(jù)已知的luxS基因序列設(shè)計(jì)引物,以待檢測(cè)微生物的DNA為模板,進(jìn)行l(wèi)uxS基因的克隆檢測(cè)。Mitsumori等[48]采用巢式PCR,在混合瘤胃微生物和棲瘤胃普雷沃氏菌棲瘤胃亞種(Prevotella ruminicola subsp.Ruminicola)和黃色瘤胃球菌中克隆到了luxS基因同源序列(Genbank登錄號(hào):AB094404-AB094409)。然而,Lukas等[49]同樣采用巢式PCR方法卻未能在黃色瘤胃球菌中克隆到luxS基因同源序列,可能的原因是在第2階段PCR采用了與 Mitsumori等[48]不同的引物所致。Miller等[50]完成了對(duì)黃色瘤胃球菌FD-1全基因組測(cè)序的草圖工作(Genbank登錄號(hào):ACOK00000000.1),指出黃色瘤胃球菌存在luxS基因的同源序列,但與Mitsumori等[48]克隆的黃色瘤胃球菌的luxS基因同源序列進(jìn)行比對(duì)后發(fā)現(xiàn)二者同源性較低,這一差異可能是由于試驗(yàn)菌株不同而導(dǎo)致的。由于目前對(duì)黃色瘤胃球菌的QS研究較少,將來的研究應(yīng)該集中到解析瘤胃中AI-2類似物的結(jié)構(gòu),克隆瘤胃內(nèi)不同微生物種群催化AI-2分泌的相關(guān)合成酶(LuxS)的基因,以及探索AI-2作為種群間或種群內(nèi)QS的信號(hào)分子的轉(zhuǎn)導(dǎo)通路與調(diào)控機(jī)制。

        3 瘤胃微生物AIPs介導(dǎo)的QS

        至今為止的研究發(fā)現(xiàn)金黃色葡萄球菌的QS還可通過AIPs信號(hào)分子來介導(dǎo),參與QS過程的關(guān)鍵因子包括附屬基因調(diào)節(jié)子D(AgrD)、AgrB、附屬基因調(diào)節(jié)子C(AgrC)和附屬基因調(diào)節(jié)子A(AgrA),別由agrD、agrB、agrC和agrA 基因編碼,其中AgrD和AgrB參與合成具有活性的AIPs信號(hào)分子,AgrC和AgrA則構(gòu)成膜結(jié)合雙組分信號(hào)轉(zhuǎn)導(dǎo)系統(tǒng)。盡管不同微生物產(chǎn)生的AIPs信號(hào)分子不同,但它們均采用膜結(jié)合雙組分信號(hào)轉(zhuǎn)導(dǎo)系統(tǒng)對(duì)AIPs信號(hào)分子進(jìn)行識(shí)別,因此,agrC基因是研究AIPs介導(dǎo)的QS的重要切入點(diǎn)。Burrell等[51]對(duì)產(chǎn)甲烷生物反應(yīng)器中的纖維降解菌進(jìn)行了研究,發(fā)現(xiàn)這些纖維降解菌主要屬于硬壁菌門梭菌屬,且通過熒光原位雜交(fluorescence in situ hybridization,F(xiàn)ISH)研究發(fā)現(xiàn)這些纖維降解菌具有一些奇特的行為,如在纖維素底物上定植緩慢、形成生物膜、隨機(jī)附著在底物上并呈分散狀生長(zhǎng),幾乎在纖維素顆粒上完全占主導(dǎo)地位。為了弄清這些細(xì)菌降解纖維素的機(jī)制,Burrell等[51]以這些細(xì)菌總DNA為模板,采用根據(jù)已知的agrC基因序列設(shè)計(jì)的簡(jiǎn)并引物進(jìn)行PCR,結(jié)果克隆到的基因片段與熱纖梭菌(C.thermocellum)agrC基因高度同源,因此,認(rèn)為這些纖維降解菌可能具備AIPs介導(dǎo)的 QS[52]。Sun等[53]采用2對(duì)根據(jù)金黃色葡萄球菌中的agrC基因設(shè)計(jì)的特異性引物,旨在在牛瘤胃微生物中克隆到該基因的同源基因。盡管從克隆到的基因序列推出的氨基酸序列與AgrC相似性不高,但發(fā)現(xiàn)與檸檬酸鹽代謝過程中涉及的組氨酸蛋白激酶具有高度的相似性。其研究結(jié)果揭示了某些瘤胃微生物的檸檬酸鹽代謝受到膜結(jié)合雙組份信號(hào)轉(zhuǎn)導(dǎo)系統(tǒng)的調(diào)控。

        變異鏈球菌(Streptococcus mutans)、肺炎鏈球菌(Streptococcus pneumoniae)的遺傳轉(zhuǎn)化、生物膜的形 成 等 均 受 ComC 介 導(dǎo) 的 QS 調(diào) 控[54-55]。ComC是一種感受態(tài)的激活肽(competence-stimulating peptide),常以沒有活性的前體肽的形式被合成,在轉(zhuǎn)運(yùn)過程中被切除前導(dǎo)肽而成為成熟的信號(hào)分子。當(dāng)ComC在胞外累積到一定的濃度時(shí),就能被雙組分信號(hào)轉(zhuǎn)導(dǎo)系統(tǒng)ComDE識(shí)別,ComD和ComE分別為組氨酸激酶受體和應(yīng)答調(diào)節(jié)子。Yoshii等[56]在牛瘤胃鏈球菌中克隆到了comCDE基因簇,證明了牛瘤胃鏈球菌存在類似的雙組分信號(hào)轉(zhuǎn)導(dǎo)系統(tǒng)。Asanuma等[57]研究發(fā)現(xiàn)牛瘤胃鏈球菌的生長(zhǎng)和遺傳轉(zhuǎn)化受到自誘導(dǎo)肽ComC與雙組分信號(hào)轉(zhuǎn)導(dǎo)系統(tǒng)ComDE的調(diào)控,首次報(bào)道了瘤胃微生物存在AIPs介導(dǎo)的QS。Asanuma等[57]采用構(gòu)建comC基因缺失突變,比較研究了缺失突變與添加外源ComC對(duì)其蛋白質(zhì)表達(dá)和生長(zhǎng)情況等方面的影響,證明了comCDE基因簇通過QS調(diào)控牛瘤胃鏈球菌的生長(zhǎng)和遺傳轉(zhuǎn)化。這一發(fā)現(xiàn)對(duì)于反芻家畜生產(chǎn)系統(tǒng)應(yīng)用相應(yīng)的調(diào)控技術(shù)以防止牛瘤胃鏈球菌過度生長(zhǎng),避免瘤胃酸中毒、減少甲烷產(chǎn)量、提高反芻家畜飼料利用率具有重要意義。

        研究證明很多細(xì)菌素類同時(shí)具有抗微生物活性和介導(dǎo)QS的雙重功能,如乳酸桿菌屬產(chǎn)生的乳鏈球菌素(nisin)[58]。瘤胃微生物中也有相當(dāng)多的微生物能夠產(chǎn)生細(xì)菌素,如溶纖維丁酸弧菌[59-60]、糞腸球菌[61]、活潑瘤胃球菌(Ruminococcus gnavus)[62]等。Odenyo等[63]和 Chan等[64]發(fā) 現(xiàn) 白 色瘤胃球菌產(chǎn)生的一種熱穩(wěn)定的類似細(xì)菌素的化合物,能對(duì)黃色瘤胃球菌和丁酸弧菌的生長(zhǎng)造成抑制。白色瘤胃球菌細(xì)菌素是否與乳酸桿菌屬產(chǎn)生的乳鏈球菌素一樣具有介導(dǎo)QS的功能?而白色瘤胃球菌又是如何感知黃色瘤胃球菌和丁酸弧菌的存在及數(shù)量的?此外,目前發(fā)現(xiàn)的很多具有QS的革蘭氏陽性菌都屬于硬壁菌門(Firmicutes),而瘤胃中的主要纖維降解菌白色瘤胃球菌和黃色瘤胃球菌也是屬于硬壁菌門,那它們是否具有agr、fsr和com等基因的同源基因呢?上述科學(xué)問題均需要在今后的研究中得到解答。

        4 小結(jié)與展望

        至今已證實(shí)部分瘤胃微生物確實(shí)存在AHLs、AIPs、AI-2等介導(dǎo)的QS,但與瘤胃內(nèi)數(shù)量巨大的微生物種群相比相關(guān)研究仍顯微不足道。若與致病微生物QS研究已經(jīng)到應(yīng)用水平相比,瘤胃微生物QS研究目前僅限于信號(hào)分子檢測(cè)并求證其存在與否的層次。在未來瘤胃微生物QS領(lǐng)域的研究中,研究分泌信號(hào)分子的瘤胃微生物種類及QS機(jī)制是基礎(chǔ);其次,需要闡明瘤胃微生物對(duì)各類營(yíng)養(yǎng)物代謝的過程是否受QS調(diào)控,同時(shí)需要回答瘤胃微生物彼此競(jìng)爭(zhēng)與共生、瘤胃微生物與反芻家畜宿主間的互作是否受QS調(diào)控;隨后,以通過建立瘤胃微生物QS的調(diào)控技術(shù)來提高反芻家畜的飼料利用效率。

        [1] ATKINSON S,WILLIAMS P.Quorum sensing and social networking in the microbial world[J].Journal of the Royal Society Interface,2009,6(40):959-978.

        [2] SIFRI C D.Quorum sensing:bacteria talk sense[J].Clinical Infectious Diseases,2008,47(8):1070-1076.

        [3] HENKE J M,BASSLER B L.Bacterial social engagements[J].Trends in Cell Biology,2004,14(11):648-656.

        [4] BASSLER B L,LOSICK R.Bacterially speaking[J].Cell,2006,125(2):237-246.

        [5] READING N C,SPERANDIO V.Quorum sensing:the many languages of bacteria[J].FEMS Microbiology Letters,2006,254(1):1-11.

        [6] WILLIAMS P,WINZER K,CHAN W C,et al.Look who’s talking:communication and quorum sensing in the bacterial world[J].Philosophical Transactions of the Royal Society B:Biological Sciences,2007,362:1119-1134.

        [7] BODMAN S B,WILLEY J A,DIGGLE S P.Cell-cell communication in bacteria:united we stand[J].Journal of Bacteriology,2008,190(13):4377-4391.

        [8] WINZER K,WILLIAMS P.Quorum sensing and the regulation of virulence gene expression in pathogenic bacteria[J].Journal of Medical Microbiology,2001,291(2):131-143.

        [9] PIRHONEN M,F(xiàn)LEGOL D,HEIKINHEIMO R,et al.A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora[J].The EMBO Journal,1993,12(6):2467-2476.

        [10] PODBIELSKI A,KREIKEMEYER B.Cell densitydependent regulation:basic principles and effects on the virulence of Gram-positive cocci[J].International Journal of Infectious Diseases,2004,8(2):81-95.

        [11] BOTTOMLEY M J,MURAGLIA E,BAZZO R,et al.Molecular insights into quorum sensing in the human pathogen Pseudomonas aeruginosa from the structure of the virulence regulator LasR bound to its autoinducer[J].Journal of Biological Chemistry,2007,282(18):13592-13600.

        [12] NOVICK R P.Autoinduction and signal transduction in the regulation of staphylococcal virulence[J].Molecular Microbiology,2003,48(6):1429-1449.

        [13] HWANG I Y,LI P L,ZHANG L H,et al.TraI,a LuxI homologue,is responsible for production of conjugation factor,the Ti plasmid N-acylhomoserine lactone autoinducer[J].Proceedings of the National A-cademy of Sciences of the United States of America,1994,91(11):4639-4643.

        [14] DAVIES D G,PARSEK M R,PEARSON J P,et al.The involvement of cell-to-cell signals in the development of a bacterial biofilm[J].Science,1998,280:295-298.

        [15] BASSLER B L,WRIGHT M,SHOWALTER R E,et al.Intercellular signalling in Vibrio harveyi:sequence and function of genes regulating expression of luminescence[J].Molecular Microbiology,1993,9(4):773-786.

        [16] BASSLER B L,WRIGHT M,SILVERMAN M R,et al.Multiple signalling systems controlling expression of luminescence in Vibrio harveyi:sequence and function of genes encoding a second sensory pathway[J].Molecular Microbiology,1994,13(2):273-286.

        [17] EIJSINK V G H,AXELSSON L,DIEP D B,et al.Production of classⅡbacteriocins by lactic acid bacteria;an example of biological warfare and communication[J].Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology,2002,81(1/2/3/4):639-654.

        [18] CHATTERJEE A,CUI Y Y,HASEGAWA H,et al.Comparative analysis of two classes of quorum-sensing signaling systems that control production of extracellular proteins and secondary metabolites in Erwinia carotovora subspecies[J].Journal of Bacteriology,2005,187(23):8026-8038.

        [19] KLEEREBEZEM M,QUADRI L E.Peptide pheromone-dependent regulation of antimicrobial peptide production in Gram-positive bacteria:a case of multicellular behavior[J].Peptides,2001,22(10):1579-1596.

        [20] KOLODKIN G I,HAZAN R,GAATHON A,et al.A linear pentapeptide is a quorum-sensing factor required for mazEF-mediated cell death in Escherichia coli[J].Science,2007,318:652-655.

        [21] HUGHES D T,SPERANDIO V.Inter-kingdom signalling:communication between bacteria and their hosts[J].Nature Reviews Microbiology,2008,6(2):111-120.

        [22] DONG Y H,WANG L H,ZHANG L H.Quorumquenching microbial infections:mechanisms and implications[J].Philosophical Transactions of the Royal Society B:Biological Sciences,2007,362:1201-1211.

        [23] KLEEREBEZEM M,QUADRI L E N,KUIPERS O P,et al.Quorum sensing by peptide pheromones and two-component signal-transduction systems in Grampositive bacteria[J].Molecular Microbiology,1997,24(5):895-904.

        [24] WHITEHEAD N A,BARNARD A M L,SLATER H,et al.Quorum-sensing in gram-negative bacteria[J].FEMS Microbiology Reviews,2001,25(4):365-404.

        [25] STURME M H J,KLEEREBEZEM M,NAKAYAMA J,et al.Cell to cell communication by autoinducing peptides in Gram-positive bacteria[J].Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology,2002,81(1/2/3/4):233-243.

        [26] SCHAUDER S,SHOKAT K,SURETTE M G,et al.The LuxS family of bacterial autoinducers:biosynthe-sis of a novel quorum-sensing signal molecule[J].Molecular Microbiology,2001,41(2):463-476.

        [27] XAVIER K B,BASSLER B L.LuxS quorum sensing:more than just a numbers game[J].Current Opinion in Microbiology,2003,6(2):191-197.

        [28] SUN J B,DANIEL R,DOLER I W,et al.Is autoinducer-2auniversal signal for interspecies communication:a comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways[J].BMC Evolutionary Biology,doi:10.1186/1471-2148-4-36.

        [29] WANG J H,QUAN C S,QI X H,et al.Determination of diketopiperazines of Burkholderia cepacia CF-66by gas chromatography-mass spectrometry[J].Analytical and Bioanalytical Chemistry,2010,396(5):1773-1779.

        [30] WILLIAMS P,CAMARA M.Quorum sensing and environmental adaptation in Pseudomonas aeruginosa:a tale of regulatory networks and multifunctional signal molecules[J].Current Opinion in Microbiology,2009,12(2):182-191.

        [31] DIGGLE S P,CORNELISB P,WILLIAMS P,et al.4-quinolone signaling in Pseudomonas aeruginosa:old molecules,new perspectives[J].International Journal of Medical Microbiology,2006,296(2/3):83-91.

        [32] WANG D D,DING X D,RATHER P N.Indole can act as an extracellular signal in Escherichia coli[J].Journal of Bacteriology,2001,183(14):4210-4216.

        [33] MARTINO P D,F(xiàn)URSY R,BRET L,et al.Indole can act as an extracellular signal to regulate biofilm formation of Escherichiacoliand other indole-producing bacteria[J].Canadian Journal of Microbiology,2003,49(7):443-449.

        [34] BARNARD A M L,SALMOND G P C.Quorum sensing:the complexities of chemical communication between bacteria[J].Complexus,2004,2(2):15.

        [35] GALLOWAY W R,HODGKINSON J T,BOWDEN S D,et al.Quorum sensing in gram-negative bacteria:small-molecule modulation of AHL and AI2quorum sensing pathways[J].Chemical Reviews,2011,111(1):28-67.

        [36] SAENZ H L,AUGSBURGER V,OTTO M,et al.Inducible expression and cellular location of AgrB,a protein involved in the maturation of the staphylococcal quorum-sensing pheromone[J].Archives of Microbiology,2000,174(6):452-455.

        [37] NAKAYAMA J,CAO Y,HPRII T,et al.Gelatinase bi-osynthesis-activating pheromone:apeptide lactone that mediates a quorum sensing in Enterococcus faecalis[J].Molecular Microbiology,2001,41(1):145-154.

        [38] WINZER K,HARDIE K R,BURGESS N,et al.LuxS:its role in central metabolism and the in vitro synthesis of 4-h(huán)ydroxy-5-methyl-3(2H)-furanone[J].Microbiology,2002,148:909-922.

        [39] CHOUDHARY S,DANNERT C S.Applications of quorum sensing in biotechnology[J].Applied Microbiology and Biotechnology,2010,86(5):1267-1279.

        [40] CHERNIN L S,WINSON M K,THOMPSON J M,et al.Chitinolytic activity in Chromobacterium violaceum:substrate analysis and regulation by quorum sensing[J].Journal of Bacteriology,1998,180(17):4435-4441.

        [41] BARROS M E C,THOMSON J A.Cloning and expression in Escherichia coli of a cellulase gene from Ruminococcus flavefaciens[J].Journal of Bacteriology,1987,169(4):1760-1762.

        [42] KAWAI S,HONDA H,TANASE T,et al.Molecularcloning of Ruminococcus albus cellulase gene[J].Agricultural and Biological Chemistry,1987,51(1):59-63.

        [43] ERICKSON D L,NSEREKO V L,MORGAVI D P,et al.Evidence of quorum sensing in the rumen ecosystem:detection of N-acyl homoserine lactone autoinducers in ruminal contents[J].Canadian Journal of Microbiology,2002,48(4):374-378.

        [44] EDRINGTON T S,F(xiàn)ARROW R L,SPERANDIO V,et al.Acyl-h(huán)omoserine-lactone autoinducer in the gastrointesinal tract of feedlot cattle and correlation to season,E.coli O157∶H7prevalence,and diet[J].Current Microbiology,2009,58(3):227-232.

        [45] HUGHES D T,TEREKHOVA D A,LIOUC L,et al.Chemical sensing in mammalian host-bacterial commensal associations[J].Proceedings of the National Academy of Sciences of the United States of A-merica,2010,107(21):9831-9836.

        [46] CAPRIOLI A,MORABITO S,BRUGERE H,et al.Enterohaemorrhagic Escherichia coli:emerging issues on virulence and modes of transmission[J].Veterinary Research,2005,36(3):289-311.

        [47] MICHAEL B,SMITH J N,SWIFT S,et al.SdiA of Salmonella enterica is a LuxR homolog that detects mixed microbial communities[J].Journal of Bacteriology,2001,183(19):5733-5742.

        [48] MITSUMORI M,XU L M,KAJIKAWA H,et al.Possible quorum sensing in the rumen microbial community:detection of quorum-sensing signal molecules from rumen bacteria[J].FEMS Microbiology Letters,2003,219(1):47-52.

        [49] LUKAS F,GORENC G,KOPECNY J.Detection of possible AI-2-mediated quorum sensing system in commensal intestinal bacteria[J].Folia Microbiologica,2008,53(3):221-224.

        [50] MILLER M E B,ANTONOPOULOS D A,RINCON M T,et al.Diversity and strain specificity of plant cell wall degrading enzymes revealed by the draft genome of Ruminococcus flavefaciens FD-1[J].PLoS One,2009,4(8):e6650.

        [51] BURRELL P C,O’SULLIVAN C,SONG H,et al.I-dentification,detection,and spatial resolution of Clostridiumpopulations responsible for cellulose degradation in a methanogenic landfill leachate bioreactor[J].Applied and Environmental Microbiology,2004,70(4):2414-2419.

        [52] BURRELL P C.The detection of environmental autoinducing peptide quorum-sensing genes from an uncultured Clostridiumpopulations in landfill leachate reactor biomass[J].Letters in Applied Microbiology,2006,43(4):455-460.

        [53] SUN W,MITSUMORI M,TAKENAKA A.The detection of possible sensor histidine kinases regulating citrate/malate metabolism from the bovine rumen microbial ecosystem[J].Letters in Applied Microbiology,2008,47(5):462-466.

        [54] PESTOVA E V,HAVARSTEIN L S,MORRISON D A.Regulation of competence for genetic transformation in Streptococcus pneumoniae by an auto-induced peptide pheromone and a two-component regulatory system[J].Molecular Microbiology,1996,21(4):853-862.

        [55] LI Y H,TANG N,AAPIRAS M B,et al.A quorumsensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation[J].Journal of Bacteriology,2002,184(10):2699-2708.

        [56] YOSHII T,ASANUMA N,YOSHIZAWA K,et al.Presence of the two-component regulatory system ComDE,and its transcription in the ruminal bacteriumStreptococcus bovis[J].Bulletin of the Faculty of Agriculture,2009,59(4):71-83.

        [57] ASANUMA N,YOSHII T,KANADA K,et al.In-volvement of two-component signal transduction system,ComDE,in the regulation of growth and genetic transformation,in the ruminal bacterium Streptococcus bovis[J].Anaerobe,2010,16(4):405-411.

        [58] KUIPERS O P,BEERTHUYZEN M M,LUESINK E J,et al.Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction[J].Journal of Biological Chemistry,1995,270(45):27299-27304.

        [59] KALMOKOFF M L,TEATHER R M.Isolation and characterization of a bacteriocin(Butyrivibriocin AR10)from the ruminal anaerobe Butyrivibrio fibrisolvens AR10:evidence in support of the widespread occurrence of bacteriocin-like activity among ruminal isolates of B.fibrisolvens[J].Applied and Environmental Microbiology,1997,63(2):394-402.

        [60] KALMOKOFF M L,LU D,WHITFORD M F,et al.Evidence for production of a new lantibiotic (butyrivibriocin OR79A)by the ruminal anaerobe Butyrivibrio fibrisolvens OR79:characterization of the structural gene encoding butyrivibriocin OR79A[J].Applied and Environmental Microbiology,1999,65(5):2128-35.

        [61] NILSEN T,NES I F,HOLO H.An exported inducer peptide regulates bacteriocin production in Enterococcus faecium CTC492[J].Journal of Bacteriology,1998,180(7):1848-1854.

        [62] DABARD J,BRIDONNEAU C,PHILLIPE C,et al.Ruminococcin A,a new lantibiotic produced by aRuminococcus gnavus strain isolated from human feces[J].Applied and Environmental Microbiology,2001,67(9):4111-4118.

        [63] ODENYO A A,MACKIE R I,STAHL D A,et al.The use of 16SrRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria:development of probes for Ruminococcus species and evidence for bacteriocin production[J].Applied and Environmental Microbiology,1994,60(10):3688-3696.

        [64] CHAN W W,DEHORITY B A.Production of Ruminococcus flavefaciens growth inhibitor(s)by Ruminococcus albus[J].Animal Feed Science and Technology,1999,77(1/2):61-71.

        猜你喜歡
        球菌瘤胃分子
        一株禽源糞腸球菌的分離與鑒定
        中西醫(yī)結(jié)合治療牛瘤胃酸中毒
        瘤胃調(diào)控劑對(duì)瘤胃發(fā)酵的影響
        分子的擴(kuò)散
        結(jié)節(jié)病合并隱球菌病的研究進(jìn)展
        “精日”分子到底是什么?
        新民周刊(2018年8期)2018-03-02 15:45:54
        米和米中的危險(xiǎn)分子
        IL-33在隱球菌腦膜炎患者外周血單個(gè)核中的表達(dá)及臨床意義
        一株副球菌對(duì)鄰苯二甲酸酯的降解特性研究
        羊瘤胃臌氣的發(fā)生及防治
        无码专区亚洲综合另类| 亚洲AV无码资源在线观看| 少妇AV射精精品蜜桃专区| 国产精品美女久久久久久大全| 成人无码a级毛片免费| 97中文字幕一区二区| av一区二区三区综合网站| 亚洲av乱码一区二区三区林ゆな| 国产精品vⅰdeoxxxx国产| 精品麻豆国产色欲色欲色欲www| 99国产精品久久久蜜芽| 狠狠久久av一区二区三区| 亚洲av产在线精品亚洲第三站| 熟女一区二区三区在线观看| 国产成人av大片大片在线播放| 专区国产精品第一页| 国产大片在线观看三级| 在线日本看片免费人成视久网| 日本大乳高潮视频在线观看| 中国老熟妇自拍hd发布| 亚洲电影一区二区三区| 女女同性av一区二区三区| 亚洲国产日韩a在线乱码| 天堂√在线中文官网在线| 亚洲一本大道无码av天堂| 国产成人免费a在线视频| 中文字幕一区二区区免| 日本护士xxxxhd少妇| 中国女人做爰视频| 免费无码成人av在线播| 五月婷婷影视| 国产精品夜色视频久久| 国模吧无码一区二区三区| 99热久久这里只精品国产www| 亚洲aⅴ无码国精品中文字慕| 精品国产精品久久一区免费| 乱子轮熟睡1区| 国产成年无码v片在线| 丝袜美腿网站一区二区| 亚洲一区视频中文字幕| 日本丰满少妇裸体自慰|