趙 軍 趙美琴 李淑芬 阮 凌 (暨南大學(xué)體育部,廣東 廣州 5063)
哺乳動物的Toll樣受體(TLR4)是跨膜蛋白質(zhì),能識別微生物的病原相關(guān)分子模式配體并介導(dǎo)機(jī)體的固有免疫反應(yīng),單核巨噬細(xì)胞、樹突細(xì)胞均表達(dá)TLR4〔1〕。研究證明動物和人體胰島素敏感組織和細(xì)胞也同樣存在著TLR4蛋白質(zhì)表達(dá),如骨骼肌纖維〔2〕、脂肪細(xì)胞〔3,4〕、肝細(xì)胞〔5〕等,能夠識別脂多糖和其他內(nèi)源性配體,如飽和脂肪酸(SFAs)等。在肥胖的發(fā)生與發(fā)展過程中,慢性低水平炎癥是胰島素抵抗(IR)發(fā)生的重要機(jī)制之一,而TLR4〔6〕在聯(lián)系肥胖、慢性低水平炎癥、IR之間起著關(guān)鍵的橋梁作用。適宜的運(yùn)動具有良好的抗炎效應(yīng),且副作用低,因而是代謝綜合征(MS)、糖尿病(DM)的理想的治療手段之一,但是運(yùn)動抗炎的具體機(jī)制尚不明確。近來研究表明,運(yùn)動具有下調(diào)脂肪細(xì)胞、骨骼肌纖維TLR4的基因表達(dá)及蛋白質(zhì)水平、抑制TLR4介導(dǎo)的信號傳導(dǎo)的作用,可能是運(yùn)動改善外周組織IR的重要機(jī)制之一。使用TLR4抑制性藥物與運(yùn)動的良性效應(yīng)之間無累加效應(yīng)〔7〕,說明運(yùn)動針對TLR4靶點(diǎn)治療的有效性和替代該靶點(diǎn)藥物治療的可能性。
哺乳動物的TLRs,包括12個成員,是含Ⅰ型跨膜受體家族,其特征是胞外富含亮氨酸重復(fù)單位域、胞內(nèi)Toll/IL1受體(TIR)域(與 IL1 受體同源)〔8,9〕。TIR 域是激活其下游信號以及募集各種銜接分子并與之相互反應(yīng)所必需的結(jié)構(gòu)。TLRs在細(xì)胞特定的區(qū)域表達(dá),脂多糖、病毒單鏈RNA、脂肪酸、細(xì)菌鞭毛蛋白等均是其配體,但由于TLRs在胞外區(qū)的氨基酸組成差異很大,各個 TLR 有特異性配體。TLR1、2、4、5、6、11 表達(dá)于細(xì)胞膜表面,而 TLR3、7、8、9 表達(dá)于胞內(nèi)如內(nèi)質(zhì)網(wǎng)和內(nèi)涵體〔8〕。
配體與TLRs結(jié)合后,導(dǎo)致各種TIR域下游銜接分子的募集,如TIR域-信號肽接頭分子如 MyD88、TIR域-銜接蛋白質(zhì)(TIRAP)、TIR域-含誘導(dǎo)干擾素類的銜接子(TRIF)、TRIF相關(guān)的銜接分子(TRAM),可以將其分為依賴 MyD88或TRIF的TLR信號傳導(dǎo)途徑。MyD88是絕大多數(shù)TLRs信號傳導(dǎo)的銜接分子,也是 IL1受體家族的銜接分子成員〔10〕。配體結(jié)合于TLR1、2、4、5、6、7、9、11 后募集 MyD88。另外,TLR1、2、4、6 也募集TIRAP,充當(dāng)受體分子胞內(nèi)域與MyD88之間的銜接分子。除募集MyD88外,TLR3、4受體尤其依賴于信號銜接分子TRIF。TLR3、4誘導(dǎo)產(chǎn)生的Ⅰ型干擾素必須依賴于TRIF,而誘導(dǎo)炎性介質(zhì)生成必須募集MyD88〔11,12〕。TLR4是結(jié)構(gòu)了解最清楚的TLRs,激活后觸發(fā)信號級聯(lián)反應(yīng)致NFκB以及MAPK如P38、JNK和ERK1/2的激活,誘導(dǎo)炎性因子如腫瘤壞死因子(TNF)α、IL-6和Ⅰ型干擾素的表達(dá)。
IR涉及大量的病理生理機(jī)制,胰島素信號傳導(dǎo)通路的缺陷、脂肪因子和IR細(xì)胞因子水平和(或)活性的變化、血脂紊亂/脂質(zhì)代謝異常均能導(dǎo)致或聯(lián)合導(dǎo)致IR。而TLR4下游的轉(zhuǎn)錄因子(JNK、NFκB)、炎性細(xì)胞因子(TNFα、IL-6),可以在胰島素信號傳導(dǎo)的多個水平導(dǎo)致 IR〔13,14〕。
細(xì)胞培養(yǎng)、轉(zhuǎn)基因動物實(shí)驗(yàn)和人體實(shí)驗(yàn)已證明,骨骼肌、脂肪細(xì)胞、肝細(xì)胞、單核巨噬細(xì)胞的TLR4激活及其介導(dǎo)的炎性因子生成是高脂飲食誘發(fā)的外周IR的重要機(jī)制。脂多糖(LPS)、SFAs及其中間代謝產(chǎn)物均是TLR2、4的內(nèi)源性配體。月桂酸(十二烷酸)是LPS結(jié)構(gòu)中所包含的中鏈脂肪酸成分,能激活巨噬細(xì)胞系的 TLR4 信號傳導(dǎo)〔15,16〕。SFAs能夠激活脂肪細(xì)胞〔17〕、骨骼肌纖維〔18〕的TLR4信號傳導(dǎo);缺乏或敲除 TLR4時(shí),SFAs激活脂肪細(xì)胞或脂肪組織、巨噬細(xì)胞、骨骼肌纖維、肝細(xì)胞〔19〕的炎癥信號途徑被減弱。肥胖患者通常伴有血漿SFAs升高,提示SFAs激活TLR4的信號傳導(dǎo)可能是IR的重要機(jī)制之一。不同鏈長度的SFAs激活骨骼肌TLRs的能力有區(qū)別,故SFAs長度與骨骼肌IR有關(guān)聯(lián)〔20〕。軟脂酸(16碳)和硬脂酸(18碳)能夠激活骨骼肌炎性信號并導(dǎo)致IR,而12碳的月桂酸不能激活骨骼肌TLR4,也不能誘導(dǎo)產(chǎn)生IR〔21〕。TLR4缺乏〔22〕或變異〔23〕能夠改善飲食性肥胖以及SFAs所導(dǎo)致的IR。
SFAs的中間代謝產(chǎn)物,如神經(jīng)酰胺和二酰甘油,不僅能在IRS-1和 Akt水平直接干擾細(xì)胞內(nèi)胰島素信號傳導(dǎo)〔24,25〕,產(chǎn)生IR〔26〕;而且,神經(jīng)酰胺能激活TLR4,促進(jìn)炎性因子生成,干擾胰島素信號傳導(dǎo)〔27〕。此外,神經(jīng)酰胺還能放大SFAs激活單核細(xì)胞/巨噬細(xì)胞TLR4介導(dǎo)的炎癥效應(yīng)〔28〕。
LPS也可能是機(jī)體代謝紊亂和早期炎癥傾向發(fā)生的重要觸發(fā)因素。腸道內(nèi)的死亡的革蘭氏陰性菌胞壁產(chǎn)生LPS,通過腸道的TLR4機(jī)制進(jìn)入腸道內(nèi)的毛細(xì)血管,隨血循環(huán)到達(dá)其靶器官后,激活TLR4信號傳導(dǎo),觸發(fā)炎癥反應(yīng)〔29〕。高脂飲食會增加了腸道內(nèi)的革蘭氏陰性菌的數(shù)量,4W的高脂飲食能夠顯著增加小鼠血漿LPS的水平〔30〕。
肥胖時(shí),外周胰島素敏感組織不僅存在著TLR4信號傳導(dǎo)通路的激活,而且還存在著TLR4基因表達(dá)和蛋白質(zhì)的水平上調(diào)。肥胖和Ⅱ型DM(T2DM)患者的骨骼肌纖維〔18〕、高脂飲食性肥胖小鼠的脂肪細(xì)胞〔31〕,TLR4的基因表達(dá)和蛋白質(zhì)水平均顯著性升高,并且與IR的嚴(yán)重程度密切相關(guān)。
TLR2也與IR相關(guān)。抑制TLR2也能改善高脂飲食下小鼠骨骼肌〔32〕、白色脂肪組織〔32〕、肝細(xì)胞〔33〕的胰島素敏感性和胰島素信號傳導(dǎo)。而且,siRNA抑制骨骼肌纖維TLR2的表達(dá)能夠改善軟脂酸刺激骨骼肌纖維引起的IR現(xiàn)象〔34〕。
力竭運(yùn)動對機(jī)體的各組織的TLR的表達(dá)以及炎性細(xì)胞因子生成影響不同。Rosa等〔35〕將10 U齡SD大鼠以20 m/min運(yùn)動強(qiáng)度相當(dāng)于70%VO2max跑臺運(yùn)動55 min后,再按1 m/min增加跑速直至力竭。大鼠趾長伸肌、比目魚肌、腹膜后脂肪組織、腸系膜脂肪組織IL-6、TNFα均顯著性升高,并且腹膜后脂肪組織、腸系膜脂肪組織的TLR4、Myd88、TRAF6表達(dá)在運(yùn)動后的不同時(shí)間段分別顯著性升高,且腸系膜脂肪組織NFκB的DNA結(jié)合能力顯著性升高〔36〕。提示對于肥胖和IR患者來說,力竭性運(yùn)動或疲勞性運(yùn)動可能會進(jìn)一步提升脂肪因子IL-6、TNFα的表達(dá)水平,加重機(jī)體的慢性炎癥與IR。
長期有氧耐力運(yùn)動能夠增進(jìn)胰島素信號傳導(dǎo),改善機(jī)體的慢性炎癥傾向的作用,而有氧運(yùn)動下調(diào)胰島素敏感組織的TLR4基因表達(dá)和受體后信號傳導(dǎo)可能是其重要機(jī)制之一。低強(qiáng)度有氧耐力運(yùn)動能顯著性降低肥胖大鼠血漿LPS、骨骼肌、脂肪、肝臟等組織的TLR4的表達(dá)、減少NFκB等轉(zhuǎn)錄因子和炎性細(xì)胞因子的生成,改善慢性炎癥狀態(tài)〔7〕。Oliveira等〔7〕發(fā)現(xiàn)高脂飲食導(dǎo)致的肥胖Wistar大鼠在持續(xù)8 w、每周5 d的1 h游泳運(yùn)動后,血漿LPS顯著性下降,肝臟、骨骼肌、脂肪組織的TLR4、MyD88蛋白水平較肥胖安靜組顯著性下降,IKKβ和JNK磷酸化水平顯著性下降,肝臟、骨骼肌、脂肪組織的IR顯著性改善,骨骼肌的葡萄糖吸收顯著性增加,并且胰島素信號傳導(dǎo)改善效應(yīng)持續(xù)至運(yùn)動后36 h。而對于一次低強(qiáng)度游泳運(yùn)動(6 h,間隔45 min),也能顯著性地降低肝臟、骨骼肌、脂肪組織的MyD88、IKKβ和JNK磷酸化水平,改善胰島素信號傳導(dǎo)。長期游泳運(yùn)動能夠從轉(zhuǎn)錄水平上調(diào)節(jié)肝臟、骨骼肌、脂肪組織的TLR4水平,TLR4mRNA和其蛋白質(zhì)表達(dá)的下調(diào)幅度相似;而一次急性運(yùn)動僅能下調(diào)骨骼肌的TLR4mRNA水平,但TLR4蛋白質(zhì)水平卻沒有顯著性變化。
關(guān)于運(yùn)動改善TLR4的表達(dá)和蛋白質(zhì)水平的具體機(jī)制尚不清楚。急性低強(qiáng)度運(yùn)動改善TLR4軸和IR的效應(yīng)可能與減少TLR4內(nèi)源性配體LPS密切相關(guān),也可能與急性運(yùn)動后糖皮質(zhì)激素的分泌增加,導(dǎo)致的免疫抑制效應(yīng)有關(guān)〔37〕。長期低強(qiáng)度運(yùn)動誘導(dǎo)組織TLR4表達(dá)下調(diào)除了下調(diào)血漿LPS濃度外〔38〕,也可能與巨噬細(xì)胞滲入組織過程受到抑制以及巨噬細(xì)胞由M1亞型(促炎癥表型)向M2亞型(抑炎癥表型)轉(zhuǎn)換有關(guān)〔39〕;運(yùn)動對熱休克蛋白〔40〕、活性氧自由基、過氧化脂質(zhì)的影響也可能會涉及細(xì)胞TLR4基因的表達(dá)和信號的傳導(dǎo)〔41〕。
藥物(TAK-242)抑制高脂飲食性肥胖大鼠TLR4,在抗炎和改善胰島素信號傳導(dǎo)方面,會產(chǎn)生與運(yùn)動相似的效果,骨骼肌、脂肪細(xì)胞的TLR4/MyD88軸以及IKKβ、JNK磷酸化水平顯著性下降;而TAK-242與低強(qiáng)度游泳聯(lián)合干預(yù)肥胖大鼠并不能增加對TLR4干預(yù)的效果;C3H/HeJ小鼠的TLR4基因變異,能夠抵制高脂飲食產(chǎn)生的胰島素敏感組織抵抗效應(yīng)。運(yùn)動對該小鼠的IKKβ和JNK磷酸化水平?jīng)]有影響〔7〕。所以,合適的運(yùn)動是針對IR組織TLR4靶點(diǎn)治療的有效手段,由于運(yùn)動的副作用小,可能優(yōu)于該靶點(diǎn)的藥物治療。
最近研究發(fā)現(xiàn)生理性饑餓狀態(tài)下,可能由于血SFAs的濃度升高導(dǎo)致TLR4激活,TLR4下游物質(zhì)會抑制骨骼肌中葡萄糖向脂肪的轉(zhuǎn)化來有效地維持生理性饑餓下機(jī)體的血糖、血脂的穩(wěn)態(tài)。涉及的機(jī)制可能是TLR4激活后抑制骨骼肌纖維線粒體的丙酮酸脫氫酶復(fù)合體的活性來控制丙酮酸脫氫脫羧和乙酰輔酶A的生成,減少葡萄糖不可逆性氧化,維持血糖濃度;以及抑制骨骼肌的脂肪合成酶活性來減少骨骼肌及血漿中的脂質(zhì)水平。而TLR4基因敲除的轉(zhuǎn)基因小鼠在饑餓時(shí)會產(chǎn)生嚴(yán)重的低血糖、血漿和骨骼肌脂質(zhì)水平升高〔42〕。那么,相對于合適的運(yùn)動下調(diào)TLR4表達(dá)和蛋白水平來說,藥物性TLR4抑制很可能會有嚴(yán)重的副作用,如低血糖和高血脂。所以針對于不同運(yùn)動對多種組織的TLR4的影響及其機(jī)制值得深入研究。
中等和較高負(fù)荷運(yùn)動能夠改善機(jī)體的IR,也可能與其下調(diào)細(xì)胞TLR4mRNA水平,改善肥胖等患者的胰島素信號傳導(dǎo)有關(guān)。肥胖衰弱的老年人進(jìn)行12 w較高強(qiáng)度的有氧運(yùn)動(負(fù)荷為80% ~90%最高心率)聯(lián)合80%1RM(repetition maximum,竭力的重復(fù)次數(shù))的力量練習(xí),3次/w,每次有氧運(yùn)動持續(xù)20~30 min,每組力量練習(xí)重復(fù)6~8次、2組/d。結(jié)果發(fā)現(xiàn),受試者骨骼肌內(nèi)TLR4、TNRα、IL-6的基因表達(dá)顯著性下降,并且與體重下降無關(guān)〔43〕。動物實(shí)驗(yàn)表明〔44〕,大強(qiáng)度力量訓(xùn)練能夠降低正常野生大鼠骨骼肌TLR4、降低TNRα/IL-10。
中等以上強(qiáng)度的運(yùn)動能夠促進(jìn)正常生理情況下的骨骼肌分泌IL-6增加。而人成肌細(xì)胞培養(yǎng)試驗(yàn)表明〔45〕,40 ng/ml的IL-6與成肌細(xì)胞共培養(yǎng)24和72 h后,通過STAT3途徑,能夠促進(jìn)成肌細(xì)胞表達(dá)TLR4,降低Akt(Ser473)磷酸化,抑制胰島素信號傳導(dǎo)。近來對IL-6的生理作用爭議較多,主要由于IL-6的生理效應(yīng)依賴于其濃度和刺激持續(xù)時(shí)間的長短,并且不同組織細(xì)胞對其反應(yīng)也不同。中等負(fù)荷以上的有氧運(yùn)動對不同組織的TLR4是否會有不同的影響,以及是否能降低組織TLR4表達(dá)升高和炎性信號的傳導(dǎo),目前尚不清楚。
有氧運(yùn)動能減少高脂飲食促進(jìn)的外周胰島素敏感組織和細(xì)胞TLR4的表達(dá)和蛋白質(zhì)水平,進(jìn)而改善胰島素敏感性。研究顯示,大量的普通性食物中也含有較高水平的TLR2和4的興奮劑,主要是細(xì)菌脂肽和LPS成分〔46〕,而且也存在于新鮮的經(jīng)過簡單加工的蔬菜,如豆芽、芹菜等〔47〕,并且人類的TLR4對脂肽和LPS刺激的域值較嚙齒類動物要低幾百倍〔48〕,所以深入研究機(jī)體TLR4激活和對組織胰島素敏感性的影響及不同運(yùn)動對胰島素敏感組織TLR4的表達(dá)及其下游信號傳導(dǎo)的影響具有重要意義。
1 Muzio M,Mantovani A.Toll-like receptors〔J〕.Microbes Infect,2000;2(3):251-5.
2 Varma V,Yao-Borengasser A,Rasouli N,et al.Muscle inflammatory response and insulin resistance:synergistic interaction between macrophages and fatty acids leads to impaired insulin action〔J〕.Am J Physiol Endocrinol Metab,2009;296(6):E1300-10.
3 Youssef-Elabd EM,McGee KC,Tripathi G,et al.Acute and chronic saturated fatty acid treatment as a key instigator of the TLR-mediated inflammatory response in human adipose tissue,in vitro〔J〕.J Nutr Biochem,2012;23(1):39-50.
4 張紅梅.武漢漢族人群TLR4、RAGE基因多態(tài)性與糖尿病相關(guān)性研究及人體白色脂肪組織TLR4表達(dá)與肥胖相關(guān)性研究〔D〕.華中科技大學(xué)博士論文,2008.
5 Bertola A,Bonnafous S,Anty R,et al.Hepatic expression patterns of inflammatory and immune response genes associated with obesity and NASH in morbidly obese patients〔J〕.PLos One,2010;5(10):e13577.
6 Fessler MB,Rudel LL,Brown JM.Toll-like receptor signaling links dietary fatty acids to the metabolic syndrome〔J〕.Curr Opin Lipidol,2009;20(5):379-85.
7 Oliveira AG,Carvalho BM,Tobar N,et al.Physical exercise reduces circulating lipopolysaccharide and TLR4 activation and improves insulin signaling in tissues of DIO Rats〔J〕.Diabetes,2011;60(3):784-96.
8 Kumar H,Kawai T,Akira S.Toll-like receptors and innate immunity〔J〕.Biochem Biophys Res Commun,2009;388(4):621-5.
9 Medzhitov R.Toll-like receptors and innate immunity〔J〕.Nat Rev Immunol,2001;1(2):135-45.
10 Kawai T,Adachi O,Ogawa T,et al.Unresponsiveness of MyD88-deficient mice to endotoxin〔J〕.Immunity,1999;11(1):115-22.
11 Kawai T,Akira S.TLR signaling〔J〕.Cell Death Differ,2006;13(5):816-25.
12 Yamamoto M,Sato S,Hemmi H,et al.Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway〔J〕.Science,2003;301(5633):640-3.
13 Arkan MC,Hevener AL,Greten FR,et al.IKK-beta links inflammation to obesity-induced insulin resistance〔J〕.Nat Med,2005;11(2):191-8.
14 Cai D,Yuan M,F(xiàn)rantz DF,et al.Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB〔J〕.Nat Med,2005;11(2):183-90.
15 Pasare C,Medzhitov R.Toll-like receptors:linking innate and adaptive immunity〔J〕.Microbes Infect,2004;6(15):1382-7.
16 Lee JY,Ye J,Gao Z,et al.Reciprocal modulation of Toll-like receptor-4 signaling pathways involving MyD88 and phosphatidylinositol 3-kinase/AKT by saturated and polyunsaturated fatty acids〔J〕.J Biol Chem,2003;278(39):37041-51.
17 Kopp A,Buechler C,Bala M,et al.Toll-like receptor ligands cause proinflammatory and prodiabetic activation of adipocytes via phosphorylation of extracellular signal-regulated kinase and c-Jun N-terminal kinase but not interferon regulatory factor-3〔J〕.Endocrinology,2010;151(3):1097-108.
18 Reyna SM,Ghosh S,Tantiwong P,et al.Elevated toll-like receptor 4 expression and signaling in muscle from insulin-resistant subjects〔J〕.Diabetes,2008;57(10):2595-602.
19 Shi H,Kokoeva MV,Inouye K,et al.TLR4 links innate immunity and fatty acid-induced insulin resistance〔J〕.J Clin Invest,2006;116(11):3015-25.
20 Hommelberg PP,Plat J,Langen RC,et al.Fatty acid-induced NF-kappaB activation and insulin resistance in skeletal muscle are chain length dependent〔J〕.Am J Physiol Endocrinol Metab,2009;296(1):E114-20.
21 Tsukumo DM,Carvalho-Filho MA,Carvalheira JB,et al.Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance〔J〕.Diabetes,2007;56(8):1986-98.
22 Davis JE,Gabler NK,Walker-Daniels J,et al.Tlr-4 deficiency selectively protects against obesity induced by diets high in saturated fat〔J〕.O-besity(Silver Spring),2008;16(6):1248-55.
23 Poggi M,Bastelica D,Gual P,et al.C3H/HeJ mice carrying a toll-like receptor 4 mutation are protected against the development of insulin resistance in white adipose tissue in response to a high-fat diet〔J〕.Diabetologia,2007;50(6):1267-76.
24 Summers SA,Garza LA,Zhou H,et al.Regulation of insulin-stimulated glucose transporter GLUT4 translocation and Akt kinase activity by ceramide〔J〕.Mol Cell Biol,1998;18(9):5457-64.
25 Samuel VT,Petersen KF,Shulman GI.Lipid-induced insulin resistance:unravelling the mechanism〔J〕.Lancet,2010;375(9733):2267-77.
26 Shulman GI.Cellular mechanisms of insulin resistance〔J〕.J Clin Invest,2000;106(2):171-6.
27 Fischer H,Ellstrom P,Ekstrom K,et al.Ceramide as a TLR4 agonist;a putative signalling intermediate between sphingolipid receptors for microbial ligands and TLR4〔J〕.Cell Microbiol,2007;9(5):1239-51.
28 Schwartz EA,Zhang WY,Karnik SK,et al.Nutrient modification of the innate mmune response:a novel mechanism by which saturated fatty acids greatly amplify monocyte inflammation〔J〕.Arterioscler Thromb Vasc Biol,2010;30(4):802-8.
29 Cani PD,Amar J,Iglesias MA,et al.Metabolic endotoxemia initiates obesity and insulin resistance〔J〕.Diabetes,2007;56(7):1761-72.
30 Cani PD,Bibiloni R,Knauf C,et al.Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice〔J〕.Diabetes,2008;57(6):1470-81.
31 Song MJ,Kim KH,Yoon JM,et al.Activation of Toll-like receptor 4 is associated with insulin resistance in adipocytes〔J〕.Biochem Biophys Res Commun,2006;346(3):739-45.
32 Caricilli AM,Nascimento PH,Pauli JR,et al.Inhibition of toll-like receptor 2 expression improves insulin sensitivity and signaling in muscle and white adipose tissue of mice fed a high-fat diet〔J〕.J Endocrinol,2008;199(3):399-406.
33 Kuo LH,Tsai PJ,Jiang MJ,et al.Toll-like receptor 2 deficiency improves insulin sensitivity and hepatic insulin signalling in the mouse〔J〕.Diabetologia,2011;54(1):168-79.
34 Senn JJ.Toll-like receptor-2 is essential for the development of palmitate-induced insulin resistance in myotubes〔J〕.J Biol Chem,2006;281(37):26865-75.
35 Rosa NJC,Lira FS,Oyama LM,et al.Exhaustive exercise causes an antiinflammatory effect in skeletal muscle and a pro-inflammatory effect in adipose tissue in rats〔J〕.Eur J Appl Physiol,2009;106(5):697-704.
36 Rosa JC,Lira FS,Eguchi R,et al.Exhaustive exercise increases inflammatory response via toll like receptor-4 and NF-kappaB p65 pathway in rat adipose tissue〔J〕.J Cell Physiol,2011;226(6):1604-7.
37 Jin X,Qin Q,Tu L,et al.Glucocorticoids inhibit the innate immune system of human corneal fibroblast through their suppression of toll-like receptors〔J〕.Mol Vis,2009;15:2435-41.
38 Musch TI,Eklund KE,Hageman KS,et al.Altered regional blood flow responses to submaximal exercise in older rats〔J〕.J Appl Physiol,2004;96(1):81-8.
39 Kawanishi N,Yano H,Yokogawa Y,et al.Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice〔J〕.Exerc Immunol Rev,2010;16:105-18.
40 Liu Y,Lormes W,Wang L,et al.Different skeletal muscle HSP70 responses to high-intensity strength training and low-intensity endurance training〔J〕.Eur J Appl Physiol,2004;91(2-3):330-5.
41 Zanchi NE,Bechara LR,Tanaka LY,et al.Moderate exercise training decreases aortic superoxide production in myocardial infarcted rats〔J〕.Eur J Appl Physiol,2008;104(6):1045-52.
42 Pang S,Tang H,Zhuo S,et al.Regulation of fasting fuel metabolism by toll-like receptor 4〔J〕.Diabetes,2010;59(12):3041-8.
43 Lambert CP,Wright NR,F(xiàn)inck BN,et al.Exercise but not diet-induced weight loss decreases skeletal muscle inflammatory gene expression in frail obese elderly persons〔J〕.J Appl Physiol,2008;105(2):473-8.
44 Zanchi NE,Lira FS,de Siqueira Filho MA,et al.Chronic low frequency/low volume resistance training reduces pro-inflammatory cytokine protein levels and TLR4 mRNA in rat skeletal muscle〔J〕.Eur J Appl Physiol,2010;109(6):1095-102.
45 Kim TH,Choi SE,Ha ES,et al.IL-6 induction of TLR-4 gene expression via STAT3 has an effect on insulin resistance in human skeletal muscle〔J〕.Acta Diabetol,2011;Feb4(Epu b ahead of print).
46 Lappin DF,Sherrabeh S,Erridge C.Stimulants of Toll-like receptors 2 and 4 are elevated in saliva of periodontitis patients compared with healthy subjects〔J〕.J Clin Periodontol,2011;38(4):318-25.
47 Erridge C.The capacity of foodstuffs to induce innate immune activation of human monocytes in vitro is dependent on food content of stimulants of Toll-like receptors 2 and 4〔J〕.Br J Nutr,2011;105(1):15-23.
48 Copeland S,Warren HS,Lowry SF,et al.Acute inflammatory response to endotoxin in mice and humans〔J〕.Clin Diagn Lab Immunol,2005;12(1):60-7.