陳治友,夏順友
( 1.貴陽學(xué)院 數(shù)學(xué)系,貴州 貴陽 550005;2.貴州師范學(xué)院 數(shù)學(xué)與計算機科學(xué)學(xué)院,貴州 貴陽 550018 )
抽象凸空間中的不動點與變分不等式
陳治友1,夏順友2
( 1.貴陽學(xué)院 數(shù)學(xué)系,貴州 貴陽 550005;
2.貴州師范學(xué)院 數(shù)學(xué)與計算機科學(xué)學(xué)院,貴州 貴陽 550018 )
本文將H?空間中的Fan?Glicksberg?Kakut ani不動點定理推廣到抽象凸空間中,并在抽象凸空間中給出一個不具擬凹性的函數(shù)的KyFan不等式的解的存在性定理。
抽象凸空間;H0?條件; 不動點定理;KyFan不等式
1987年,Horvath[1]用拓撲性質(zhì)定義了具有H?凸結(jié)構(gòu)的H?空間,該空間的H?凸結(jié)構(gòu)將先前的線性凸結(jié)構(gòu)做了推廣。而后,在國內(nèi)外一些專家學(xué)者的深入研究下,在一般拓撲空間中涌現(xiàn)了大量的凸結(jié)構(gòu),如:半格凸、G?凸、B?凸、VandeVel凸、Michael?凸、L?凸、超凸等等。2007年,向淑文,楊輝,夏順友[2][3]通過對上述眾多的凸結(jié)構(gòu)進行研究,發(fā)現(xiàn)它們有一個共性特征,即都滿足H0?條件,并且提出了更具一般意義的抽象凸結(jié)構(gòu)的抽象凸空間。本文在滿足H0?條件的該抽象凸空間中推廣了H? 空間中的Fan?Glicksberg?Kakut ani不動點定理,[4]并在該抽象凸空間中給出一個不具擬凹性的函數(shù)的KyFan不等式[5]的解的存在性定理。
定義1[2]設(shè)C是Y的子集族,稱序?qū)?Y,C)為抽象凸結(jié)構(gòu)空間,或簡稱抽象凸空間,如果C滿足:
[1]C.D. Horvath. Some results on multivalued mappings and inequalities without convexity[J]. in: B.L. Lin, S. Simons(Eds.), Nonlinear and Convex Analysis, in: Lecture Notes in Pure and Applied Math., Marcel Dekker, 1987,107:99–106.
[2]S.W Xiang, H.Yang. Some properties of abstract convexity structures on topological spaces[J]. Nonlinear Analysis,2007,67:803-808.
[3]Shu-wen Xiang, Shunyou Xia. A further characteristic of abstract convexity structures on topological spaces[J].J.Math.Anal.Appl. 2007, 335:716-723.
[4]向淑文.H-空間中集值映象的不動點定理[J].數(shù)學(xué)雜志,1997,17-3:311-314.
[5]K. Fan, A min-maxinequalityand applications, Inequalities III Shisha, ed., Academic Press (1972), 103-113.
[6]NAN-JING HUANG, YA-PING FANG. On Vector Variational Inequalities in Reflexive Banach Spaces[J].Journal of Global Optimization,2005, 32: 495–505.
[7]Fu-Quan Xia, Nan-Jing Huang. Algorithm for solving a new class of general mixed variational inequalities in Banach spaces[J]. Journal of Computational and Applied Mathematics, 2008,220:632–642.
[8]LI Yan, XIA Fu-Quan. Iterative Algorithm for Solving Generalized Mixed Variational Inequalities in Banach Spaces[J]. Journal of Sichuan Normal University (Natural Science), 2011,34(1):13-19.
[9]LIU Zhi, HE Yi-ran. An Existence of Solution to Set valued Variational Inequalities[J]. Journal of Sichuan Normal University (Natural Science), 2010, 33(2):156-158.
[10]HE Yi-ran. Theory on Variational Inequality Involved with Set valued Mapping[J]. Journal of Sichuan Normal University (Natural Science), 2010, 33(6):840-848.
Fixed Points and Variation Inequalities in Abstract Convex Spaces
CHEN Zhi-you1, XIA Shun-you2
(1. Department of Mathematics, Guiyang University, Guiyang, Guizhou 550005, China;2. Department of Mathematics and Computer science, Guizhou Normal College, Guiyang, Guizhou 550018, China)
This paper generalizesFan-Glicksberg-Kakut ani’s fixed point theorem about H-spaces to abstract convex spaces and, works out an existence theorem for solution of Ky Fan inequality of functions without quasi-convexity in abstract spaces.
abstract convex spaces; H0-space; fixed point theorem; Ky Fan inequality
(責任校對 黎 帥)
O177.91
A
1673-9639 (2012) 04-0127-03
2012-05-21
本文系國家自然科學(xué)基金(11161008)成果。
陳治友(1965-),男,貴州務(wù)川人,碩士,副教授,研究方向:非線性分析、對策論與集值優(yōu)化理論。
(責任編輯 毛 志)