摘要:根據(jù)國家2003—2007年火災(zāi)的相關(guān)統(tǒng)計(jì)數(shù)據(jù),應(yīng)用回歸分析,研究了火災(zāi)引起的經(jīng)濟(jì)損失與火災(zāi)中傷人數(shù)目及燒毀建筑面積之間的關(guān)系,建立了二元線性回歸模型,對方程的精度進(jìn)行了相關(guān)性檢驗(yàn)。
關(guān)鍵詞:火災(zāi);二元線性回歸分析;相關(guān)性檢驗(yàn)
中圖分類號:F22 文獻(xiàn)標(biāo)志碼:A文章編號:1673-291X(2011)16-0309-02
引言
火災(zāi)屬于突發(fā)傷害事故,是當(dāng)前社會中發(fā)生頻率較高且危害較大的一種災(zāi)害,特別是在近年來發(fā)生的多起群死群傷突發(fā)傷害事故中,火災(zāi)事故占相當(dāng)比例,每年都會造成人員傷亡和巨大的經(jīng)濟(jì)損失。鑒于此,本文對造成火災(zāi)經(jīng)濟(jì)損失的直接相關(guān)因素進(jìn)行了研究,并對相關(guān)的統(tǒng)計(jì)數(shù)據(jù)進(jìn)行了回歸分析。
現(xiàn)實(shí)生活中,對于具有相關(guān)關(guān)系的變量,我們往往不能像函數(shù)關(guān)系那樣找到它們之間的精確表達(dá)式,但是通過大量的試驗(yàn)(觀測)數(shù)據(jù),可以發(fā)現(xiàn)它們間存在一定的統(tǒng)計(jì)規(guī)律性,數(shù)理統(tǒng)計(jì)中研究某一隨機(jī)變量(因變量)與其他一個(gè)或幾個(gè)普通變量(自變量)之間變動(dòng)關(guān)系的一種有效方法就是回歸分析。由回歸分析求出的關(guān)系式,稱為回歸方程?;貧w方程為線性的稱為線性回歸,否則成為非線性回歸。線性回歸是回歸分析的基本模型,很多復(fù)雜的情況都能轉(zhuǎn)化為線性回歸進(jìn)行處理,例如,文獻(xiàn)[1]討探討了統(tǒng)計(jì)學(xué)對認(rèn)識和解決火災(zāi)問題的重要性,文獻(xiàn)[2~3]利用線性回歸模型研究了相關(guān)火災(zāi)問題。
本文主要針對國家2003—2007年火災(zāi)的相關(guān)統(tǒng)計(jì)數(shù)據(jù),對火災(zāi)引起的損失費(fèi)用與火災(zāi)中傷人數(shù)目及燒毀建筑面積之間的關(guān)系進(jìn)行分析,建立了二元線性回歸模型。
一、線性回歸模型的建立
1.收集數(shù)據(jù)。表1是中國2003—2007年火災(zāi)中傷人數(shù)目、燒毀建筑面積與直接經(jīng)濟(jì)損失的統(tǒng)計(jì)數(shù)據(jù)。
2.設(shè)定回歸方程。通過定性分析可知火災(zāi)中的傷人數(shù)越多,燒毀的建筑越多那么造成的經(jīng)濟(jì)損失就越大,并且如果火災(zāi)中沒有人燒傷,房屋沒有被燒毀,可認(rèn)為沒有經(jīng)濟(jì)損失。因此,可設(shè)二元線性回歸分析的回歸方程為
=b1x1+b2x2(1)
式中:——因變量(直接損失費(fèi)用);x1——自變量(傷人數(shù));x2——自變量(燒毀建筑面積);b1,b2——回歸系數(shù)。
3.確定回歸系數(shù)。將已知數(shù)據(jù)代入設(shè)定的回歸方程,并用最小二乘法(見[4])計(jì)算出回歸系數(shù),確定回歸方程。具體步驟如下:從表1已知,2003—2007年共有五組數(shù)據(jù):
(x11,x12,y1),(x21,x22,y2),…,(x51,x52,y5)
設(shè)剩余平方和為
Q=(yi-i)2=(yi-bixi1-b2xi2)2
式中:yi——上頁表1中第組數(shù)據(jù)的因變量;xik——第i組數(shù)據(jù)的第k個(gè)自變量(k=1,2)。
通過微積分的知識計(jì)算Q的最小值,即令Q關(guān)于每個(gè)回歸系數(shù)的偏導(dǎo)數(shù)等于零,然后聯(lián)立這兩個(gè)方程=0,=0可解得回歸系數(shù)b1=49.0119,b2=0.0033。因此回歸方程為
=49.0119x1+0.0033x2(2)
二、相關(guān)性檢驗(yàn)
相關(guān)性檢驗(yàn)是指對已確定的回歸方程能夠代表自變量與因變量之間相關(guān)關(guān)系的可靠性進(jìn)行檢驗(yàn)。只有通過相關(guān)性檢驗(yàn)后,才能以此回歸方程為依據(jù)進(jìn)行分析和預(yù)測。一般用R檢驗(yàn)和F檢驗(yàn)等方法。下面我們用R檢驗(yàn)法。令
Syy=(yi-i)2=(i-y)2 =Q+U
式中:y——上頁表1中5個(gè)因變量yi的平均值;i——xi1與xi2的值代入(2)式所得的值。
r=是R檢驗(yàn)中的相關(guān)系數(shù),它越接近于1,就說明回歸方程中自變量與因變量的線性相關(guān)的近似程度越高,該方程的誤差越小。通過計(jì)算可得r=0.9988,故方程(2)通過了相關(guān)檢驗(yàn),可用它定量的描述火災(zāi)中傷人數(shù)、燒毀建筑面積及直接經(jīng)濟(jì)損失的關(guān)系。
另外,從回歸方程中還可以看出,火災(zāi)傷人數(shù)前面的偏回歸系數(shù)較大,這主要是因?yàn)榻y(tǒng)計(jì)數(shù)據(jù)中燒毀建筑面積的數(shù)字較高,且沒有考慮其他方面,例如火災(zāi)中的物資損失等,帶來的經(jīng)濟(jì)損失。為使以上三個(gè)變量量綱一致,我們可采取以下方式,令
zi=yi/y,ti1=xi1/xi1,ti2=xi2/xi2,(3)
式中:y——上頁表1中5個(gè)因變量yi的平均值,tik——上頁表1中5個(gè)自變量xik的平均值(k=1,2).
對由(3)式得到的數(shù)據(jù),利用上面的方法便得到的回歸方程為:
=0.8264x1+0.177x2
相關(guān)系數(shù)r=0.9990,也通過了相關(guān)性檢驗(yàn)。
結(jié)論
上述回歸方程顯示火災(zāi)引起的經(jīng)濟(jì)損失與火災(zāi)中傷人數(shù)及燒毀的建筑面積均呈正相關(guān)關(guān)系,這與我們的定性分析一致。有了該定量的關(guān)系后,在沒有統(tǒng)計(jì)出火災(zāi)造成的經(jīng)濟(jì)損失前,我們可以根據(jù)當(dāng)年的火災(zāi)的傷人數(shù)及燒毀建筑面積對該年的經(jīng)濟(jì)損失作出大致的預(yù)測,或者若想把未來一年由火災(zāi)引起的經(jīng)濟(jì)損失限制到一定數(shù)額,那么我們就可以根據(jù)該回歸方程,給出火災(zāi)傷人數(shù)及燒毀建筑面積的上限。
為了減少火災(zāi)引起的損失和傷亡,我們必須注重消除火災(zāi)隱患,建議針對火災(zāi)危險(xiǎn)因素采取綜合防范措施,加強(qiáng)城市公共消防設(shè)施和消防組織建設(shè),加大消防安全宣傳力度,提高人們的消防安全意識和火災(zāi)自救知識技能。
參考文獻(xiàn):
[1]劉東海,嵇濤,等.火災(zāi)統(tǒng)計(jì)問題的探討[J].消防技術(shù)與產(chǎn)品信息,2005,(5):35-37.
[2]周崇敏.談火災(zāi)統(tǒng)計(jì)與消防監(jiān)督[J].武警學(xué)院學(xué)報(bào),2002,(2):28-29.
[3]曹文娟.統(tǒng)計(jì)模型在火災(zāi)統(tǒng)計(jì)中的應(yīng)用[J].武警學(xué)院學(xué)報(bào),2006,(2):23-25.
[4]盛驟,謝式千,等.概率論與數(shù)理統(tǒng)計(jì)(浙大四版)[M].北京:高等教育出版社,2008.
On the Study of the Fire Data Based on Binary Regression Analysis
WANG Song-min,LAN Yue-xin
(The Chinese People’s Armed Police Forces Academy,Langfang 065000,China)
Abstract:In this paper,by the state fire-related statistics from 2003 to 2007 and using the regression analysis,we study the relation between the economic losses caused by the fire and the number of fire injuries as well as the burned building area,establish the binary linear regression model and do the correlation test on the accuracy of the equation.
Key words:fire;binary linear regression analysis;correlation test
[責(zé)任編輯 陳鶴]
注:本文中所涉及到的圖表、注解、公式等內(nèi)容請以PDF格式閱讀原文