亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Optimal Upper and Lower Bounds for Logarithmic Mean*

        2011-12-25 06:49:42HOUShoueiXUYanCHUYuming
        關(guān)鍵詞:上海財(cái)經(jīng)大學(xué)平方根調(diào)和

        HOU Shou-w ei ,XU Yan-w u ,CHU Yu-ming

        (1.Department of Mathematics,Hangzhou Normal University,Hangzhou 310012,China;2.School of Economics,Shanghai University of Finance and Economic,Shanghai 200433,China;3.Faculty of Science,Huzhou Teachers College,Huzhou 313000,China)

        Optimal Upper and Lower Bounds for Logarithmic Mean*

        HOU Shou-w ei1,XU Yan-w u2,CHU Yu-ming3

        (1.Department of Mathematics,Hangzhou Normal University,Hangzhou 310012,China;2.School of Economics,Shanghai University of Finance and Economic,Shanghai 200433,China;3.Faculty of Science,Huzhou Teachers College,Huzhou 313000,China)

        M aking use of elementary differential calculus,we compare the logarithmic mean w ith the convex combination of root-square and harmonic root-squaremeans,and find the greatest valueαand the least valuesβsuch that the double inequalityholds fo r all a,b>0 w ithare the rootsquare,harmonic root-square,and Logarithmic meansof two positive numbers a and b,w ith a≠b,respectively.

        root-squaremean;harmonic root-squaremean;Logarithmic mean

        MSC 2000:26E60 26D20

        0 In troduction

        Fo r p∈R,the p-th pow er mean Mp(a,b)and logarithm ic mean L(a,b)of two positive num bers a and b is defined by respectively.

        Recently,both mean values have been the subject of intensive research.In particular,many remarkable inequalities for Mp(a,b)and L(a,b)can be found in the literature[1~17].It iswell know n that Mp(a,b)is continuous and strictly increasing w ith respect to p∈R fo r fixed a,b>0 w ith a≠b,and many means are special cases of the power mean,for examp le,

        are the harmonic root-square,harmonic,geometric,arithmetic,and root-square means of a and b,respectively.

        Lin[13]p resent the op timal double inequality

        fo r all a,b>0 w ith a ≠b.

        In[6],Long and Chu answer the question:w hat are the greatest value p=p(α,β)and least value q=q(α,β)such that the double inequality

        holds fo r all a,b>0 w ith a≠b andα,β>0 w ithα+β<1?

        The follow ing sharp bounds for the combination of arithmetic and logarithmic means in term s ofpower mean are given in[7]:

        fo r allα∈(0,1)and a,b>0 w ith a ≠b.

        The main purpose of thispaper is to answer the question:w hat are the greatest valueαand least valueβsuch that the double inequality

        holds fo r all a,b>0 w ith a≠b.

        1 Lemma

        In order to establish our main result we need a lemma,w hich we p resent in this section.

        2 Main Result

        [1]SH IM Y,CHU Y M,JIANG Y P.Op timal inequalities among varousmeansof two arguments[J].Abstr Appl Anal,2009,2009:1~10.

        [2]SH IM Y,CHU Y M,JIANG Y P.Three best inequalities fo r means[J].Int Math Fo rum,2010,5(22):1059~1066.

        [3]CHU Y M,XIA W F.Two sharp inequalities fo r powermean,geometricmean,and harmonicmean[J].J Inequal App l,2009,2009:1~6.

        [4]CHU YM,XIA W F.Inequalities for generalized logarithmic means[J].J Inequal Appl,2009,2009:1~7.

        [5]LONGB Y,CHU Y M.Op timal inequalities for generalized logarithmic,arithmetic,and geometric means[J].J Inequal App l,2010,2010:1~10.

        [6]LONGB Y,CHU Y M.Op timal powermean bounds for the weighted geometric mean of classicalmeans[J].J Inequal App l,2010,2010:1~6.

        [7]XIA W F,CHU Y M,WANG GD.The op timal upper and lower power mean bounds for a convex combination of the arithmetic and logarithmic means[J].Abstr Appl Anal,2010,2010:1~9.

        [8]CHU Y M,LONGB Y.Best possible inequalities between generalized logarithmic mean and classicalmeans[J].Abstr App l Anal,2010,2010:1~13.

        [9]CHU Y M,XIA W F.Two op timal double inequalities between power mean and logarithmic mean[J].Comput Math App l,2010,60(1):83~89.

        [10]LONGB Y,XIA W F,CHU YM.An op timal inequality for powermean,geometric mean and harmonic mean[J].Int J Mod Math,2010,5(2):149~155.

        [11]CHU Y M,Q IU Y F,WANG M K.Sharp power mean bounds fo r the combination of Seiffert and geometric means[J].Abstr Appl Anal,2010,2010:1~12.

        [12]Wang M K,Chu Y M,Qiu Y F,et al.An op timal power mean inequality for the comp lete ellip tic integrals[J].App l Math Letters,2011,24:887~890.

        [13]L IN T P.The power and the logarithmic mean[J].Amer Math Monthly,1974,81:879~883.

        [14]STOLARSKY K B.The power and generalized logarithmic means[J].Amer Math Monthly,1980,87(7):545~548.

        [15]IMORU C O.the power mean and the logarithmic mean[J].Internat J Math Math Sci,1982,5(2):337~343.

        [16]BURK F.The geometric,logarithmic,and arithmetic mean inequality[J].Amer Math Monthly,1987,94(6):527~528.

        [17]ALZER H,Q IU SL.Inequalities for means in two variables[J].A rch Math,2003,80(2):201~215.

        MSC 2000:26E60 26D20

        對(duì)數(shù)平均的最佳上下界

        候守偉1,徐言午2,褚玉明3

        (1.杭州師范大學(xué)數(shù)學(xué)系,浙江杭州310012;2.上海財(cái)經(jīng)大學(xué)經(jīng)濟(jì)學(xué)院,上海200433;3.湖州師范學(xué)院理學(xué)院,浙江湖州 313000)

        利用初等微分學(xué)比較了對(duì)數(shù)平均與平方根平均和調(diào)和平方根平均的凸組合,發(fā)現(xiàn)了使得雙向不等式αS(a,b)+(1對(duì)所有 a,b>0且 a≠b成立的α的最大值和β的最小值,其中 S(a,b)分別表示二個(gè)正數(shù) a與b的平方根平均、調(diào)和平方根平均和對(duì)數(shù)平均.

        平方根平均;調(diào)和平方根平均;對(duì)數(shù)平均

        O174.1

        O174.1 Document code:A Article ID:1009-1734(2011)01-0007-04

        date:2011-01-21

        s:This research is suppo rted by the Natural Science Foundation of China(11071067)and the Innovation Team Foundation of the Department of Education of Zhejiang Porvince(T200924).

        Biography:Hou Shou-wei,Postgraduate student of grade 2009,Department of Mathematics,Hangzhou Normal U-niversity,Research Interest:Comp lex Analysis.

        猜你喜歡
        上海財(cái)經(jīng)大學(xué)平方根調(diào)和
        五味調(diào)和醋當(dāng)先
        從“調(diào)結(jié)”到“調(diào)和”:打造“人和”調(diào)解品牌
        調(diào)和映照的雙Lipschitz性質(zhì)
        “平方根”學(xué)習(xí)法升級(jí)版
        平方根易錯(cuò)點(diǎn)警示
        幫你學(xué)習(xí)平方根
        如何學(xué)好平方根
        獨(dú)立學(xué)院ACCA課程設(shè)置優(yōu)化改革——上海財(cái)經(jīng)大學(xué)浙江學(xué)院的實(shí)踐探索
        應(yīng)用本科與專業(yè)碩士貫通培養(yǎng)模式改革研究——以上海財(cái)經(jīng)大學(xué)財(cái)經(jīng)“E+e”新教育實(shí)踐項(xiàng)目為例
        國(guó)際認(rèn)證指導(dǎo)下的商學(xué)院實(shí)踐型師資隊(duì)伍建設(shè)研究——以上海財(cái)經(jīng)大學(xué)商學(xué)院為例
        久久99亚洲综合精品首页| 最近中文字幕大全在线电影视频| 国产精品福利视频一区| 亚洲国产精品线观看不卡| 日韩av中文字幕少妇精品| av剧情演绎福利对白| 国产成人亚洲综合色婷婷| 久久天天爽夜夜摸| av在线手机中文字幕| 亚洲精一区二区三av| 无码国产伦一区二区三区视频| 日韩中文网| 国产白浆流出一区二区| 亚洲中文字幕久久精品品| 蜜桃无码一区二区三区| 国产精品毛片无码久久| 蜜桃色av一区二区三区麻豆| 区一区一日本高清视频在线观看| 亚洲精品98中文字幕| 狠狠综合久久av一区二区蜜桃| 国产熟妇按摩3p高潮大叫| 含羞草亚洲AV无码久久精品| av手机天堂在线观看| 亚洲一区二区二区视频| 人人狠狠综合久久亚洲| 亚洲欧美日韩精品久久亚洲区色播 | 国产高清大片一级黄色| 丁香五月亚洲综合在线| 日日碰狠狠丁香久燥| 国产韩国精品一区二区三区| 麻豆久久91精品国产| 99久久久国产精品免费蜜臀| 色老头一区二区三区| 免费看男女啪啪的视频网站| 浓毛老太交欧美老妇热爱乱| 中文字幕有码无码av| 亚洲日韩AV无码美腿丝袜| 久久免费看的少妇一级特黄片| 真人新婚之夜破苞第一次视频| 日韩成人无码v清免费| av在线一区二区精品 |