李 光, 柴文戍, 康 健
(1遼寧醫(yī)學(xué)院附屬第一醫(yī)院呼吸科,遼寧 錦州 121000; 2中國(guó)醫(yī)科大學(xué)附屬第一醫(yī)院呼吸科,遼寧 沈陽(yáng) 110001)
間歇低氧小鼠胰腺β細(xì)胞凋亡及其機(jī)制的實(shí)驗(yàn)研究
李 光1, 柴文戍1, 康 健2△
(1遼寧醫(yī)學(xué)院附屬第一醫(yī)院呼吸科,遼寧 錦州 121000;2中國(guó)醫(yī)科大學(xué)附屬第一醫(yī)院呼吸科,遼寧 沈陽(yáng) 110001)
目的探討間歇低氧對(duì)小鼠胰腺β細(xì)胞凋亡的影響及其可能機(jī)制。方法將30只雄性C57BL/6J小鼠隨機(jī)分為間歇低氧組、持續(xù)低氧組和正常對(duì)照組,每組10只。實(shí)驗(yàn)結(jié)束后測(cè)定各組小鼠的胰島素耐量;采用化學(xué)比色法測(cè)定胰腺組織丙二醛(MDA)含量和超氧化物歧化酶(SOD)活性;用real-time PCR檢測(cè)小鼠胰腺組織中錳超氧化物歧化酶(MnSOD)和谷胱甘肽過(guò)氧化酶(GPx1) mRNA的表達(dá)水平;并用TUNEL染色檢測(cè)胰腺β細(xì)胞凋亡。結(jié)果間歇低氧組小鼠胰島素抵抗水平及胰腺組織中MDA水平顯著高于正常對(duì)照組和持續(xù)低氧組 (Plt;0.01);胰腺組織SOD活性顯著低于正常對(duì)照組和持續(xù)低氧組(Plt;0.01);抗氧化酶MnSOD和GPx1 mRNA的表達(dá)水平顯著低于正常對(duì)照組和持續(xù)低氧組 (Plt;0.01);而胰腺β細(xì)胞凋亡率顯著高于正常對(duì)照組和持續(xù)低氧組(Plt;0.01)。持續(xù)低氧組與正常對(duì)照組上述各種指標(biāo)的比較均無(wú)顯著差異(均Pgt;0.05)。結(jié)論間歇低氧可導(dǎo)致胰腺組織氧化應(yīng)激狀態(tài)和胰腺β細(xì)胞凋亡,這可能是阻塞性睡眠呼吸暫停低通氣綜合征患者胰島素抵抗及2型糖尿病的病理生理基礎(chǔ)之一。
間歇低氧; 胰島素抵抗; β細(xì)胞; 細(xì)胞凋亡
阻塞性睡眠呼吸暫停低通氣綜合征(obstructive sleep apnea hyponea syndrome,OSAHS)是臨床上常見(jiàn)的綜合征,在美國(guó)等西方國(guó)家,其發(fā)病率男性約為4%,女性約為2%[1]。越來(lái)越多的證據(jù)表明OSAHS與胰島素抵抗/2型糖尿病相關(guān),且獨(dú)立于肥胖的程度,這提示OSAHS可能是胰島素抵抗/2型糖尿病一種新的風(fēng)險(xiǎn)因子。β細(xì)胞功能受損對(duì)于糖尿病的形成是必要的,因此為了更好地理解OSAHS與2型糖尿病的關(guān)系,需要探討是否OSAHS或間歇低氧(intermittent hypoxia,IH)通過(guò)氧化應(yīng)激損害胰腺β細(xì)胞,進(jìn)而導(dǎo)致胰島素抵抗/2型糖尿病。為此,我們選用間歇低氧小鼠模型,模擬OSAHS患者存在的低氧/再氧合病理生理過(guò)程,觀察胰島素抵抗、氧化應(yīng)激狀態(tài)與胰腺β細(xì)胞凋亡的關(guān)系。
1材料
1.1材料 30只8-12周的雄性健康清潔級(jí)C57BL/6J小鼠(中國(guó)醫(yī)科大學(xué)實(shí)驗(yàn)動(dòng)物中心提供),體重為(22±2)g,間歇低氧造模設(shè)備(Oxycycler Model A84XO; BioSpherix Instruments),氧氣和氮?dú)?沈陽(yáng)沈標(biāo)氣體有限公司),諾和靈R(諾和諾德公司),丙二醛(malondialdehyde,MDA)、超氧化物歧化酶(superoxide dismutase,SOD)測(cè)定試劑盒(南京建成生物工程研究所),Trizol試劑(Invitrogen Life technologies),熒光定量PCR試劑盒(大連寶生物),缺口末端標(biāo)記(terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling,TUNEL)法試劑盒(武漢博士德生物工程公司),PCR擴(kuò)增儀(Biometra)。
1.2間歇低氧動(dòng)物模型的制備 用隨機(jī)數(shù)字表法將大鼠分為間歇低氧組(intermittent hypoxia group,IH)、持續(xù)低氧組(sustained hypoxia group, SH)和正常對(duì)照組(control group,CON),每組各10只。間歇低氧組小鼠置于間歇低氧造模設(shè)備中,使氧濃度變化于5%-21%,每天持續(xù)8 h,共2周;持續(xù)低氧組大鼠置于常壓低氧箱中,每天持續(xù)8 h,調(diào)節(jié)充入的氮?dú)饬髁浚S持箱內(nèi)氧濃度為(5±1)%,共2周;正常對(duì)照組置于相同培養(yǎng)箱中,空氣條件下飼養(yǎng)2周。以上各組動(dòng)物均于實(shí)驗(yàn)2周后取材。
2方法
2.1胰島素耐量試驗(yàn) 各組小鼠于實(shí)驗(yàn)的最后8 h空腹,實(shí)驗(yàn)結(jié)束后立即按0.75 U/kg劑量腹腔注射短效胰島素,于注射前(0 min)和注射后15、30、60、90 min時(shí)剪尾尖采血以羅氏(Roche)優(yōu)越型血糖儀測(cè)定血糖水平。以0 min時(shí)血糖水平作為參比基礎(chǔ),測(cè)定在此基礎(chǔ)上每一時(shí)點(diǎn)血糖比率。
2.2氧化應(yīng)激指標(biāo)的檢測(cè) 采用化學(xué)比色法測(cè)定胰腺組織MDA含量和SOD活性。
2.3Real-time PCR檢測(cè)小鼠胰腺組織中錳超氧化物歧化酶(manganese superoxide dismutase,MnSOD)和谷胱甘肽過(guò)氧化酶(glutathione peroxidase,GPx1) mRNA的表達(dá) 采用Trizol從胰腺組織塊中抽提總RNA,操作按說(shuō)明書(shū)進(jìn)行,并行RNA的純度及定量檢測(cè),并將RNA逆轉(zhuǎn)錄成 cDNA,用PCR擴(kuò)增儀進(jìn)行基因擴(kuò)增。PCR反應(yīng)條件為:95 ℃預(yù)變性 30 s;95 ℃ 5 s,60 ℃ 34 s,42個(gè)循環(huán)擴(kuò)增。β-actin作為內(nèi)參照。所用β-actin、MnSOD和GPx1引物序列用Primer 5.10軟件設(shè)計(jì),由北京華大基因公司合成。β-actin 上游引物5’-CTGTCCCTGTATGCCTCTG -3’,下游引物5’-TGTCACGCACGATTTCC-3’ ,PCR產(chǎn)物長(zhǎng)度217 bp。MnSOD上游引物5’-GAGCACGCTTACTACCTTC-3’ ,下游引物5’-AACATTCTCCCAGTTGATTAC-3’,PCR產(chǎn)物長(zhǎng)度84 bp。GPx1 上游引物5’-GCTCACCCGCTCTTTACC-3’,下游引物5’-GCCGCCTTAGGAGTTGC-3’ ,PCR產(chǎn)物長(zhǎng)度255 bp。ABI Prism 7300SDS軟件記錄數(shù)據(jù)并分析,將目的基因的Ct用小鼠β-actin的Ct值進(jìn)行標(biāo)準(zhǔn)化,根據(jù)比較法計(jì)算基因表達(dá)相對(duì)量,采用2-ΔΔCt計(jì)算基因表達(dá)的相對(duì)倍數(shù)變化。
2.4胰腺β細(xì)胞凋亡的檢測(cè) 使用TUNEL評(píng)估胰腺切片β細(xì)胞死亡,TUNEL染色方法根據(jù)廠商說(shuō)明書(shū)使用。簡(jiǎn)單地說(shuō),胰腺切片通過(guò)20 mg/L蛋白酶K預(yù)處理15 min,且用正常驢血清和BAS溶液所阻滯,平衡后,TdT酶在37 ℃時(shí)加入切片中1 h,在應(yīng)用Stop溶液后用10 mmol/L PBS溶液沖洗切片,在室溫下滴加抗地高辛配基軛合物0.5 h。然后切片采用胰島素雙重染色。TUNEL染β細(xì)胞核(綠色),胰島素染細(xì)胞漿(紅色)。每個(gè)胰島TUNEL染色陽(yáng)性的β細(xì)胞平均數(shù)×1 000(計(jì)數(shù)每組5只小鼠,每只小鼠15個(gè)切片所有胰島上的TUNEL染色陽(yáng)性β細(xì)胞數(shù)后,再計(jì)算每個(gè)胰島TUNEL染色陽(yáng)性的β細(xì)胞平均數(shù)),比較3組小鼠胰腺β細(xì)胞凋亡率,圖像原始放大倍數(shù)為×200。
3統(tǒng)計(jì)學(xué)處理
1各組小鼠胰島素耐量試驗(yàn)的測(cè)定
小鼠間歇低氧暴露2周后,與對(duì)照組相比,胰島素敏感性降低,即胰島素抵抗增加(Plt;0.01);SH組與對(duì)照組胰島素敏感性無(wú)顯著差異(Pgt;0.05),見(jiàn)圖1。
Figure 1. Insulin tolerance test for mice in all groups. ±s.n=5.**Plt;0.01 vs CON group.
2各組小鼠胰腺氧化應(yīng)激指標(biāo)的比較
間歇低氧暴露后,小鼠胰腺組織MDA水平較對(duì)照組明顯增高,而SOD水平較對(duì)照組顯著降低(Plt;0.01);SH組與對(duì)照組氧化應(yīng)激指標(biāo)的比較無(wú)顯著差異(Pgt;0.05),見(jiàn)表1。
表1 各組小鼠胰腺組織氧化應(yīng)激指標(biāo)的比較
3各組小鼠胰腺組織中MnSOD和GPx1的mRNA水平表達(dá)
間歇低氧暴露后,小鼠胰腺組織MnSOD和GPx1 mRNA表達(dá)水平較對(duì)照組明顯降低(Plt;0.01);SH組與對(duì)照組MnSOD和GPx1的mRNA表達(dá)水平比較無(wú)顯著差異(Pgt;0.05),見(jiàn)圖2。
4各組小鼠胰腺β細(xì)胞凋亡的比較
間歇低氧后胰腺β細(xì)胞凋亡率增加4倍多,顯著高于對(duì)照組和SH組(Plt;0.01),對(duì)照組和SH組胰腺β細(xì)胞的凋亡率比較無(wú)顯著差異(Pgt;0.05),見(jiàn)圖3。
Figure 2. The expression of MnSOD and GPx1 mRNA of the mouse pancreatic tissues in all groups±s.n=5.**Plt;0.01 vs CON group.
Figure 3. Mouse pancreatic β-cell apoptosis in all groups[insulin-staining(red)and TUNEL staining(green),×200]. A:islet from a CON mouse; B:islet from an IH mouse;C:islet from a SH mouse;D: apoptotic rate in all groups±s.n=5.**Plt;0.01 vs CON group.
目前眾多人類和動(dòng)物的實(shí)驗(yàn)研究證實(shí)間歇低氧或OSAHS對(duì)糖代謝產(chǎn)生負(fù)面影響,與胰島素抵抗/2型糖尿病獨(dú)立相關(guān)[2]。OSAHS病人出現(xiàn)糖代謝異常的機(jī)制是多重的,其中氧化應(yīng)激可能是其中重要的一種,即OSAHS病人胰腺損傷可能與IH誘導(dǎo)的氧化應(yīng)激有關(guān)[3]。
MDA是自由基攻擊生物膜中的多不飽和脂肪酸、引發(fā)脂質(zhì)過(guò)氧化作用而產(chǎn)生的脂質(zhì)過(guò)氧化物;SOD為自由基清除劑,在清除自由基的同時(shí)本身被消耗。故測(cè)定MDA和SOD水平可反應(yīng)機(jī)體的氧化應(yīng)激狀態(tài)。本研究結(jié)果表明,間歇低氧組小鼠胰腺組織存在明顯的氧化應(yīng)激狀態(tài),MDA水平明顯增高,SOD水平顯著降低。與間歇低氧不同,持續(xù)低氧并沒(méi)有引起小鼠胰腺組織明顯的氧化應(yīng)激狀態(tài),其原因可能為:(1)持續(xù)低氧狀態(tài)下,胰腺組織血流灌注再分布,胰腺組織血流供應(yīng)充分[4];(2)持續(xù)低氧增加了血液紅細(xì)胞SOD活性,增加了胰腺組織抗氧化能力[5]。而間歇低氧類似于心?;蚰X中風(fēng)時(shí)的缺血再灌注損傷,產(chǎn)生大量氧自由基,導(dǎo)致氧化應(yīng)激狀態(tài)。氧化應(yīng)激誘導(dǎo)的微血管內(nèi)皮損傷可能引起外周胰島素抵抗增加[6],我們的胰島素耐量實(shí)驗(yàn)研究證實(shí)小鼠IH暴露后胰島素抵抗明顯增加,而持續(xù)低氧后小鼠胰島素抵抗則沒(méi)有明顯增加。氧化應(yīng)激能調(diào)節(jié)抗氧化酶活性和表達(dá)[7-9],本研究表明間歇低氧可降低小鼠抗氧化酶MnSOD 和GPx1的mRNA表達(dá)水平。有研究證實(shí)抗氧化酶表達(dá)的下降可能是氧化應(yīng)激導(dǎo)致細(xì)胞凋亡的內(nèi)在機(jī)制之一[10];另外,β細(xì)胞對(duì)氧化應(yīng)激非常敏感[11,12],有報(bào)道表明褪黑素(松果體分泌的一種抗氧化劑)能幾乎完全逆轉(zhuǎn)β細(xì)胞的凋亡,提示氧化應(yīng)激可能是IH誘導(dǎo)β細(xì)胞凋亡的主要原因[6],本實(shí)驗(yàn)IH時(shí)β細(xì)胞的凋亡增加4倍多。
總之,IH或OSAHS時(shí)氧化應(yīng)激增加,使抗氧化酶的表達(dá)下降,進(jìn)而導(dǎo)致β細(xì)胞的凋亡增加,這可能是OSAHS患者并發(fā)胰島素抵抗及2型糖尿病的病理生理機(jī)制之一。
[1] Young T, Palta M, Dempsey J, et al. The occurrence of sleep-disordered breathing among middle-aged adults[J].N Engl J Med, 1993, 328 (17):1230-1235.
[2] Punjabi NM, Shahar E, Redline S,et al. Sleep-disordered breathing, glucose intolerance, and insulin resistance: the sleep heart health study[J]. Am J Epidemiol,2004,160 (6):521-530.
[3] Furukawa S, Fujita T, Shimabukuro M,et al. Increased oxidative stress in obesity and its impact on metabolic syndrome[J].J Clin Invest,2004,114 (12) :1752-1761.
[4] Ramanathan L,Gozal D,Siegel JM.Antioxidant responses to chronic hypoxia in the rat cerebellum and pons[J].J Neurochem,2005,93(1):47-52.
[5] Vij AG,Dutta R,Satija NK.Acclimatization to oxidative stress at high altitude[J].High Alt Med Biol,2005,6 (4):301-310.
[6] Bertuglia S, Reiter RJ. Melatonin reduces microvascular damage and insulin resistance in hamsters due to chronic intermittent hypoxia[J]. J Pineal Res,2009,46(3):307-313.
[7] Ramanathan L, Gozal D, Siegel JM. Antioxidant responses to chronic hypoxia in the rat cerebellum and pons[J]. J Neurochem,2005, 93(1):47-52.
[8] Jesudason EP, Baben B, Ashok BS,et al. Anti-inflammatory effect of melatonin on Abeta vaccination in mice[J]. Mol Cell Biochem,2007,298(3):69-81.
[9] Veasey SC, Davis CW, Fenik P,et al. Long-term intermittent hypoxia in mice: protracted hypersomnolence with oxidative injury to sleep-wake brain regions[J]. Sleep,2004,27(2):194-201.
[10]Hung MW, Tipoe GL, Poon AM,et al. Protective effect of melatonin against hippocampal injury of rats with intermittent hypoxia[J]. J Pineal Res,2008,44(2):214-221.
[11]Tiedge M,Lortz S,Drinkgern J,et al. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells[J]. Diabetes, 1997,46(11):1733-1742.
[12]Lenzen S, Drinkgern J,Tiedge M. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues[J]. Free Radic Biol Med, 1996,20(3):463-466.
Apoptosisinmousepancreaticβcellsexposedtointermittenthypoxia
LI Guang1, CHAI Wen-shu1, KANG Jian2
(1DepartmentofRespiratoryDiseases,TheFirstAffiliatedHospitalofLiaoningMedicalCollege,Jinzhou121000,China;2DepartmentofRespiratoryDiseases,TheFirstAffiliatedHospitalofChinaMedicalUniversity,Shenyang110001,China.E-mail:kangjian58@163.com)
AIM: To investigate the effect of intermittent hypoxia on the apoptosis of mouse pancreatic β cells and its possible mechanism.METHODSThirty healthy male C57BL/6J mice were randomly divided into 3 groups: control group, sustained hypoxia (SH)group and intermittent hypoxia (IH)group. Insulin tolerance test was performed immediately after experiment. The level of malondialdehyde (MDA) and superoxide dismutase (SOD) were detected by chemical colorimetry. Real-time PCR was used to measure the mRNA expression of manganese superoxide dismutase(MnSOD) and glutathione peroxidase(GPx1). The apoptosis of pancreatic β cells was determined by the method of TUNEL.RESULTSThe levels of insulin resistance and content of MDA in the pancreatic tissue in IH group were significantly higher than those in control group and SH group (Plt;0.01). The activity of SOD and the mRNA expression of MnSOD and GPx1 in IH group were significantly lower than those in control group and SH group (Plt;0.01). The apoptotic rate of IH group was significantly elevated as compared with control group and SH group (Plt;0.01). No significant difference of all above indexes between control group and SH groups was observed (allPgt;0.05).CONCLUSIONApoptosis of pancreatic β cells induced by oxidative stress associated with IH in the pancreatic tissue may be involved in the pathogenesis of obstructive sleep apnea hyponea syndrome with insulin resistance and type 2 diabetes.
Intermittent hypoxia; Insulin resistance; β cells; Apoptosis
1000-4718(2011)04-0794-04
R363
A
10.3969/j.issn.1000-4718.2011.04.034
2010-10-08
2011-01-24
△ 通訊作者 Tel:024-83282532;E-mail:kangjian58@163.com