沈國(guó)輝,余關(guān)鵬,孫炳楠,樓文娟,李慶祥,楊仕超
(1.浙江大學(xué)土木工程學(xué)系,浙江 杭州 310058;2.廣東省建筑科學(xué)研究院,廣東 廣州 510500)
大型雙曲自然通風(fēng)冷卻塔由于體型巨大、壁厚極薄,風(fēng)荷載是主要的控制荷載。雖然已有一些關(guān)于冷卻塔風(fēng)荷載的研究,但主要限于外表面的風(fēng)壓;同時(shí)水冷卻規(guī)范[1]也只對(duì)外表面的風(fēng)壓進(jìn)行規(guī)定。實(shí)際上為達(dá)到自然通風(fēng)的目的,冷卻塔底部必須有人字柱支撐而形成風(fēng)通道,頂部敞開,因而冷卻塔內(nèi)、外表面均受到風(fēng)荷載的作用。
已有一些學(xué)者注意到冷卻塔內(nèi)壓的問題,Niemann[2]在冷卻塔風(fēng)壓實(shí)測(cè)中,采用外壓減內(nèi)壓的方法;Sollenberger[3]在實(shí)測(cè)某冷卻塔風(fēng)壓時(shí),認(rèn)為內(nèi)壓固定不變,內(nèi)表面風(fēng)壓系數(shù)取為 - 0.4,Kawarabata[4]將內(nèi)表面風(fēng)壓系數(shù)取為 -0.45;Kasperski[5]依據(jù)底部封閉模型進(jìn)行風(fēng)洞試驗(yàn),測(cè)得冷卻塔內(nèi)表面風(fēng)壓,發(fā)現(xiàn)其沿高度和周向基本不變,風(fēng)壓系數(shù)約為-0.5。以上關(guān)于內(nèi)壓的研究成果,大多是根據(jù)以往的經(jīng)驗(yàn)假定內(nèi)壓為某個(gè)數(shù)值[3,4],而采用底部封閉模型來測(cè)試內(nèi)壓的方法[5]不是很妥當(dāng),同時(shí)幾乎沒有成果涉及冷卻塔在內(nèi)外壓共同作用下的風(fēng)荷載和風(fēng)致響應(yīng)。本文針對(duì)冷卻塔內(nèi)外壓的共同作用問題,制作能進(jìn)行內(nèi)外壓同步測(cè)量的風(fēng)洞試驗(yàn)?zāi)P停治霾煌砻娲植诙认聝?nèi)外表面風(fēng)壓的分布特征,探討底部有無人字柱的模型內(nèi)外表面風(fēng)壓分布的差別,并給出考慮內(nèi)外壓情況下的風(fēng)壓和阻力系數(shù)分布,最后比較了考慮內(nèi)壓與否時(shí)風(fēng)致響應(yīng)的差別。
某冷卻塔高150m,塔頂半徑為36m,底部半徑為60m,頸部高112.5m,頸部半徑為33.27m,塔底由48對(duì)均勻分布的人字柱支撐。風(fēng)洞模型按1:300縮尺比制作,冷卻塔的幾何尺寸和測(cè)點(diǎn)布置如圖1所示,沿高度方向共布置5層測(cè)點(diǎn),測(cè)層編號(hào)為A~E層,分別對(duì)應(yīng)于140m、110m、80m、50m和20m高度,每層沿環(huán)向均勻布置24個(gè)外壓測(cè)點(diǎn)和12個(gè)內(nèi)壓測(cè)點(diǎn),共布置180個(gè)測(cè)點(diǎn)。由于需要同時(shí)測(cè)量?jī)?nèi)外表面的風(fēng)荷載,因此制作了帶夾層的冷卻塔模型,如圖2所示。首先制作冷卻塔的外筒模型和內(nèi)筒模型(內(nèi)筒模型的半徑比外筒模型約小2cm),然后在內(nèi)筒模型和外筒模型表面布置測(cè)點(diǎn),測(cè)壓管通過夾層從模型底部位于人字柱兩端的預(yù)制管道中穿出,最后將內(nèi)外筒模型合在一起。風(fēng)洞實(shí)驗(yàn)時(shí),讓預(yù)制管道處于塔的側(cè)風(fēng)面,這樣可將測(cè)壓管路對(duì)塔內(nèi)外風(fēng)場(chǎng)的干擾減少到最小。
風(fēng)洞試驗(yàn)在廣東省建筑科學(xué)研究院的CGB-1風(fēng)洞中進(jìn)行,試驗(yàn)段長(zhǎng)10m,寬3m,高2m。三角尖劈和地面粗糙元置于來流前部,用以模擬B類地貌的大氣邊界層。風(fēng)壓測(cè)量采用美國(guó)Scanivalve公司的DSM 3200電子掃描閥,使用三組模塊,可進(jìn)行192個(gè)測(cè)點(diǎn)的同步測(cè)壓。根據(jù)規(guī)范[6]要求,B類地貌大氣邊界層的平均風(fēng)速V剖面按指數(shù)規(guī)律變化。對(duì)于湍流度Iu剖面,我國(guó)規(guī)范沒有要求,參考日本 AIJ規(guī)范[7]有:
式中z為高度,為地面粗糙度指數(shù),對(duì)于B類地貌取0.16。圖3給出風(fēng)洞模擬的沿風(fēng)洞高度ZT分布的風(fēng)速和湍流度剖面,圖中平均風(fēng)速以高度為H的塔頂處風(fēng)速VH進(jìn)行無量綱處理,可見風(fēng)洞中1m以下試驗(yàn)段,平均風(fēng)速和湍流度剖面均滿足B類地貌的要求。
圖3 風(fēng)洞模擬的平均風(fēng)速和湍流度剖面Fig.3 Simulated profiles of mean velocity and turbulence intensity
風(fēng)壓系數(shù)Cp以塔頂高度H的速度壓作為參考:
冷卻塔的截面為圓形,可以計(jì)算該截面順風(fēng)向的阻力,假設(shè)沿截面均勻分布N個(gè)風(fēng)壓測(cè)點(diǎn),阻力系數(shù)CD的計(jì)算公式為:
式中Li為測(cè)點(diǎn)所占的長(zhǎng)度,αi為測(cè)點(diǎn)的法向與來流風(fēng)向的夾角,D為截面直徑。
風(fēng)洞試驗(yàn)的雷諾數(shù)與實(shí)際往往相差兩個(gè)數(shù)量級(jí),對(duì)于圓形截面的冷卻塔,雷諾數(shù)的影響非常大,因此需要采用一定的方法來補(bǔ)償模型試驗(yàn)的雷諾數(shù)不匹配。Farell[8]和 Sun 等[9]均成功采用提高模型表面粗糙度的方法來補(bǔ)償模型試驗(yàn)的雷諾數(shù)效應(yīng),本次試驗(yàn)采用在模型表面粘貼膠帶的方法來提高表面的粗糙度。在模型表面沿子午向均勻粘貼膠帶紙,膠帶有五種厚度,分別為:光滑(沒有粘膠帶)、0.1mm、0.2mm、0.4mm 和0.6mm,膠帶共有24條。圖4為粗糙條厚度K=0.4mm時(shí)外表面各測(cè)層的平均風(fēng)壓系數(shù)。由圖可知,風(fēng)壓系數(shù)沿高度方向變化明顯,就最大負(fù)風(fēng)壓絕對(duì)值而言,B測(cè)層最大,A測(cè)層次之,E測(cè)層最小,這種沿高度分布的差異主要受三維流效應(yīng)影響。圖5給出五種粗糙條厚度下B測(cè)層外表面的平均風(fēng)壓系數(shù)。由圖可知,表面粗糙度越小,即表面越光滑,最大負(fù)風(fēng)壓系數(shù)的絕對(duì)值也越大。
圖6為不同粗糙度下外表面的平均阻力系數(shù),由圖可知,同一高度處塔截面的阻力系數(shù)基本上隨K的增大呈增大趨勢(shì),阻力系數(shù)在K=0.6mm時(shí)達(dá)到最大值,K<0.6mm時(shí)阻力系數(shù)差別較小。
圖6 不同粗糙度下外表面的平均阻力系數(shù)Fig.6 Mean drag coefficient on outer surface under different roughnesses
在水冷卻規(guī)范[1]中冷卻塔的風(fēng)壓分布采用平均風(fēng)壓分布系數(shù)表述,該概念即為結(jié)構(gòu)荷載規(guī)范[6]的體型系數(shù)μs。水冷卻規(guī)范中平均風(fēng)壓分布系數(shù)的公式為:
式中αk為系數(shù),m為項(xiàng)數(shù),一般取為7。無肋條情況的系數(shù)分別?。?]:-0.4426、0.2451、0.5356、0.0615、-0.1384、0.0014 和 0.065。體型系數(shù) μs與本文公式(2)定義的風(fēng)壓系數(shù)Cp的差別在于參考點(diǎn)高度的不同,體型系數(shù)μs取測(cè)點(diǎn)高度zi為參考點(diǎn),而風(fēng)壓系數(shù)Cp以塔頂高度H為參考點(diǎn)。兩者轉(zhuǎn)換公式為:
課前,教師上傳繼電器外貌、組成框圖、動(dòng)作視頻、ppt課件等資料至學(xué)習(xí)平臺(tái),學(xué)生通過課前任務(wù)應(yīng)清楚繼電器的長(zhǎng)相、專業(yè)術(shù)語及大體課程內(nèi)容
圖7 B層體型系數(shù)與以往數(shù)據(jù)比較Fig.7 Data comparisons between present tests with codes,full-scale tests and others'wind tunnel tests
為了便于與規(guī)范推薦的公式比較,將風(fēng)壓系數(shù)轉(zhuǎn)化成體型系數(shù),并將本次實(shí)驗(yàn)數(shù)據(jù)與以前的現(xiàn)場(chǎng)實(shí)測(cè)、相近試驗(yàn)條件的模型試驗(yàn)結(jié)果和規(guī)范數(shù)據(jù)比較,如圖7所示,圖中所有數(shù)據(jù)均換算為體型系數(shù)μs,且數(shù)據(jù)所在測(cè)層均位于喉部及其附近??疾靾D中所有數(shù)據(jù),發(fā)現(xiàn)厚度為K=0.4mm的表面粗糙度較為合理。
圖8為冷卻塔各測(cè)層內(nèi)表面的平均風(fēng)壓系數(shù)。由圖可知,A~D層內(nèi)表面風(fēng)壓系數(shù)基本上穩(wěn)定在-0.4附近。E層數(shù)據(jù)在大多數(shù)部位也在-0.4附近,但當(dāng)緯度角在180°附近時(shí),其絕對(duì)值急劇減少,最小達(dá)到-0.145,減少了近65%。這是由于氣流從迎風(fēng)面(0°緯度角)附近的人字柱間進(jìn)入冷卻塔內(nèi)部,撞擊在背風(fēng)面(180°緯度角)附近的內(nèi)壁上,使該區(qū)域的風(fēng)壓有往正壓方向增加的趨勢(shì)。張陳勝[14]曾采用CFD方法對(duì)塔內(nèi)外的流場(chǎng)進(jìn)行數(shù)值模擬,如圖9所示,從流場(chǎng)圖中可以很明顯看出上述現(xiàn)象。圖10為五種粗糙條厚度下內(nèi)表面B測(cè)層的平均風(fēng)壓系數(shù)。由圖可知,外表面的模型粗糙度對(duì)內(nèi)表面的風(fēng)壓系數(shù)稍有影響,但影響不大。
圖11給出不同模型粗糙度下內(nèi)表面的平均阻力系數(shù)。由圖可知:五種表面粗糙度下的阻力系數(shù)幾乎相同,說明表面粗糙度對(duì)內(nèi)壓的影響較小。同時(shí)可以發(fā)現(xiàn),A、B、C和D測(cè)層的阻力系數(shù)幾乎為零,這是因?yàn)檫@些層的內(nèi)壓基本相等,相當(dāng)于均勻環(huán)壓情況。而E層的阻力系數(shù)為0.2左右,主要是由于E層的風(fēng)壓分布在180°緯度角附近出現(xiàn)突變所致(見圖8)。
圖11 不同粗糙度下內(nèi)表面的平均阻力系數(shù)Fig.11 Mean drag coefficients on inner surface under different roughnesses
以往很多學(xué)者如 Farell[8]和 Kasperski[5]在進(jìn)行風(fēng)洞試驗(yàn)時(shí)沒有模擬出底部人字柱,即采用底部封閉的模型。為研究模型底部有無人字柱對(duì)冷卻塔內(nèi)外表面風(fēng)壓分布的影響,本文進(jìn)行有人字柱和無人字柱模型的風(fēng)洞試驗(yàn)對(duì)比,表面粗糙度K取0.2mm。
圖12為底部有無人字柱模型外表面的平均風(fēng)壓系數(shù)。由圖可知,兩種模型的外表面風(fēng)壓系數(shù)差別很小,說明底部有無人字柱對(duì)外表面風(fēng)壓的影響很小。
圖12 兩種模型外表面的平均風(fēng)壓系數(shù)Fig.12 Mean wind pressure coefficient on outer surface of two models
圖13為底部有無人字柱模型內(nèi)表面的平均風(fēng)壓系數(shù)。由圖可知,兩種模型的內(nèi)表面風(fēng)壓系數(shù)差別較大,底部無人字柱模型的內(nèi)表面風(fēng)壓系數(shù)大致在-0.7附近,底部有人字柱模型的內(nèi)表面風(fēng)壓系數(shù)大致在-0.4附近,無人字柱模型的絕對(duì)值比有人字柱模型的要大75%左右。同時(shí),對(duì)于底部有人字柱模型,E測(cè)層緯度角在180°附近區(qū)域的風(fēng)壓出現(xiàn)突變,而底部無人字柱模型不存在風(fēng)壓突變情況。
圖13 兩種模型內(nèi)表面的平均風(fēng)壓系數(shù)Fig.13 Mean wind pressure coefficient on inner surface of two models
圖14為底部有無人字柱模型的三種平均阻力系數(shù)(內(nèi)表面、外表面和合力)的比較,其中合力阻力系數(shù)為外表面阻力系數(shù)減去內(nèi)表面阻力系數(shù)。由圖可知,兩種模型的平均阻力系數(shù)在A~D層的差別不大,主要是因?yàn)閮煞N模型的內(nèi)壓均為均勻環(huán)壓,平均內(nèi)壓阻力系數(shù)均在零附近;在塔底E層內(nèi)壓阻力系數(shù)有一定差異,這是因?yàn)镋層內(nèi)表面風(fēng)壓形式在兩種模型情況下存在較大差異(見圖13)。
圖14 兩種模型內(nèi)外表面的平均阻力系數(shù)Fig.14 Mean drag coefficients on inner and outer surface of two models
由上節(jié)可知,表面粗糙度K=0.4mm為較為合理的粗糙度,本節(jié)均以此粗糙度給出風(fēng)壓系數(shù)和阻力系數(shù)值,供設(shè)計(jì)參考。
圖15分別給出冷卻塔內(nèi)表面、外表面和合力平均風(fēng)壓系數(shù)的等壓線圖。圖中在緯度方向分為4等分,中間軸線為0°緯度角,左右兩邊分別為 -180°~0°和0°~180°緯度角;沿高度方向分為5等分,從上往下高度線分別為 z/H=1、0.8、0.6、0.4、0.2 和 0.07,底部為透風(fēng)的人字柱,沒有風(fēng)壓。由圖可知,除底部180°緯度角附近位置外,內(nèi)表面風(fēng)壓沿空間的變化很小,在-0.4左右;外表面風(fēng)壓與合力風(fēng)壓的等壓線形狀非常相似,僅在數(shù)值上相差約0.4。
圖15 內(nèi)外壓共同作用下的平均風(fēng)壓系數(shù)Fig.15 Mean wind pressure coefficient considering interaction between internal and external pressure
由于內(nèi)外表面的風(fēng)壓是同步測(cè)量,可以將外內(nèi)表面的風(fēng)壓系數(shù)時(shí)程進(jìn)行相減,獲得合力的風(fēng)壓系數(shù)時(shí)程,再計(jì)算獲得風(fēng)壓合力的脈動(dòng)均方根。圖16分別給出冷卻塔內(nèi)表面、外表面和合力風(fēng)壓系數(shù)脈動(dòng)均方根的等壓線圖。由圖可知,內(nèi)表面風(fēng)壓系數(shù)均方根比外表面和合力風(fēng)壓系數(shù)的均方根小,同時(shí)外壓和合力風(fēng)壓系數(shù)的均方根非常接近。
圖16 內(nèi)外壓共同作用下的風(fēng)壓系數(shù)均方根Fig.16 RMS of wind pressure considering interaction between internal and external pressure
圖17分別給出內(nèi)壓,外壓和合力的平均阻力系數(shù)。由圖可知,內(nèi)壓平均阻力系數(shù)在A~D層較小,基本為零;在E層較大,約為0.2;外壓與合力的平均阻力系數(shù)在A~D層非常接近,在E層差別較大。
圖17 內(nèi)外壓共同作用下的平均阻力系數(shù)Fig.17 Mean drag coefficient considering interaction between internal and external pressure
對(duì)兩種受力情況(僅外壓、內(nèi)外壓共同作用)用有限元軟件ANSYS軟件建模并進(jìn)行受力分析。有限元模型中殼體采用shell63單元,共有1344個(gè)單元(子午向28段,環(huán)向48段),人字柱采用梁?jiǎn)卧?,有限元模型見圖18。將平均風(fēng)壓通過插值作用在殼體各節(jié)點(diǎn)上,進(jìn)行靜力計(jì)算,得到冷卻塔的平均風(fēng)致響應(yīng)。
圖18 冷卻塔靜力計(jì)算的有限元模型Fig.18 FEM model of cooling tower used for static analysis
圖19分別給出頸部子午向薄膜應(yīng)力NM、頸部環(huán)向薄膜應(yīng)力NL和緯度角0°時(shí)的徑向位移DR。由圖可知,考慮內(nèi)壓與否對(duì)子午向薄膜應(yīng)力和徑向位移幾乎沒有變化,但對(duì)環(huán)向薄膜應(yīng)力有一定的影響,考慮內(nèi)壓后環(huán)向薄膜應(yīng)力減小了約0.06MPa。其原因主要為僅外壓作用與內(nèi)外壓共同作用的差異在于內(nèi)表面的風(fēng)壓作用,內(nèi)表面的風(fēng)壓主要為-0.4左右的均勻環(huán)壓作用。很顯然,均勻環(huán)壓對(duì)徑向位移和子午向薄膜應(yīng)力的影響很小,而對(duì)環(huán)向薄膜應(yīng)力產(chǎn)生作用。下面通過簡(jiǎn)單的公式計(jì)算進(jìn)行校核,計(jì)算模型為一個(gè)二維的環(huán)形結(jié)構(gòu),受到環(huán)壓作用,如圖20所示。計(jì)算時(shí)半徑R取30m,內(nèi)環(huán)壓取 q= -0.4 ×1.07= -0.428(kPa),壁厚 d為0.2m,則內(nèi)壓引起的環(huán)向應(yīng)力為:
由以上分析可知,簡(jiǎn)單公式校核結(jié)果與有限元分析結(jié)果非常接近。
本文采用風(fēng)洞試驗(yàn)方法研究?jī)?nèi)外壓共同作用下冷卻塔的風(fēng)荷載和風(fēng)致響應(yīng),有以下幾點(diǎn)結(jié)論:
(1)制作了帶外筒和內(nèi)筒的冷卻塔夾層模型,進(jìn)行內(nèi)外表面測(cè)點(diǎn)的同步測(cè)壓,用于研究?jī)?nèi)外壓的共同作用問題,結(jié)果說明該模型是適用的。
(2)采用在模型表面貼粗糙條的方法來補(bǔ)償模型試驗(yàn)的雷諾數(shù)效應(yīng),試驗(yàn)發(fā)現(xiàn),模型表面粗糙度對(duì)內(nèi)壓的影響很小;對(duì)外壓的影響為模型表面越光滑,外表面的最大負(fù)風(fēng)壓越大。
(3)冷卻塔模型底部有無人字柱,對(duì)外表面的風(fēng)壓幾乎沒有影響,對(duì)內(nèi)壓的影響較大,有人字柱模型與無人字柱模型的內(nèi)表面平均風(fēng)壓系數(shù)分別約為-0.4和-0.7,兩者相差約 0.3。
(4)考慮內(nèi)壓與否對(duì)子午向薄膜應(yīng)力和徑向位移幾乎沒有影響,但對(duì)環(huán)向薄膜應(yīng)力有一定的影響,內(nèi)壓作用在一定程度上可視為均勻環(huán)壓。
[1]工業(yè)循環(huán)水冷卻設(shè)計(jì)規(guī)范(GB/T50102-2003)[S].北京:中國(guó)計(jì)劃出版社,2003.
[2]NIEMANN H J,PROPPER H.Some properties of fluctuating wind pressures on a full-scale cooling tower[J].Journal of Industrial Aerodynamics,1975/1976,1:349 -359.
[3]SOLLENBERGER N J,BILLINGTON D P.Wind loading and response of cooling towers[J].Journal of the Structural Division,ASCE,1980,106(3):601 -621.
[4]KAWARABATA Y,NAKAE S,HARADA M.Some aspects of the wind design of cooling towers[J].Journal of Wind Engineering and Industrial Aerodynamics,1983,14:167 -180.
[5]KASPERSKI M,NIEMANN H J.On the correlation of dynamic wind loads and structural response of natural-draught cooling towers[J].Journal of Wind Engineering and Industrial Aerodynamics,1988,30:67 -75.
[6]建筑結(jié)構(gòu)荷載規(guī)范(GB50009-2001)[S].北京:中國(guó)建筑工業(yè)出版社,2002.
[7]AIJ recommendations for loads on buildings[M].Japan:Architectural Institute of Japan,2004.
[8]FARELL C,GUVEN O,MAISCH F.Mean wind loading on rough-walled cooling towers[J].Journal of the Engineering Mechanics Division,ASCE,1976,102(6):1059-1081.
[9]SUN T F,ZHOU L M.Wind pressure distribution around a ribless hyperbolic cooling tower[J].Journal of Wind Engineering and Industrial Aerodynamics,1983,14:181- 192.
[10]NIEMANN H J,PROPPER H.Some properties of fluctua-ting wind pressures on a full-scale cooling tower[J].Journal of Industrial Aerodynamics,1975/1976,1:349 -359.
[11]STEINMETZ R L,BILLINGTON D P,ABEL J F.Hyperbolic cooling tower dynamic response to wind[J].Journal of the Structural Division,ASCE,1978,104(1):35-53.
[12]BASU P K,GOULD P L.Cooling towers using measured wind data[J].Journal of the Structural Division,ASCE,1980,106(3):579-599.
[13]閻文成,張彬乾,李建英.超大型雙曲冷卻塔風(fēng)荷載特性風(fēng)洞試驗(yàn)研究[J].流體力學(xué)試驗(yàn)與測(cè)量,2003,17(特刊):85-89.
[14]張陳勝.大型雙曲冷卻塔風(fēng)荷載的數(shù)值模擬研究[D].[碩士學(xué)位論文].杭州:浙江大學(xué),2008.
空氣動(dòng)力學(xué)學(xué)報(bào)2011年4期