黃佳國, 曾文彬, 周 明, 高 峰
1.中南大學(xué)藥學(xué)院,長沙 410013;
2.中南大學(xué)湘雅三醫(yī)院,長沙 410013
雙模態(tài)分子影像探針研究進展
黃佳國1, 曾文彬1, 周 明1, 高 峰2
1.中南大學(xué)藥學(xué)院,長沙 410013;
2.中南大學(xué)湘雅三醫(yī)院,長沙 410013
分子影像技術(shù)可以在分子水平上實現(xiàn)生物有機體生理和病理變化的在體、實時、動態(tài)、無創(chuàng)的三維成像,融合不同影像的雙、多模態(tài)技術(shù),可實現(xiàn)不同影像設(shè)備的優(yōu)勢互補,同時亦可減少假陽性和假陰性,從而使獲取的結(jié)果更為精確可靠。雙、多模態(tài)融合已成為生物醫(yī)學(xué)成像的發(fā)展趨勢,并逐漸在疾病的治療、診斷及監(jiān)測等方面發(fā)揮重要作用。本文綜述了雙模態(tài)分子探針的優(yōu)勢和面臨的挑戰(zhàn),總結(jié)了當(dāng)前雙模態(tài)分子探針獨特的設(shè)計策略及其相關(guān)應(yīng)用研究,并對目前的熱點和前景進行了總結(jié)和展望。
分子影像;分子探針;雙模態(tài);多模態(tài)
分子影像學(xué) (molecular imaging)是運用影像學(xué)手段,在組織水平、細胞水平或分子水平對特定的分子進行活體顯像,來反映特定分子的生物學(xué)行為,并對其進行定性、定量研究的一門新興的邊緣學(xué)科[1,2]。該學(xué)科由Ralph Weissleder教授于1999年首次提出[3],融合了化學(xué)、分子生物學(xué)、物理學(xué)、放射醫(yī)學(xué)、核醫(yī)學(xué)等多個學(xué)科及其技術(shù),主要成像方法包括磁共振成像 (magnetic resonance imaging,MRI)、核醫(yī)學(xué)成像和光學(xué)成像,其中,核醫(yī)學(xué)成像技術(shù)主要有γ照相、單光子發(fā)射型計算機斷層 (single photon emission computed tomography,SPECT)及正電子發(fā)射型計算機斷層 (positron emission tomography,PET)。分子影像學(xué)對影像醫(yī)學(xué)的發(fā)展有很大的推動作用,使傳統(tǒng)的解剖、生理功能的研究,深入到細胞和分子水平的成像,并能探索疾病分子水平上的變化,對藥物的研發(fā)、新的醫(yī)療模態(tài)的形成和人類健康有著深遠的影響。
實現(xiàn)特定靶點的活體成像,除了要有高分辨率、高敏感度、快速的成像技術(shù),還需要特定的分子探針。分子探針是成像成功的關(guān)鍵,它的合成和檢測是分子影像學(xué)研究中最熱門、最前沿的問題之一。實際上,正是由于探針的深入研發(fā),才使得分子影像從一項技術(shù)成為一門新學(xué)科。然而,在目前所有的分子影像技術(shù)中,并沒有一種完美的影像技術(shù)能夠提供關(guān)于檢測對象的所有信息,任何一種影像技術(shù)都存在自身的優(yōu)缺點;傳統(tǒng)的分子探針中,也沒有一種能夠提供關(guān)于組織的所有結(jié)構(gòu)、功能和分子的信息。為了克服這些缺陷,人們開始研究雙模態(tài)或者多模態(tài)分子探針,綜合兩種或多種模態(tài)探針的優(yōu)點,使分子探針在診斷、治療和監(jiān)測等方面可獲得一些全新的信息[4]。目前,將各類不同模態(tài)的分子探針進行有效結(jié)合,初步形成了包括PET-光學(xué)、SPECT-光學(xué)、PET-MRI等在內(nèi)的多種新型雙模態(tài)探針。這些“一體化”的雙模態(tài)分子影像探針必將成為未來進行體內(nèi)成像的重要工具[5]。本文具體介紹了雙模態(tài)分子探針的優(yōu)勢及面臨的新挑戰(zhàn),并總結(jié)了當(dāng)前雙模態(tài)探針?biāo)捎玫脑O(shè)計策略、不同類型及其相關(guān)應(yīng)用研究。
PET的臨床應(yīng)用是核醫(yī)學(xué)發(fā)展的一個重要里程碑。它可以定量探測正電子核素的空間分布和實時變化,不僅無創(chuàng)傷地打開了人們探討大腦奧秘的窗口,而且在心、肺疾病和腫瘤等的診斷中,均獲得了廣泛的臨床應(yīng)用。PET的優(yōu)勢在于它使用的核素 (11C、15O、13N、18F等)本身為人體組織的組成元素,故可應(yīng)用這些核素標(biāo)記人體或腫瘤代謝所必需的化合物。PET具有高分辨率的優(yōu)點,但主要的缺陷在于較低的空間分辨率,常常很難得到清楚的信號,從而限制了組織信息的獲得[6]。此外,高昂的價格也增加了推廣應(yīng)用的難度。光學(xué)顯像因具有顯像劑無輻射、標(biāo)記后化合物穩(wěn)定性好,以及適合在同一活體內(nèi)一次注射后反復(fù)顯像等優(yōu)點,近年來得到迅猛發(fā)展,并廣泛應(yīng)用于不同領(lǐng)域。特別是隨著光學(xué)信號探測儀器的發(fā)展,以及新型的組織穿透力更強的熒光物質(zhì) (如生物熒光[7])的研制成功,已成為分子顯像的一個重要分支[8~10]。然而具有這種特性的雙模態(tài)探針為數(shù)不多,目前很大程度上還集中在體外和小動物成像[11]。如我們先后報道的基于此原理設(shè)計并合成的PET-光學(xué)雙模態(tài)探針DNSBA和BNSBA,可在體外特異性識別腫瘤細胞凋亡[12,13]。
基于64Cu-量子點的PET-光學(xué)成像雙模態(tài)分子影像探針
納米技術(shù)的發(fā)展為納米材料型影像探針的設(shè)計提供了新方法,該類新型探針具有較大的表面積,有利于對成像功能基團進行修飾,以及穩(wěn)定性的提升和靶向性的增強[14,15]。研究表明,基于此技術(shù)的量子點 (quantum dots,QDs)分子探針已用于細胞標(biāo)記、熒光雜交、核酸檢測和其他研究[16,17]。非特異性QDs已用于體內(nèi)胚胎形成的成像,以及管脈系統(tǒng)、淋巴結(jié)和其他疾病的診斷[18,19]。例如,有報道稱,以QDs為熒光發(fā)射基團的雙模態(tài)探針可用于整聯(lián)蛋白αvβ3的成像。整聯(lián)蛋白αvβ3在腫瘤管脈系統(tǒng)和腫瘤細胞中是過量表達的,但在休眠的內(nèi)皮細胞和大多數(shù)正常器官系統(tǒng)中不易被檢測[20],因而可作為體內(nèi)成像的優(yōu)良靶點。如圖1所示,該研究合成了一種新穎的腫瘤靶向PET-近紅外雙模態(tài)探針,體內(nèi)靶向通過精氨酸-甘氨酸-天冬氨酸鏈 (Arg-Gly-Asp,RGD)與整聯(lián)蛋白αvβ3結(jié)合來完成,DOTA與QD表面結(jié)合后再與核素64Cu進行螯合,從而實現(xiàn)了PET成像與QD近紅外熒光成像的結(jié)合。通過對機體器官和腫瘤的QDs結(jié)合物吸收水平的定量研究,從而準(zhǔn)確評價探針對腫瘤的靶向特異性。另外,該探針PET的溶度比體內(nèi)光學(xué)成像使用的溶度要低得多,在很大程度上可減少Q(mào)Ds在體內(nèi)潛在的毒性[21]。
圖1 DOTA-QD-RGD PET-光學(xué)成像雙模態(tài)分子影像探針[21]Fig.1 DOTA-QD-RGD PET-optical dual-modality probes[21]
相近報道則多基于腫瘤成像和癌癥治療的新靶點、可作為多數(shù)血管原調(diào)節(jié)器的內(nèi)皮管脈系統(tǒng)生長因子 (vascular endothelial growth factor,VEGF)及其受體 (VEGF receptors,VEGFRs)[22~24]。Chen[25]將QD功能性氨基酸與VEGF蛋白結(jié)合后,再與大環(huán)DOTA螯合來識別VEGFR,并利用64Cu標(biāo)記實現(xiàn)了PET成像,該探針的結(jié)構(gòu)如圖2所示。
基于86Y-近紅外的PET-光學(xué)成像雙模態(tài)分子影像探針
正電子11C和18F因具有良好的生物特性和低原子量而受到廣泛的青睞,但由于半衰期短,相關(guān)分子探針需要在短時間內(nèi)完成合成、純化、聚集及顯像。而86Y、64Cu、68Ga和124I等正電子擁有較長的半衰期和優(yōu)良的螯合特性,在設(shè)計分子探針時也存在一定的優(yōu)勢[5]。圖3所示的賴氨酸衍生物雙模態(tài)分子探針,由近紅外染料Cy5.5通過脂肪鏈連接到配體CHX-A上,后者可與核素111In螯合。由于近紅外熒光成像分辨率達1~2 mm,能穿透8 cm的組織,該探針能夠與腫瘤特異性單克隆抗體(曲妥單抗)相結(jié)合,實現(xiàn)腫瘤的特異性光學(xué)和PET成像。在體外實驗中還發(fā)現(xiàn),Cy5.5-Lys(SMCC)-CHX-A和曲妥單抗能競爭性地作用于SKOV3癌細胞。此外,該探針也可與86Y螯合而用于PET顯像[26]。
圖3 Cy5.5-Lys(SMCC)-CHX-A PET-光學(xué)成像雙模態(tài)分子影像探針[26]Fig.3 Cy5.5-Lys(SMCC)-CHX-A PET-optical dual-modality probes[26]
SPECT既繼承了γ照相機的功能和特性,又應(yīng)用了計算機斷層的原理,較γ相機增加了斷層顯像的能力,是核素顯像技術(shù)繼掃描機和γ照相機之后又一重大進步。其突出優(yōu)點是,可反映人體功能和代謝方面的變化,這與X射線CT、MRI等影像技術(shù)有所不同。SPECT結(jié)合光學(xué)成像已成為分子顯像的一個重要分支[27,28]?;?11In-紅外的SPECT-光學(xué)成像雙模態(tài)分子影像探針
Sampath等設(shè)計并合成了一類雙模態(tài)探針(111In-DTPA)n-trastuzumab-(IRDye800)m,研究證明,其能夠在體外及體內(nèi)對人體表皮生長因子受體HER2過量表達的腫瘤特異性成像[29]。人體表皮生長因子受體 (the human epidermal growth factor receptor,HER)是表皮生長因子家族細胞外蛋白配體的一員,由跨膜受體酪氨酸激酶組成,通過復(fù)雜的細胞內(nèi)信號網(wǎng)來控制正常和病變細胞的增長、惡化及生命活動[30]。在許多HER家族中,HER2的過量表達是一個提示惡性腫瘤形成和乳腺癌惡化的重要病情診斷信號。Trastuzumab是一種通過干擾HER2信號而被廣泛應(yīng)用的人體抗HER2抗體,現(xiàn)已批準(zhǔn)用于治療乳腺癌[31~33]。實驗表明,(111In-DTPA)n-trastuzumab-(IRDye800)m作用于乳腺癌細胞系SKBr3并顯示出HER2處于細胞的外緣。體內(nèi)靜脈注射該雙模態(tài)探針,近紅外熒光顯像和SPECT顯像均能成功識別荷瘤老鼠中的HER2[29]。此外,相似的方法也已用于設(shè)計用來跟蹤白細胞間介素受體上IL-11Ra鏈的分子探針[34]。
基于99mTc-紅外的SPECT-光學(xué)成像雙模態(tài)分子影像探針
Bhushan等設(shè)計了一種建立在二膦酸鹽 (bisphosphonates,BP)基礎(chǔ)上的雙模態(tài)探針,用于乳腺癌微鈣化的SPECT-CT-光學(xué)成像。具有BP基團的小分子能與羥磷灰石(hydroxyapatite,HA)礦骨物的表面相連[35],BP與放射性示蹤劑已用于造骨細胞損傷的成像,亦可研究乳腺癌與骨轉(zhuǎn)移瘤之間的關(guān)系[36]。該Pam-Tc/Re-800探針結(jié)構(gòu)如圖4所示,BP作為靶向配體,核素99mTc和IRDye800分別作為SPECT和光學(xué)成像基團。Pam-Tc/Re-800顯示,它在體內(nèi)與HA特異性的結(jié)合比其他鈣鹽多8倍量,利用SPECT-CT和近紅外均可對HA進行高靈敏度檢測。此外,Pam-Tc/Re-800在骨骼和微鈣化腫瘤中,比在其他器官或組織中具有更高的吸收,亦可作為骨探測型雙模態(tài)探針[37]。
圖4 Pam-Tc/Re-800 SPECT-光學(xué)成像雙模態(tài)分子影像探針[37]Fig.4 Pam-Tc/Re-800 SPECT-optical dual-modality probes[37]
基于99mTc-熒光的SPECT-光學(xué)成像雙模態(tài)分子影像探針
SPECT成像常用的核素包括99mTc、111In、123I和67Ga。99mTc具有6 h的半衰期,為藥物制備和體內(nèi)腫瘤組織的吸收積累提供了充足的時間,并且廉價易得 (與PET核素相比),但Tc氧化狀態(tài)的易改變以及復(fù)雜的化學(xué)放射性標(biāo)記等,影響了其廣泛應(yīng)用[38,39]。而基于锝以及錸的核素-熒光雙模態(tài)探針的研發(fā),可以使生物醫(yī)學(xué)最常用的顯像技術(shù) (熒光和放射成像)進行結(jié)合并達到優(yōu)勢互補。Stephenson等[40]報道了一種Tc和Re與賴氨酸衍生物為配體的結(jié)合物 (圖5):核素99mTc與熒光基團螯合生成[99mTc(CO)3],該熒光探針能與fMLF生物結(jié)合后作用于特定的受體,與多肽偶聯(lián)后能進一步得到體內(nèi)和體外直接相關(guān)的成像信息。此外,最近有報道稱,這類結(jié)構(gòu)相似的熒光-核素探針可用于神經(jīng)干細胞和干細胞的轉(zhuǎn)移研究[41]。
圖5 fMLF-[(SAACQ-Re(CO)3+)]G SPECT-光學(xué)成像雙模態(tài)分子影像探針[40]Fig.5 fMLF-[(SAACQ-Re(CO)3+)]G SPECT-optical dual-modality probes[40]
MRI是利用磁共振成像的無創(chuàng)傷性研究生物細胞內(nèi)分子過程的一門技術(shù),能在亞毫米水平上提供高分辨率的組織信息的一系列生物參數(shù),并能提供三維結(jié)構(gòu)成像和高分辨率信息[42],但靶向特異性差、靈敏度低,進而在很大程度上又限制了臨床應(yīng)用,在對活體進行顯像時須依靠其他的顯像技術(shù)來加以輔助。PET和MRI兩種影像技術(shù)存在協(xié)同作用的最大互補。因此,將這兩種顯像技術(shù)融合在一起、達到優(yōu)勢互補的PET-MRI雙模態(tài)探針具有極大的應(yīng)用前景。近年來,PET-MRI影像逐漸成為分子影像學(xué)的熱點研究領(lǐng)域,基于此的雙模態(tài)探針相繼開發(fā)[43,44],有些已逐步應(yīng)用到臨床診斷[4]?;?24I-納米材料的PET-MRI成像雙模態(tài)分子影像探針
利用124I-血紅蛋白-MnMEIO雙模態(tài)探針標(biāo)記淋巴瘤成像的動物實驗已經(jīng)成功[45]。淋巴系統(tǒng)是生物機體用于抵抗外來侵擾的屏障,也是腫瘤轉(zhuǎn)移的重要途徑[46],因此,淋巴瘤的準(zhǔn)確成像對診斷和治療癌癥至關(guān)重要。如圖6所示的PET-MRI雙模態(tài)探針124I-SA-MnMEIO,是通過將放射性碘素結(jié)合到血紅蛋白的酪氨酸上,然后在外層表面覆蓋一層MnMEIO磁性納米微粒而得到的。MnMEIO是由鎂和氧化鐵納米微粒組成的,其磁性相當(dāng)于超順磁性氧化鐵 (SPIO)納米微粒的2至3倍。124I-SA-MnMEIO保持著各單模態(tài)探針同等的功能,磁性納米微粒和核素碘離子之間沒有任何干擾作用,當(dāng)124I-SA-MnMEIO納米微粒被老鼠的前爪吸收時,體內(nèi)的上臂淋巴瘤能夠被清晰地成像,但124I-SA-MnMEIO納米微粒在體內(nèi)的應(yīng)用研究尚需時日[45]。
基于64Cu-納米材料的PET-MRI成像雙模態(tài)分子影像探針
近來有報道稱,開發(fā)了一種新型PET-MRI雙模態(tài)納米探針用于整聯(lián)蛋白αvβ3過量表達的腫瘤成像。由于整聯(lián)蛋白αvβ3與細胞外基質(zhì)分子 (如玻連蛋白)相連[47],該玻連蛋白含有精氨酸-甘氨酸-天冬氨酸鏈 (RGD),RGD多肽能緊密地與整聯(lián)蛋白αvβ3結(jié)合,因此,大多數(shù)探針都是通過RGD靶向整聯(lián)蛋白αvβ3的[48]。如圖7中,以RGD為靶點的PET-MRI探針的表面是一種DOTA螯合物與天冬氨酸結(jié)合的化合物,外層是氧化鐵納米微粒(PASP-IO),它能與環(huán)狀的RGD多肽進行化學(xué)結(jié)合來識別整聯(lián)蛋白αvβ3。氧化鐵納米微粒(PASP-IO)具有容易與64Cu螯合和RGD多肽靶向結(jié)合的特性,DOTA-IO-RGD軛合物被發(fā)現(xiàn)能夠特異性地與U87MG細胞的整聯(lián)蛋白αvβ3結(jié)合[49]。
圖7 64Cu-DOTA-IO-RGD PET-MRI成像雙模態(tài)分子影像探針[47]Fig.7 64Cu-DOTA-IO-RGD PET-MRI dual-modality probes[47]
基于111In-超順磁納米的PET-MRI成像多模態(tài)分子影像探針
細胞的分化在胚胎形成的過程中是至關(guān)重要的,特別是在免疫和造血系統(tǒng)、血管形成過程的血管重構(gòu)及大多數(shù)免疫和傳染性疾病中[50~52]。傳統(tǒng)的細胞標(biāo)記方法是在流式細胞儀上對離體組織的細胞進行熒光標(biāo)記[53,54]。對細胞進行標(biāo)記是對干細胞進行MRI顯像的前提,而Tat蛋白源多肽鏈已作為一種有效的配體用于標(biāo)記細胞內(nèi)蛋白[55,56]。Weissleder等[57]曾經(jīng)報道一種超順磁性納米粒-CLIO-Tat多模態(tài)分子探針 (磁性、熒光、核素),并首次發(fā)現(xiàn)該探針可以標(biāo)記造血細胞CD34+和神經(jīng)前體細胞C17.2,并且通過MRI高分辨率顯像進一步證明這些被標(biāo)記的細胞仍然保持著分化能力。該探針結(jié)構(gòu)如圖8所示,納米微粒由5 nm的高順磁場氧化鐵單晶核與外層胺化的葡聚糖交聯(lián)形成,整個納米微粒大小為45 nm,多個氨基酸與它進行交聯(lián),其中包括半胱氨酸的生物軛合和賴氨酸的熒光結(jié)合。葡聚糖外衣與DTPA(diethylenetriamine pentaacetic acid)反應(yīng)后,用核素111In標(biāo)記進行核素成像,最后產(chǎn)生了集熒光、順磁性和放射性核素成像于一體的多模態(tài)探針。
基于MRI和光學(xué)成像的分子影像探針是雙模態(tài)影像中發(fā)展相對成熟的領(lǐng)域,被更為廣泛地運用到生物醫(yī)藥研發(fā)和臨床應(yīng)用中。如釓螯合劑、氧化鐵納米粒子與光學(xué)基團的聯(lián)合使用。
隨著分子影像學(xué)的發(fā)展及與其他技術(shù)間跨學(xué)科的交叉研究,新型多模態(tài)分子影像探針應(yīng)運而生。雖然新型探針不斷涌現(xiàn),生物活性相繼得到證實或達到預(yù)期效果及目的,但多模態(tài)影像探針的應(yīng)用仍然處于初期階段,許多工作,包括技術(shù)上的準(zhǔn)確性、重現(xiàn)性和標(biāo)準(zhǔn)化方法的建立等,還有待于提高和深入。
未來雙模態(tài)分子影像探針的發(fā)展,一個重要的方向是“治療診斷學(xué)”的發(fā)展,即分子探針在對病灶或目標(biāo)部位進行顯像的同時,還能作為藥物對疾病進行治療。因為一般探針分子在體內(nèi)的分布位點與治療藥物在體內(nèi)的分布位點要求是一致的,如果能夠成功地將探針分子的顯像部位與治療藥物相結(jié)合,形成一個全新的治療診斷探針,將具有巨大的臨床應(yīng)用前景。此外,合成新型可控的分子探針也將是另一個研究熱點。
總之,優(yōu)良的多模態(tài)影像探針的研究有賴于合成化學(xué)家、分子生物學(xué)家和影像學(xué)家之間跨學(xué)科的共同努力,同時也必將給未來生物、臨床醫(yī)學(xué)的研究和新藥研發(fā)帶來更多更大的影響。
1. Weissleder R.Molecular imaging in cancer.Science,2006,312:1168~1171
2.Herschman HR.Molecular imaging:Looking at problems seeing solutions.Science,2003,302:605~608
3. WeisslederR. Moleculare imaging: Exploring the next frontier.Radiology,1999,212:609~614
4. Lee S,Chen X.Molecular dual-modality probes forin vivo molecular imaging.Mol Imaging,2009,8(2):87~100
5.Jennings L,Long N.'Two is better than one'——Probes for dual-modality molecular imaging.Chem Commun,2009,24:3511~3524
6. Catana C,Wu Y,Judenhofer M,Qi J,Pichler B,Cherry S.Acquisition of multislicePET and MR images:Initial results with a MR-compatible PET scanner.J Nucl Med,2006,47(12):1968~1976
7.王建東,張帆,黃惠蓮,藏風(fēng)超,趙艷娥,張祿卿,李朝軍,田捷,騰皋軍,何玉龍,周曉軍,盧光明.熒光素酶活體發(fā)光技術(shù)在肺癌分子影像學(xué)研究中的初步應(yīng)用.臨床放射學(xué)雜志,2008,27(2):270~272 Wang JD,Zhang F,Huang HL,Zang FC,Zhao YE,Zhang LQ,Li CJ,Tian J,Teng GJ,He YL,Zhou XJ,Lu GM. Preliminary experiment with lung cancer cell expressing luciferase reporter forin vivomolecular imaging.J Clin Radiol,2008,27(2):270~272
8. Vu N, Silverman R, Chatzioannou A. Preliminary performance of optical PET detectors for the detection of visible light photons. Nucl Instrum Methods PhysRes,(Sect A),2006,569:563~566
9. Lin Y,Weissleder R,Tunguarded CH.Novel near-infrared cyanine fluorochromes: Synthesis, properties, and bioconjugation.Bioconjugate Chem,2002,13:605~610
10.Olson ES,Jiang T,Aguilera TA,Nguyen QT,Ellies LG,Scadeng M,Tsien RY.Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases. Proc Natl Acad Sci USA,2010,107(9):4311~4316
11.Li C,Wang W,Wu Q,Ke S,Houston J,Sevick-Muraca E,Dong L,Chow D,Charnsangavej C,Gelovani J.Dual optical and nuclear imaging in human melanoma xenografts using a single targeted imaging probe. Nucl Med Biol,2006,33:349~358
12.Zeng W,Miao W,LePuil M,Shi G,Biggerstaff J,Kabalka G,Townsend D.Design,synthesis,and biological evaluation of 4- (5-dimethylamino-naphthalene-1-sulfonamido)-3-(4-iodophenyl)butanoic acid as a novel molecular probe for apoptosis imaging.Biochem Biophys Res Comm,2010,398:571~575
13.Zeng W,Miao W,Kabalka G,Le Puil M,Biggerstaff J,Townsend D.Design,synthesis,and biological evaluation of a dansyled amino acid derivative as an imaging agent for apoptosis.Tetrahedron Lett,2008,49:6429~6432
14. CaiW, Chen X. Smallnanoplatforms fortargeted molecularimaging in living subjects. Small, 2007, 3:1840~1854
15.Cheon J,Lee JH.Synergistically integrated nanoparticles asmultimodal probesfor nanobiotechnology. AceChem Res,2008,41:1630~1640
16.Michalet X,Pinaud F,Bentolila L,Tsay J,Doose S,Li J,Sundaresan G,Wu A,Gambhir S,Weiss S.Quantum dots for live cells, in vivo imaging and diagnostics.Science,2005,307:538~544
17.Li ZB,Cai W,Chen X.Semiconductor quantum dots forin vivoimaging.J Nanosci Nanotechnol,2007,7:2567~2581
18.Cai W,Chen K,Li ZB,Gambhir SS,Chen X.How molecularimaging is speeding up anti-angiogenic drug development.Mol Cancer Ther,2006,5:2624~2633
19.Cai W,Hsu AR,Li ZB,Chen X.Are quantum dots ready forin vivo imaging in human subjects? Nanoscale Res Lett,2007,2:265~281
20.Cai W,Chen X.Anti-angiogenic cancer therapy based on integrin alpha beta antagonism. Anticancer Agents Med Chem,2006,6:407~428
21.Schipper M,Cheng Z,Lee S,Bentolila L,Iyer G,Rao J,Chen X,Wu A,Weiss S,Gambhir S.Micro-PET based biodistribution of quantum dots in living mice.J Nucl Med,2007,48:1511~1518
22.Cai W,Chen K,Mohamedali K,Cao Q,Gambhir S,Rosenblum M,Chen X.PET of vascular endothelial growth factor receptor expression. J NuclMed, 2006, 47:2048~2056
23. CaiW, Chen X. Multimodality imaging ofvascular endothelial growth factor and vascular endothelial growth factor receptor expression. Front Biosci, 2007, 12:4267~4279
24.Wang H,Cai W,Chen K,Li ZB,Kashefi A,He L,Chen X. A new PET tracerspecific forvascularendothelial growth factor receptor 2.Eur J Nucl Med Mol Imaging,2007,34:2001~2010
25.Chen K,Li ZB,Wang H,Cai W,Chen X.Dual-modality opticaland positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots. Eur JNucl Med Mol Imaging,2008,35:2235~2244
26.Xu H,Baidoo K,Gunn A,Boswell C,Milenic D,Choyke P,Brechbiel M.Design,synthesis,and characterization of a dual modality positron emission tomography and fluorescence imaging agent for monoclonal antibody tumor-targeted imaging. J Med Chem, 2007, 50:4759~4765
27.Tokunaga E,Oki E,Nishida K,Koga T,Egashira A,Morita M,Kakeji Y,Maehara Y.Trastuzumab and breast cancer:Developments and current status. Int J Clin Oncol,2006,11:199~208
28. Ntziachristos V, WeisslederR. Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media.Med Physics,2002,29(5):803~809
29.Slamon DJ,GodolphinW,JonesLA.Studiesof the HER-2/neu proto-oncogenein human breast and ovarian cancer.Science,1989,244:707~712
30.Carter P,Presta L,Gorman CM,Ridgway JB,Henner D,Wong WL,Rowland AM,Kotts C,Carver ME,Shepard HM. Humanization ofan anti-p185HER2 antibody for human cancer therapy.Proc Natl Acad Sci USA,1992,89(10):4285~4289
31.Yeon CH,Pegram MD.Anti-erbB-2 antibody trastuzumab in the treatment of HER2-amplified breast cancer.Invest New Drug,2005,23:391~409
32.Tokunaga E,Oki E,Nishida K.Trastuzumab and breast cancer:Developments and current status.Int J Clin Oncol,2006,11:199~208
33.Sampath L,Kwon S,Ke S,Wang W,Schiff R,Mawad ME,Sevick-MuracaEM.Dual-labeled trastuzumab-based imaging agent for the detection of human epidermal growth factor receptor-2(HER2)overexpression in breast cancer.E J Nucl Med,2007,48:1501~1510
34.Zurita AJ,Troncoso P,Cardo-Vila M,LogothetisCJ,Pasqualini R,Arap W.Combinatorial screenings in patients:The interleukin-11 receptor α asa candidate target in the progression of human prostate cancer.Cancer Res,2004,64:435~439
35.Van Beek E,Lowik C,Ebetino F,Papapoulos S.Binding and antiresorptive properties of heterocycle-containing bisphosphonate analogs: Structure-activity relationships.Bone,1998,23:437~442
36.Lipton A,Theriault R,Hortobagyi G,Simeone J,Knight R,Mellars K, Reitsma D, Heffernan M, Seaman J.Pamidronate prevents skeletal complications and is effective palliative treatment in women with breast cancer and osteolytic bone metastases:Long-term results of two randomized placebo-controlled trials. Cancer, 2000, 88:1082~1090
37.Bhushan K,MisraP,Liu F,Mathur S,Lenkinski R,Frangioni J.Detection of breast cancer microcalcifications using a dual-modality SPECT/NIR fluorescent probe.J Am Chem Soc,2008,130:17648~17649
38.Bartholoma M,Valliant J,Maresca K,Babich J,Zubieta J.Singleamino acid chelates(SAAC):A strategy for the design of technetium and rhenium radiopharmaceuticals.Chem Commun,2009,5:493~512
39. Bowen ML. Orvig C. 99m-Technetium carbohydrate conjugates as potential agents in molecular imaging.Chem Commun,2008,41:5077~5091
40.Stephenson KA,Banerjee SR,Besanger T,Sogbein OO,LevadalaMK,McFarlaneN,Lemon JA,Boreham DR,Maresca KP,Brennan JD,Babich JW,Zubieta J,Valiant JF.Bridging the gap betweenin vivoandin vivoimaging:Isostructural Re and99mTc complexes for correlating fluorescence and radioimaging studies.J Am Chem Soc,2004,126:8598~8599
41. Schaffer P, Gleave J, Lemon J, Reid L, Pacey L,Farncombe T,Boreham D,Zubieta J,Babich J,Doering L,Valliant J.Isostructural fluorescent and radioactive probes for monitoring neural stem and progenitor cell transplants.Nucl Med Biol,2008,35:159~169
42.Catana C,Wu Y,Judenhofer M,Qi J,Pichler B,Cherry S. Simultaneous acquisition of multislice PET and MR images:Initial results with a MR-compatible PET scanner.J Nucl Med,2006,47(12):1968~1976
43.Patel D,Kell A,Simard B,Xiang B,Lin HY,Tian G.The cell labeling efficacy, cytotoxicity and relaxivity of copper-activated MRI/PET imaging contrast agents.Biomaterials,2010,32:1167~1176
44.OgawaM,Regino CA,Seidel J,Green MV,Xi W,WilliamsM, Kosaka N, Choyke PL, KobayashiH.Dual-modality molecular imaging using antibodies labeled with activatable fluorescence and a radionuclide for specific and quantitative targeted cancerdetection. Bioconjugate Chem,2009,20:2177~2184
45.Choi J,Park J,Nah H,Woo S,Oh J,Kim K,Cheon G,Chang Y,Yoo J,Cheon J.A hybrid nanoparticle probe for dual-modality positron emisson tomography and magnetic resonance imaging.Angew Chem Int Ed Engl,2008,47:6259~6262
46.Misselwitz B.MR contrast agents in lymph node imaging.Eur J Radiol,2006,58:375~382
47. Felding-Habermann B, MuellerBM, RomerdahlCA,Cheresh DA.Requirement of integrin αvβ3gene expression for human melanoma tumorigenicity.J Clin Invest,1992,89:2018~2022
48. BrooksPC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis.Science,1994,264:569~571
49.Lee H,Li Z,Chen K,Hsu A,Xu C,Xie J,Sun S,Chen X. PET/MRIdual-modality tumorimaging using arginine-glycine-aspartic(RGD)-conjugated radiolabeled iron oxide nanoparticles.J Nucl Med,2008,49:1371~1379
50.Frenette P,Subbarao S,Mazo I,von Andrian U,Wagner D. Endothelial selectins and vascular cell adhesion molecule-1 promote hematopoietic progenitorhoming to bone marrow. Proc NatlAcad SciUSA, 1998, 95:14423~14428
51.Zanjani ED,FlakeAW,Almeida-PoradaG, TranN,Papayannopoulou T.Homing of human cells in the fetal sheep model: Modulation by antibodies activating or inhibiting very late activation antigen-4 dependent function.Blood,1999,94:2515~2522
52.Peled A,Petit I,Kollet O,Michal M,Ponomaryov T,Tamara B,Nagler A,Ben-Hur H,Many A,Shultz L,Lider O,Alon R,Zipori D,Lapidot T.Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4.Science,1999,283(5):845~848
53.Lanzkron S,Collector M.Hematopoietic stem cell tracking in vivo: A comparison of short-term and long-term repopulating cells.Blood,1999,93(6):1916~1921
54.Hendrikx PJ,Martens CM,Hagenbeek A,Keij JF,Visser JW.Homing of fluorescently labeled murine hematopoietic stem cells.Exp Hematol,1996,24:129~140
55.Schwarze SR,Ho A,Vocero-Akbani A,Dowdy SF.In vivo protein transduction:Delivery of a biologically active protein into the mouse.Science,1999,285:1569~1572
56.NagaharaH,Vocero-Akbani AM,Snyder EL,Alan H,Latham DG,Lissy NA,Becker-Hapak M.Transduction of full-length TAT fusion proteins into mammalian cells:p27Kip1mediates cell migration.Nat Med,1998,4:1449~1452
57.Lewin M,Carlesso N,Tung C,Tang X,Cory D,Scadden D, Weissleder R. Tat peptide derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells.Nat Biotechnol,2000,18:410~414
Progress of the Dual-Modality Probes for Molecular Imaging
HUANG Jiaguo1,ZENG Wenbin1,ZHOU Ming1,GAO Feng2
1.School of Pharmaceutical Sciences,Central South University,Changsha 410013,China;
2.The Third Xiangya Hospital of Central South University,Changsha 410013,China
This work was supported by grants from the National Natural Science Foundation of China(30900377),Program for New Century Excellent Talents in University by Ministry of Education (NCET-10-0800), the Fundametal Research Funds for the Central Universities(201022100002)and Mital Innovation Foundation(09MX15)
Sep 26,2010 Accepted:Nov 26,2010
ZENG Wenbin,Tel:+86(731)82650459,E-mail:wbzeng@hotmail.com
Molecular imaging enablesthe visualisation of cellular functions,physiological and pathological changes and the follow-up of molecular process in living organisms with intravital,real-time,non-invansive,dymanic three-dimensional imaging.However,no single modality is sufficient and perfect to obtain all the necessary information. The combination of two ormore imaging technologies, which called dual-or multi-modality imaging,can not only offer the benefits of relevant imagine devices complementary with each other,but also decrease false positive and negative rates,which will significantly improve the accuracy and credibility of diagnosis.Hence,Dual-or multi-modality probesopen up the new horizon for biomedical imaging and play a critical role in the diagnosis and monitoring of disease as well as the treatment.The purpose of this article is to provide an overview of recent development in the design strategies and application of dual-modality probes.The perspective of future trends in this field and the research frontiers nowadays are also briefly outlined.
Molecular imaging;Probe;Dual modality;Multi-modality
2010-09-26;接受日期:2010-11-26
國家自然科學(xué)基金項目(30900377),教育部新世紀優(yōu)秀人才計劃項目(NCET-10-0800),教育部中央高?;究蒲袠I(yè)務(wù)費(201022100002),米塔爾創(chuàng)新項目(09MX15)
曾文彬,電話:(0731)82650459,E-mail:wbzeng@hotmail.com
R445
10.3724/SP.J.1260.2011.00301