亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        三維軸對(duì)稱駐點(diǎn)流系統(tǒng)的一些研究

        2011-06-29 06:13:28張明捷黨龍飛徐艷芝
        關(guān)鍵詞:龍飛駐點(diǎn)工程學(xué)院

        張明捷, 黨龍飛, 徐艷芝

        (成都信息工程學(xué)院數(shù)學(xué)學(xué)院,四川成都610225)

        1 Introduction

        In this paper,we are concerned with the following third order differential equations arising in the boundary layer theory

        with boundary conditions

        Which has been used to describe the 3D axisymmetric inviscid stagnation flow[1,2].A solution of(1)~(3)is called a similarity solution.The two-dimensional case,λ=g=0,was solved by Hiemenz[3].The axisymmetric stagnation flow towards a plate,λ=1 and g=f,was solved by Homann[4].Howarth[5]studied the case 0<λ<1 which can be applied to the stagnation region of an ellipsoid.Davey[6]investigated the stagnation region near a saddle point(-1<λ<0).For λ≤-1 the vorticity generated is not confined in the boundary layer and the existence of solutions cannot be shown[2].Up to now,there is a little study on the case of λ≤-1.

        Utilizing the integral methods[7,8],Du Hauang and Zhang[9]presented a system of two integral equations on the case of λ<0 and obtained some properties and a non-existence result of(1)~ (3)on the case of λ<-4.

        In this paper,we shall study(1)~ (3)for the case of λ∈ R and λ≠0,we shall obtain further results on(1)~(3)and a new non-existence result on the case of λ≤-1.

        2 Positive solutions of a system of two integral equations

        In[9],Du,Hauang,Zhang presented a system of two integral equations

        Where G0,1(t,s)denotes the Green function for u″(t)=0 with u(0)=0 and u(1)=0 defined by

        They obtained the following results:

        (i)For λ<0(1)~(3)has a solution in∑if and only if(4)~(5)has a positive solution

        (ii)For λ<-4(1)~(3)has no solution in ∑.

        In this paper,let

        and

        Theorem1 If(λ,z,w)∈(-∞,+∞)×Q is a solution of(4)~(5),then

        (iii)w(0)=0,w(1)=1 and w(t)≥-1 for t∈[0,1]if λ<0 and w(t)≤1 for t∈[0,1]if λ>0.

        (i)Firstly,we prove z(t)=0.

        If z(1)≠0,then z(t)≠0,t∈[0,1].

        By the continuity of z(t),then m=min{z(t),t∈[0,1]}>0.From this and λ>0,we obtain by(4)

        This implies

        a contradiction.Hence,(i)holds.

        Since z(t)>0 for t∈(0,1),we have

        Integrating this inequality from 0 to ξ,we have

        From this we obtain

        Letting ξ→1-in the last inequality,we have,which contradicts∞.Thus,(ii)holds.

        (iii)Letting t=0 and t=1 in(5),we have w(0)=0 and w(1)=1.

        If λ>0 and there exist t0∈[0,1]such that w(t0)>1.Since w(0)=0,and w(1)=1,there must be exist t*∈(0,1)such that w(t*)=max{w(t):t∈[0,1]}and w(t*)>1.

        By(5),we have

        Reamrk1 Since we do not assume λ<0 and Q ?Q*,hence Theorem 1 in[9]is improved.

        Utilizing the solutions of(z,w)∈Q*,we may construct the solutions of(1)~(3)and then the use of(4)~(5)is expanded.

        Theorem2 If(z,w)∈Q*is a solution of(4)~(5),then(1)~(3)has a solution(f,g).

        Proof.Let(z,w)∈Q*be a solution of(4)~(5).By Theorem 1(ii),we have

        Let

        Then η(t)is strictly increasing on[0,1)and

        Let t=h(η)be the inverse function to η=η(t),we define the function

        Then

        and

        From(6),we have

        Differentiating(7)with respect to η,we have

        Then f″(η)>0 for 0≤η<+∞.

        Differentiating(8)with respect to η,we have

        Differentiating(4)with respect to t,we have

        By setting s=f′(α)and utilizing t=f′(η)and(8),we have

        By(8)~(11),we have

        Combing(10)and(11),we obtain

        This completes the proof.

        3 A non-existence result on(1)~(3)

        Let

        Lemma1 Let λ<0.If(f,g)∈Γis a solution of(1)~(3),then g″(∞)=0.

        Proof.Since g′(+∞)=1,we have

        Since(1)~(3),we have g?(0)=-λ,and λ<0.then g?(0)>0 and g″(η)>0.we have ?η*,such that g″(η)is increasing on[0,η*].(12)implies that there exists η0∈[η*,+∞)such that g″(η0)<g″(η*).Then we prove that g″(η)is decreasing on(η0,+∞).If there must exist η1,η2∈[ η0,+∞)with η1<η2such that g″(η1)<g″(η2).So let ?η∈[ η*,η2]such that g″(?η)=min{g″(η):η∈[ η*,η2]}.This implies g?(?η)=0 and g(4)(?η)≥0.

        Differentiating(2)with η,we have

        then

        By(f,g)∈Γand λ<0,we have g(4)(?η)≤0,a contradiction.Hence g″(η)is decreasing on[ η0,+∞)and thenexists.By(12),we obtain g″(∞)=0.

        Theorem3 If λ≤-1,then(1)~ (3)has no solution in Γ.

        Proof.The proof is by a contradiction.If(1)~ (3)has a solution(f,g)in Γ,then g″>0.

        Let η:=η(t)=(g′)-1(t)for t∈[0,1)be the inverse function to t=g′(η):[0,∞)→[0,1).It follows that g′is strictly increasing with[0,+∞)and η(t)=(g′)-1(t):[0,1)→[0,∞)with(g′)-1(0)=0

        Let x(t)=g″(η)>0 for t∈[0,1),by Lemma 1,x(1)=.This implies that x(t)>0 for t∈[0,1)and x is continuous on[0,1).By Lemma 1,we see that x is continuous from the left at 1.Hence,we have x(t)∈C[0,1]and x(1)=0.

        Using the Chain Rule to x(t)=g″(η),we obtainand by the Inverse Function Theorem,we have

        This,together with g′(η)=t,implies

        Integrating the last equality from 0 to t implies

        Let y(t)=f′(η)for t∈[0,1),y(1)=1,then y(t)∈ C[0,1)and 0≤y(t)≤1.Notice thatwe have

        Substituting g,g′,g″,g?and f into(2)implies

        Integrating(13)from t to 1,we have

        By x(1)=0,then

        we have

        Reamrk2 Theorem 12 improves non-existence result of(1)~ (3)in[6]from λ<-1 to λ≤-1.

        [1]C Y Wang.Axisymmetric stagnation flow on a cylinder[J].Quart.Appl.Math.1974,32:207-213.

        [2]C Y Wang.Similarity stagnation point solutions of the Navier-Stokes equations-review and extension[J].European Journal of Mechanics B/Fluids,2008,27:678-683.

        [3]K Hiemenz.Die Grenzschicht an einem in den gleichformingen Flussigkeitsstrom eingetauchten graden Kreiszylinder[J].Dinglers Polytech.J,1911,326:321-324.

        [4]F Homann.Der Einfluss grosser Zahigkeit bei der Stromung um den Zylinder und um die Kugel[J].Z.Angew.Math.Mech.,1936,16:153-164.

        [5]L Howarth.The boundary layer in three dimensional flow-Part∏.The flow near a stagnation point,Philos[J].Mag.Ser.,1951,742:1433-1440.

        [6]A Davey.A boundary layer flow at a saddle point of attachment[J].J.Fluid.Mech.,1961,10:593-610.

        [7]G C Yang.Existence of solutions of laminar boundary layer equations with decelerating external flows[J].Nonlinear Analysis,2010,72:2063-2075.

        [8]K Q Lan,G C Yang.Positive solutions of the Falker-Skan equation arising in boundary layer theory[J].Canad.Math.Bull.,2008,51(3):386-398.

        [9]C Du,S J Huang,M J Zhang.On 3D axisymmetric inviscid stagnation flow related to Navier-Stokes equations[J].Nonlinear Analysis Form,2011,16:67-75.

        猜你喜歡
        龍飛駐點(diǎn)工程學(xué)院
        福建工程學(xué)院
        福建工程學(xué)院
        奇妙的大自然
        Orthonormality of Volkov Solutions and the Sufficient Condition?
        福建工程學(xué)院
        翼龍飛飛飛
        基于游人游賞行為的留園駐點(diǎn)分布規(guī)律研究
        張強(qiáng)、肖龍飛招貼作品
        福建工程學(xué)院
        利用遠(yuǎn)教站點(diǎn),落實(shí)駐點(diǎn)干部帶學(xué)
        日韩av在线播放人妻| 成年女人18毛片毛片免费| 日本55丰满熟妇厨房伦| 九九在线视频| 中文字幕亚洲好看有码| 亚洲无码毛片免费视频在线观看| 国产一级一片内射在线| 亚洲码专区亚洲码专区| 免费av日韩一区二区| 日日碰狠狠添天天爽超碰97久久| 一本色道久久爱88av| 亚洲 另类 日韩 制服 无码| 亚洲一区精品无码色成人| 伊人久久综合影院首页| 亚洲AV激情一区二区二三区| 无码av专区丝袜专区| 国产一区二区三区在线观看蜜桃| 中文字幕亚洲高清视频| 职场出轨的人妻中文字幕| 免费人成年激情视频在线观看| 国产成人久久精品激情| 91日本精品国产免| 91福利精品老师国产自产在线| 激情视频国产在线观看| 免费一区二区三区女优视频| 人妻熟妇乱又伦精品视频| 爆乳熟妇一区二区三区霸乳| 亚洲精品一区二区三区大桥未久| 精品国产香蕉伊思人在线又爽又黄| 日本岛国精品中文字幕| 少妇被粗大的猛进69视频| 狠狠的干性视频| 久久精品国产夜色| 久久伊人中文字幕有码久久国产| 日本韩国亚洲三级在线| 真实国产精品vr专区| 51国产黑色丝袜高跟鞋| 亚洲黄色电影| 久久久久亚洲AV片无码乐播 | 国产剧情av麻豆香蕉精品| 久久精品国产亚洲av久|