王翠菁,張金陵
(1.中國(guó)礦業(yè)大學(xué)理學(xué)院,江蘇徐州 221008;
2.徐州工業(yè)職業(yè)技術(shù)學(xué)院信息管理技術(shù)學(xué)院,江蘇徐 州221140;3.徐州高等師范學(xué)校數(shù)理系,江蘇徐州 221116)
分?jǐn)?shù)階微分方程耦合奇異系統(tǒng)解的存在性
王翠菁1,2,張金陵1,3
(1.中國(guó)礦業(yè)大學(xué)理學(xué)院,江蘇徐州 221008;
2.徐州工業(yè)職業(yè)技術(shù)學(xué)院信息管理技術(shù)學(xué)院,江蘇徐 州221140;3.徐州高等師范學(xué)校數(shù)理系,江蘇徐州 221116)
討論非線性分?jǐn)?shù)階微分方程耦合系統(tǒng)三點(diǎn)奇異邊值問(wèn)題,應(yīng)用Green函數(shù),將其轉(zhuǎn)化為等價(jià)的積分方程耦合系統(tǒng),利用Schauder不動(dòng)點(diǎn)定理,考察了解的存在性.
三點(diǎn)邊值;Schauder不動(dòng)點(diǎn)定理;耦合系統(tǒng)
分?jǐn)?shù)階微分方程在工程、生物、經(jīng)濟(jì)各個(gè)領(lǐng)域都起著重要作用.所以分?jǐn)?shù)階微分方程受到越來(lái)越多學(xué)者的重視,他們?cè)谖⒎址匠滔到y(tǒng)方面得到了不少的研究成果[1-8].
蘇新衛(wèi)[1]研究分?jǐn)?shù)階微分方程耦合系統(tǒng)兩點(diǎn)邊值問(wèn)題解的存在性
其中1<α,β≤2,u,v>0,α-v≥1,β-u≥1,f,g:[] 0,1×R×R→R是連續(xù)的,D表示標(biāo)準(zhǔn)的Riemann-Liouville型分?jǐn)?shù)階導(dǎo)數(shù).
Bashir Ahmad[2]研究分?jǐn)?shù)階微分方程耦合系統(tǒng)三點(diǎn)邊值問(wèn)題解的存在性
其中1<α,β<2,p,q,γ>0,0<η<1,α-q≥1,β-p≥1,γηα-1<1,γηβ-1<1,f,g:[] 0,1×R×R→R是連續(xù)的,D表示標(biāo)準(zhǔn)的Riemann-Liouville型分?jǐn)?shù)階導(dǎo)數(shù).
Feng[3]研究分?jǐn)?shù)階微分方程耦合系統(tǒng)奇異問(wèn)題解的存在性
定義1.1[2]函數(shù)y:() 0,∞→R的α階Riemann-Liouville分?jǐn)?shù)階積分為
定義1.2[2]連續(xù)函數(shù)y:() 0,∞→R的α階Riemann-Liouville分?jǐn)?shù)階導(dǎo)數(shù)為
其中α>0,Γ(·)為gamma函數(shù),n=[α]+1.
引理1.1[2]若α>0,u∈C(0,1)∩L1(0,1),則分?jǐn)?shù)階微分方程
有唯一解
其中N為大于或等于α的最小整數(shù).
其中G1(t,s)表示分?jǐn)?shù)階邊值問(wèn)題(2)的Green函數(shù),且G1(t,s)>0,具體形式如下:
證明由引理2.2知
定理1.1[9](Schauder不動(dòng)點(diǎn)定理)若U是Banach空間X的一個(gè)有界閉凸子集,且T:U→U是全連續(xù)的,則在U中至少有一個(gè)不動(dòng)點(diǎn).
證明由于在[0,1]tεF(t)是連續(xù)函數(shù),故存在M>0,使得|tεF(t)|≤M,t∈[0,1]且
易知H(0)=0,我們分三種情況證明:
(i)t0=0,?t∈(0,1].
[1]Xinwei Su.Boundary value problem for a coupled system of nonlinear fractional differential equations[J].Applied Mathematics Letters,2009,22:64-69.
[2]Bashir Ahmad,Juan J Nieto.Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions[J].Computers and Mathematics with Applications,2009,58:1838-1843.
[3]Wenquan Feng,Shurong Sun,Zhenlai Han,et al.Existence of solutions for a singular system of nonlinear fractional differential equations[J].Computers and Mathematics with Applications,2011,62:1370-1378.
[4]Bai Z,Lu H.Positive solutions for boundary value problem of nonlinear fractional differential equation[J].J Math Anal Appl,2005, 311:495-505.
[5]Zhang Yinghan,Bai Zhanbing,Feng Tingting.Existence results for coupled system of nonlinear fractional three-point boundary value problems at resonance[J].Computers and Mathematics with Applications,2011,61:1032-1047.
[6]Bai Chuan zhi,Fang Jinxuan.The existence of a positive solution for a singular coupled system of nonlinear fractional differential equations[J].Applied Mathematics and Computation,2004,150:611-621.
[7]蘇新衛(wèi).分?jǐn)?shù)階微分方程耦合系統(tǒng)邊值問(wèn)題解得存在性[J].工程數(shù)學(xué)學(xué)報(bào),2009,26:133-137.
[8]Wang Jinhua,Xiang Hongjun,Liu Zhigang.Positive solution to Nonzero boundary values problem for a coupled system of nonlinear fractional differential equations[J].International Journal of Differential Equations,2010,Article ID 186928,12 pages,doi:10.1155/ 2010/186928.
Existence of Solutions for a Singular Coupled System of Fractional Differential Equations
WANG Cui-jing1,2,ZHANG Jin-ling1,3
(1.College of Science,China University of Mining&Technology,Xuzhou 221008,China; 2.College of Information Management&Technology,Xuzhou College of Industrial Technology,Xuzhou 221140,China; 3.Department of Math and Physics,Xuzhou Normal School,Xuzhou 221116,China)
This paper discussed the existence of positive solution for a singular coupled system of nonlinear fractional differential equations with three-point boundary conditions.The existence of solutions relies on the Schauder fixed point theorem and the reduction of the considered problem to the equivalent coupled system of integral equations.
three-point boundary;Schauder fixed point theorem;coupled system
O175.8
A
1008-2794(2011)10-0028-07
2011-09-02
王翠菁(1982—),女,山東淄博人,徐州工業(yè)職業(yè)技術(shù)學(xué)院講師,在讀碩士,研究方向:微分方程邊值問(wèn)題.