陳云祥,王成德,蘇志鵬,吳哲褒
(溫州醫(yī)學(xué)院附屬第一醫(yī)院 神經(jīng)外科,浙江 溫州 325000)
垂體腺瘤的人群年發(fā)病率高達7.5~15/10萬人,正常人群隨機MRI檢查時垂體腺瘤發(fā)現(xiàn)率為10%~38.5%(平均22.5%)[1]。因其在臨床上可引起嚴重的內(nèi)分泌癥狀或(和)瘤體占位效應(yīng),且存在耐藥及術(shù)后復(fù)發(fā)等相關(guān)難題,是故對垂體腺瘤發(fā)生、發(fā)展機制的研究對促進其早期診斷與早期治療至關(guān)重要[2]。microRNAs(簡稱miRNAs)是一類在動植物中新發(fā)現(xiàn)的基因表達調(diào)控因子,由約16~29個核苷酸組成的非編碼單鏈RNAs,它能結(jié)合mRNAs 3’-UTR阻止蛋白質(zhì)翻譯或引起mRNAs降解,從而可影響生命進程多個環(huán)節(jié)[3-5]。在哺乳動物中超過30%蛋白質(zhì)編碼序列表達活性受到miRNAs調(diào)控。這些高度保守序列已經(jīng)成為當(dāng)今疾病機制研究的寵兒[4]。現(xiàn)就miRNAs在垂體腺瘤中的研究現(xiàn)狀及前景綜述如下。
miRNA最早由Lee等人在秀麗隱桿線蟲(Caenorhabditis elegans)體內(nèi)發(fā)現(xiàn),即長度為22 nt的非編碼小RNA——lin-4,它能結(jié)合lin-14 mRNA的3’端非翻譯區(qū)(untranslated regions,UTR),并且在lin-14 mRNA水平無變化的情況下使得LIN-14蛋白減少[6]。2000年,Pasquinelli等[7]發(fā)現(xiàn)另一非編碼小RNA——let-7對靶蛋白表達有同樣的調(diào)節(jié)作用。人們的視野開始被這群進化中序列高度保守的miRNAs所吸引。截止到2010年4月,已經(jīng)有133個物種15632條成熟miRNAs被發(fā)現(xiàn),在人類基因庫中已有940余條成熟miRNAs序列被公布(miRBase Release 15.0)[8]。在白血病[9]、肺癌[10]、乳腺癌[11]及各種內(nèi)分泌腫瘤如甲狀腺癌[12]、胰島素瘤[13]、卵巢癌[14]、垂體瘤[15-17]研究中已經(jīng)證實miRNAs對疾病發(fā)生[18]、細胞增殖[19]、細胞分化[20]、凋亡[21]及腫瘤形成[22]具有重要作用。
1.1 miRNAs對垂體腺瘤成瘤作用的研究 首次試驗證實miRNAs對哺乳動物有癌形成作用來自于B細胞慢性淋巴細胞性白血?。╟hronic lymphocytic leukemia, CLL)的研究[23],該研究證實多數(shù)CLL患者染色體13q14.3異位或缺失,而這正是RB抑癌基因所在的編碼區(qū),隨后對RB基因編碼序列在這一區(qū)域缺失及異位[t(2:13)(q32;q14)]研究發(fā)現(xiàn):miRNAs-miR15a、miR-16-1與RB密切相關(guān),被認為與RB一起對CLL發(fā)揮腫瘤抑制作用。2005年Bottoni等[15]在20例垂體腺瘤研究中發(fā)現(xiàn):雖然染色體13q14在垂體腺瘤中缺失,但miR-15a、miR-16-1在GH腺瘤與PRL腺瘤中相對于正常垂體腺仍有低表達,并與腫瘤大小有關(guān)系,這兩個低度表達的miRNAs導(dǎo)致RARS上調(diào)并與p43一起參與垂體腺瘤生長。為了進一步觀察miRNAs跟垂體腺瘤關(guān)系,Bottoni等[16]又對32例垂體腺瘤、6例正常垂體組織利用miR microarray、PAM分析發(fā)現(xiàn)24條miRNAs在垂體腺瘤與正常垂體組織中表達有差異(7條miRNAs上調(diào),17條miRNAs下調(diào)),其中下調(diào)的miR-132,上調(diào)的miR-150、miR-152、miR-191、miR-192已有研究認為可通過改變其他miRNAs表達影響腫瘤生長[24-25]。2009年,Amaral等[17]利用miR microarray、Northern blot對14例ACTH腺瘤與正常垂體組織比較發(fā)現(xiàn):miR-let-7a、miR-15a、miR-16、miR-21、 miR-141、 miR-143、 miR-145及miR-150在ACTH腺瘤中低表達。對miR-21、miR-150進行沉默及基因敲除可抑制腫瘤細胞生長,提示低表達的miR-21、miR-150可通過上調(diào)靶癌基因促進腫瘤形成,同時也提示miR-21、miR-150屬于抑癌基因。另有研究[8]發(fā)現(xiàn)miR-135a、miR-140-5p、miR-582-3p、miR-582-5p及miR-938通過結(jié)合靶Smad3基因下調(diào)TGF-β通路信號促進垂體無功能腺瘤(NFPA)成瘤進程。上述研究均提示:這些上調(diào)或下調(diào)的miRNAs在垂體腺瘤的發(fā)生發(fā)展過程中起重要作用。
1.2 miRNAs對垂體腺瘤細胞凋亡作用的研究 幾乎與Bottoni發(fā)現(xiàn)miR-15a、miR-16-1在垂體腺瘤低表達及轉(zhuǎn)錄后水平負性調(diào)節(jié)靶基因RARS的同時[15],Cimmino等[21]又在B細胞CLL研究中發(fā)現(xiàn)miR-15a、miR-16-1同樣在轉(zhuǎn)錄后水平負性調(diào)節(jié)另一靶基因——Bcl2的表達從而促進細胞凋亡。在隨后的研究中,Bottoni等[16]發(fā)現(xiàn)在垂體腺瘤中高表達的miR-26a負性調(diào)控多形性腺瘤基因(PLAG-1),從而減弱PLAGL-1誘導(dǎo)細胞周期停滯和細胞凋亡的作用。Stilling等[26]對8例ACTH腺瘤、2例ACTH腺癌、7例正常垂體組織的研究中發(fā)現(xiàn),在腺癌中高表達的miR-493靶基因為LGALS3/RUNX2,而LGALS3的表達產(chǎn)物galectin-3調(diào)控垂體細胞的增殖與凋亡。Wang等[25]認為miR-21在很多腫瘤高表達,并通過抑制抑癌基因PDCD4、BIM的表達從而減少凋亡。與此相反,Amaral等[17]發(fā)現(xiàn)miR-21在14例ACTH腺瘤中低表達,提示miR-21在促腎上腺激素分泌細胞中屬于抑癌基因,它的表達降低或缺失可以上調(diào)某些靶癌基因從而減少凋亡。上述研究表明,miRNAs參與了垂體腺瘤細胞凋亡的調(diào)節(jié),而這種調(diào)節(jié)作用是非常復(fù)雜的,且因靶基因的不同而異。
1.3 miRNAs對垂體腺瘤細胞特異性的研究 Bottoni首次發(fā)現(xiàn)miR-15a、miR-16-1在GH腺瘤與PRL腺瘤不同直徑瘤體中存在差異性表達(瘤體越大miRNAs表達越低)[15]。隨后Bottoni對6例GH腺瘤、5例PRL腺瘤、17例NFPA、4例ACTH腺瘤的miRNAs表達譜進行分析,發(fā)現(xiàn):①29條miRNAs可預(yù)測75%的ACTH腺瘤,80%的PRL腺瘤,100%NFPA和30%的GH腺瘤;②與瘤體直徑顯著相關(guān)的6條miRNAs,僅發(fā)現(xiàn)于NFPA的巨腺瘤與微腺瘤相比(5條高表達,1條低表達);③對NFPA用藥及非用藥組分析發(fā)現(xiàn)6條miRNAs存在差異表達(3條高表達,3條低表達)[16]。Bak等[27]對成年家屬脊髓、小腦、延髓、腦橋、下丘腦、海馬、大腦皮質(zhì)、嗅球、眼球及垂體組織的miRNAs表達譜進行分析:miR-375、miR-152具有垂體組織特異性,前者與Landgraf等[28]研究相符。Amaral等[17]發(fā)現(xiàn)選用的8條miRNAs與14例ACTH腺瘤的瘤體大小無關(guān),但這些ACTH腺瘤患者體內(nèi)存瘤狀態(tài)下miR-141低表達狀況在瘤體切除后明顯改觀,提示miR-141跟腫瘤局部侵犯有關(guān)。Stilling等[26]對比ACTH腺瘤、ACTH腺癌及正常垂體組織的miRNAs表達譜,發(fā)現(xiàn)miR-122、miR-493在ACTH腺癌中顯著高表達。上述研究提示這些特異性miRNAs可用于初篩垂體腺瘤的類型,提高臨床診斷準確率及有利于預(yù)后判斷。
雖然越來越多的miRNAs在垂體腺瘤中被發(fā)現(xiàn),但目前為止只有miR-15a、miR-16-1[29]、miR-26b[30]、miR-122、miR-493[26]在垂體腺瘤形成、細胞增殖、分化、凋亡機制中進行了較為詳細的論證,其他miRNAs在生命進程中的作用尚需更多的實驗證據(jù)證實。由于動物miRNAs作用的多靶性和聯(lián)合效應(yīng)的特征,例如miR-15a/miR-16-1的靶基因有Bcl2、CDC2、ETS1、JUN、MCL1、MSH2、PDCD6IP、RAB9B及WT1[29];Smad3同時具有miR-135a、miR-140-5p、 miR-582-3p、 miR-582-5p及miR-938的候選靶序列[8],這一特征明顯給miRNAs主效應(yīng)靶點的預(yù)測帶來困難。對于一些已知的主作用靶點,尚需完善它在疾病進程中的作用機制。血清/血漿中miRNAs檢測技術(shù)的成熟[31-33]克服了常規(guī)研究標本取材的瓶頸,給垂體腺瘤miRNAs作用機制研究、疾病篩查及準確診斷提供了廣闊的空間。Leaman等[34]發(fā)現(xiàn)利用2’-甲基修飾的反義寡核糖核酸(2’OM-ORN)能有效抑制bantam、miR-9、miR-31、miR-310等果蠅發(fā)育相關(guān)miRNA的功能。Fabani等[35]利用LNA/2-O甲基修飾的miR-122 ASO有效干擾人和大鼠肝臟的miR-122效應(yīng), 這使得多重靶向的ASO有望成為一類新藥,期待應(yīng)用于臨床,從而干預(yù)疾病進展。由于miRNAs多靶性,未來針對miRNA基因治療研究的著重點應(yīng)在于改善治療的靶向性,減少不良反應(yīng)的發(fā)生[36]。
[1] Ezzat S, Asa SL, Couldwell WT, et al.The prevalence of pituitary adenomas:a systematic review[J]. Cancer,2004,101(3):613-619.
[2] 章翔,甄海寧.加強垂體腺瘤的基礎(chǔ)與臨床研究 [J]. 中華神經(jīng)外科疾病研究雜志, 2005, 4 (5):385-387.
[3] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism,and function[J].Cell,2004,116(2):281-297.
[4] Selbach M, Schwanhusser B, Thierfelder N, et al. Widespread changes in protein synthesis induced by microRNAs[J]. Nature,2008,455(7209):58-63.
[5] Baek D, Villen J, Shin C, et al. The impact of microRNAs on protein output[J].Nature,2008,455(7209):64-71.
[6] Lee RC,Feinbaum RL,Ambros V.The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell,1993,75(5):843-854.
[7] Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature,2000,403(6772):901-906.
[8] Butz H, Liko I, Czirjak S, et al. MicroRNA profile indicates downregulation of the TGFβpathway in sporadic non-functioning pituitary adenomas[J].Pituitary,2010,[Epub ahead of print]
[9] Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia[J].Proc Natl Acad Sci USA,2002,99(24):15524-15529.
[10] Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival[J].Cancer Res,2004,64(11):3753-3756.
[11] Iorio MV, Ferracin M, Liu CG, et al. MicroRNA gene expression deregulation in human breast cancer[J]. Cancer Res,2005,65(16):7065-7070.
[12] He H,Jazdzewski K, Li W,et al. The role of microRNA genes in papillary thyroid carcinoma[J]. Proc Natl Acad Sci USA,2005,102(52):19075-19080.
[13] Roldo C, Missiaglia E, Hagan JP, et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinicalbehavior[J]. J Clin Oncol,2006,24(29):4677-4684.
[14] Iorio MV, Visone R, Di Leva G, et al. MicroRNA signatures in human ovarian cancer[J]. Cancer Res,2007,67(18):8699-8707.
[15] Bottoni A, Piccin D, Tagliati F, et al. miR-15a and miR-16-1 down-regulation in pituitary adenomas[J]. J Cell Physiol,2005,204(1):280-285.
[16] Bottoni A, Zatelli MC, Ferracin M, et al. Identification of differentially expressed microRNAs by microarray:a possible role for microRNA genes in pituitary adenomas[J]. J Cell Physiol,2007,210(2):370-377.
[17] Amaral FC, Torres N, Saggioro F, et al. MicroRNAs differentially expressed in ACTH-secreting pituitary tumors[J]. J Clin Endocrinol Metab,2009,94(1):320-323.
[18] Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans[J].Science,2001,294(5543):862-864.
[19] O’Donnell KA, Wentzel EA, Zeller KI, et al. c-Myc-regulated microRNAs modulate E2F1 expression[J]. Nature,2005,435(7043):839-843.
[20] Chen CZ, Li L, Lodish HF,et al. MicroRNAs modulate hematopoietic lineage differentiation[J]. Science,2004,303(5654):83-86.
[21] Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2[J]. Proc Natl Acad Sci USA,2005,102(39):13944-13949.
[22] Deng S, Calin GA, Croce CM, et al. Mechanisms of microRNA deregulation in human cancer[J]. Cell Cycle,2008,7(17):2643-2646.
[23] Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia[J]. Proc Natl Acad Sci USA,2002,99(24):15524-15529.
[24] Cheng AM, Byrom MW, Shelton J, et al. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis[J]. Nucleic Acids Res,2005,33(4):1290-1297.
[25] Wang Y, Lee CG. MicroRNA and cancer----focus on apoptosis[J]. J Cell Mol Med,2009,13(1):12-23.
[26] Stilling G, Sun Z, Zhang S, et al. MicroRNA expression in ACTH-producing pituitary tumors:up-regulation of microRNA-122 and -493 in pituitary carcinomas[J]. Endocrine,2010,38(1):67-75.
[27] Bak M, Silahtaroglu A, Moller M, et al. MicroRNA expression in the adult mouse central nervous system[J]. RNA,2008,14(3):432-444.
[28] Landgraf P, Rusu M, Sheridan R, et al. A mammalian microRNA expression atlas based on small RNA library sequencing[J]. Cell,2007,129(7):1401-1414.
[29] Aqeilan RI, Calin GA, Croce CM. miR-15a and miR-16-1 in cancer: discovery, function and future perspectives[J]. Cell Death Differ,2010,17(2):215-220.
[30] Zhang Z, Florez S, Gutierrez-Hartmann A, et al. MicroRNAs regulate pituitary development, and microRNA 26b specifically targets lymphoid enhancer factor 1 (Lef-1), which modulates pituitary transcription factor 1 (Pit-1) expression[J]. J Biol Chem,2010,285(45):34718-24728.
[31] Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases[J]. Cell Res,2008,18(10):997-1006.
[32] Kroh EM, Parkin RK, Mitchell PS, et al. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR)[J]. Methods,2010,50(4):298-301.
[33] Heneghan HM, Miller N, Lowery AJ, et al. Circulating microRNAs as novel minimally invasive biomarkers for breast cancer[J].Ann Surg,2010,251(3):499-505.
[34] Leaman D, Chen PY, Fak J, et al. Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development[J].Cell,2005,121(7):1097-1108.
[35] Fabani MM, Gait MJ. miR-122 targeting with LNA/2’-O-methyl oligonucleotide mixmers, peptide nucleic acids(PNA), and PNA-peptide conjugates[J]. RNA,2008,14(2):336-346.
[36] O’Donnell KA, Wentzel EA, Zeller KI, et al. c-Myc-regulated microRNAs modulate E2F1 expression[J]. Nature,2005,435(7043):839-843.