亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        咪唑基離子液體的物理化學(xué)性質(zhì)估算及預(yù)測(cè)

        2010-12-12 02:41:34劉青山譚志誠(chéng)WELZBIERMANNUrs
        物理化學(xué)學(xué)報(bào) 2010年6期
        關(guān)鍵詞:劉青山遼寧大連中國(guó)科學(xué)院

        劉青山 楊 淼 譚志誠(chéng),2,* WELZ-BIERMANN Urs,*

        (1中國(guó)科學(xué)院大連化學(xué)物理研究所,中國(guó)離子液體實(shí)驗(yàn)室,遼寧大連 116023; 2中國(guó)科學(xué)院大連化學(xué)物理研究所,熱化學(xué)實(shí)驗(yàn)室,遼寧大連 116023)

        ILs as organic salts,often exhibit interesting properties,such as low melting points,good solvation properties,and nonvolatility,which are required both by industrial and scientific communities for their broad application range as electrolytes in batteries and supercapacitors[1-2],reaction media in nanoscience[3], physical chemistry[4-5]and many other areas.Therefore,the data of physicochemical properties of ILs are fundamental for their future application and valuable for an insight into the origins of their unique behavior.Recently,more and more publications reported the experimental physicochemical properties of various ILs[6-15].Although there is a significant amount of data related to imidazolium-based ILs,properties of homologue of[Cnmim] [EtSO4],[Cnmim][OcSO4],and[Cnmim][NTf2](n=1-6)covered inthis publication are still limited[16-17].In this regard,we estimated various physicochemical properties of[C2mim][EtSO4],[C4mim] [OcSO4],and[C2mim][NTf2]by using their experimental density and surface tension data.In the next step,the physicochemical properties of their homologues[Cnmim][EtSO4],[Cnmim][OcSO4], and[Cnmim][NTf2](n=1-6)were predicted from the estimated values of their molecular volumes and parachors.In the present paper,the ionic liquid cations are 1-alkyl-3-methylimidazolium ([Cnmim]+),tetra-alkyl ammonium([TAA]+),N-octyl-3-methylpyridinium([m3opy]+);the anions of the ILs are ethylsulfate ([EtSO4]-),octylsulfate([OcSO4]-),bis(trifluoromethylsulfony) imide([NTf2]-),and tetrafluoroborate([BF4]-).

        1 Volumetric,entropy and lattice energy

        The molecular volume,Vm,can be calculated from experimental density using the following equation: where M is molar mass,ρ is density,and N is Avogadro′s constant.

        According to Glasser′s theory[18],the standard molar entropy, S?,could be estimated from the following equation:

        The lattice energy,UPOT,was estimated according to the following equation[18]:

        The contribution methylene(—CH2—)group to the molecular volume is 0.0272 nm3for[Cnmim][BF4][18],0.0282 nm3for [Cnmim][NTf2][18],0.0270 nm3for[Cnmim][AlCl4][15],and 0.0278 nm3for[Cnmim][Ala][14].Due to the similar values of the contribution of per—CH2—to the molecular volume,the group of methylene in the alkyl chains of the imidazolium-based ILs could be considered to have the similar chemical environment.Hense, the mean value of the contribution can be calculated to be 0.0275 nm3,the physicochemical properties(density,standard entropy, latticeenergy)of the homologues of[Cnmim][EtSO4]and[Cnmim] [OcSO4](n=1-6)could be predicted.Using the value 0.0282 nm3for the contribution of per—CH2—to the molecular volume for the homologues of[Cnmim][NTf2](n=1-6)[18],the physicochemical properties of all IL homologues can be predicted.The calculated density value(1.4381 g·cm-3)for[C4mim][NTf2]is in good agreement with the experimental values(1.4366 g·cm-3[6], 1.43410 and 1.43573 g·cm-3[19]).The predicted density value (1.0881 g·cm-3)for[C2mim][OcSO4]is also in good agreement with the experimental value of 1.0942 g·cm-3[20].

        All of these estimated and predicted physicochemical property data are listed in Tables 1-3.

        Based on the plots of S?against the number of the carbons,n, in the alkyl chain of the ILs(see Fig.1),the contribution of per methylene group to S?was calculated to be 35.1 J·K-1·mol-1for [Cnmim][NTf2],34.3 J·K-1·mol-1for[Cnmim][EtSO4],and 34.3 J·K-1·mol-1for[Cnmim][OcSO4].The above calculated values are in good agreement with the literature values of 35.1 J·K-1·mol-1for[Cnmim][NTf2][18],33.9 J·K-1·mol-1for[Cnmim][BF4][18],33.7 J·K-1·mol-1for[Cnmim][AlCl4][15],and 34.6 J·K-1·mol-1for [Cnmim][Ala][14].According to these various values for the contribution of per methylene group to the standard molar entropy in the homologue series with different anions,it could be concluded that these contributions are relatively similar for all imidazolium-based ILs.

        2 Parachors and molar enthalpy of vaporization

        The parachor,P,was estimated from the following equation[21]:

        where γ is the surface tension.

        According to literature[15],the contribution of per methylene (—CH2—)group to parachor is 31.1.The values of parachors for the homologue series of the imidazolium-based ILs[Cnmim] [EtSO4],[Cnmim][OcSO4],and[Cnmim][NTf2](n=1-6)were predicted.

        The values of molar enthalpies of vaporization were estimated in terms of Kabo′s empirical equation[22]:

        where V is molar volume.

        According to Eq.(4),the surface tension can be calculated from predicted density and parachor data.The calculated value(31.71 mJ·m-2)for the surface tension of[C4mim][NTf2]is in good agr-eement with the experimental value(32.80 mJ·m-2)[6].The molar enthalpy of vaporization,,then can be obtained based on the predicted density and surface tension data.

        Table 1 Estimated and predicted values of physicochemical properties of[Cnmim][EtSO4](n=1-6)at 298.15 K

        Table 2 Estimated and predicted values of physicochemical properties of[Cnmim][NTf2](n=1-6)at 298.15 K

        Table 3 Estimated and predicted values of the physicochemical properties of[Cnmim][OcSO4](n=1-6)at 298.15 K

        All of these data are listed in Tables 1-4.

        Fig.1 Plots of S?against the number of the carbon(n)in the alkyl chain of the ILs at 298.15 K(a)S?=570.7+34.27n,R=0.9999 for[Cnmim][OcSO4]; (b)S?=492.7+35.14n,R=0.9999 for[Cnmim][NTf2]; (c)S?=355.2+34.29n,R=0.9999 for[Cnmim][EtSO4]

        The plots of density,ρ,and surface tension,γ,against the number of carbon,n,in alkyl chain of ILs at 298.15 K are shown in Figs.2 and 3.

        FromtheFigs.2and3,itcanbeseenthatasfordensity:[Cnmim] [NTf2]>[Cnmim][EtSO4]>[Cnmim][OcSO4]and as for surface tension:[Cnmim][EtSO4]>[Cnmim][NTf2]>[Cnmim][OcSO4].

        3 Interstice model theory

        According to the interstice model[23-24],the interstice volume,v, could be estimated by classical statistical mechanics:

        where kBis the Boltzmann constant,T is the thermodynamic temperature.

        The molar volume of ionic liquids,V,consists of the inherent volume,Vi,and the volume of the interstice;whereas the molar volume of the interstice is Σv=2Nv:

        If the expansion volume of IL only results from the expansion of the interstice when the temperature increases,then,the thermal expansion coefficient,α,can be predicted from the interstice model:

        Table 4 Values of the molar enthalpies of vaporization of ILs at 298.15 K

        Fig.2 Plots of density(ρ)against n(n=1-6)at 298.15 K

        All data obtained by this estimation and prediction are listed in Tables 1-3.

        The prediction and estimation values of the thermalexpansion coefficients in Tables 1-3 are in good agreement with experimental values.It also can be noticed that the values of interstice fractions,Σv/V,differentiate only about 10%-15%for all ILs studied in the present article and these values are in good agreement with the values of volume expansion in the process from solid to liquid state for the majority of materials.Therefore the interstice model is applicable and the interstice model theory can be used to calculate the thermal expansion coefficient of imidazolium-based ILs.

        4 Prediction of enthalpy of vaporization

        Recently,Verevkin[25]has published an article titled“Predicting enthalpy of vaporization of ionic liquids:a simple rule for a complex property”,in which he predicted molar enthalpy of vaporization of ILs by a simple rule in case of lack of experimental data.He proposed the following simple rule:

        where ΔHiis the contribution of the ith element,niis the number of the element of the ith type in ILs,ΔHjis the contribution of the jth structural correction and njis the number of the element of the jth structural correction in ILs.The parameters[25]for predicting the molar enthalpy of vaporization of ILs are listed in Table 5.

        Verevkin pointed out that“a special structural correction couldbe also necessary for quaternary ammonium based ILs”[25].Herein,the structure of the quaternary ammonium cation is regarded to be the ring of imidazolium cation,therefore,its structural correction parameter is ΔH=27.1 kJ·mol-1.The predicted data are listed in Table 4.From this table,the values of the molar enthalpies of vaporization,predicted by Eq.(9)are in good agreementwiththe values estimated by Eq.(5)except for[C4mim] [OcSO4].This is because that the Eq.(5)is valid mainly for ILs [Cnmim][NTf2].Indeed,the assumption to consider the quaternary ammonium cation as a ring system needs confirmation.

        Table 5 Parameters for predicting the enthalpy of vaporization of ILs at 298.15 K[25]

        Fig.3 Plotsofsurfacetension(γ)againstn(n=1-6)at298.15K

        5 Conclusions

        The physicochemical properties(molecular volume,molar volume,parachor,interstice volume,interstice fraction,thermal expansion coefficient,standard entropy,lattice energy,and molar enthalpy of vaporization)of[C2mim][EtSO4],[C4mim][OcSO4], and[C2mim][NTf2]were estimated by using their experimental data of density and surface tension.Based on the estimated data of the molecular volume and parachor,the physicochemical properties(density,surface tension and all of the properties mentioned above)for their homologue series[Cnmim][EtSO4], [Cnmim][OcSO4],and[Cnmim][NTf2](n=1-6)were predicted.

        We compared the values of molar enthalpies of vaporization for[C2mim][EtSO4],[C4mim][OcSO4],[C2mim][NTf2],[C4mim] [NTf2],[N4111][NTf2],[N8881][NTf2],and[m3opy][BF4],estimated by Kabo′s empirical equation with those predicted by Verevkin′s simple rule,and found that the values calculated in terms of the two approaches are in good agreement with each other.Hence,it is suggested that the molar enthalpy of vaporization of ILs could be estimated in terms of Verevkin′s simple rule when the experimental data are not available.

        1 Tsunashima,K.;Sugiya,M.Electrochem.Commun.,2007,9: 2353

        2 Seki,S.;Kobayashi,Y.;Miyashiro,H.;Ohno,Y.;Usami,A.;Mita, Y.;Watanabe,M.;Terada,N.Chem.Commun.,2006:544

        3 Itoh,H.;Naka,K.;Chujo,Y.J.Am.Chem.Soc.,2004,126:3026

        4 Du,Z.;Yu,Y.L.;Wang,J.H.Chem.Eur.J.,2007,13:2130

        5 Endres,F.;Abedin,S.Z.E.Phys.Chem.Chem.Phys.,2006,8: 2101

        6 Wandschneider,A.;Lehmann,J.K.;Heintz,A.J.Chem.Eng. Data,2008,53:596

        7 Bandres,I.;Giner,B.;Artigas,H.;Lafuente,C.;Royo,F.M. J.Chem.Eng.Data,2009,54:236

        8 Sun,J.;Forsyth,M.;MacFarlane,D.R.J.Phys.Chem.B,1998, 102:8858

        9 Tokuda,H.;Hayamizu,K.;Ishii,K.;Susan,M.A.B.H.; Watanabe,M.J.Phys.Chem.B,2004,108:16593

        10 Tokuda,H.;Ishii,K.;Susan,M.A.B.H.;Tsuzuki,S.;Hayamizu, K.;Watanabe,M.J.Phys.Chem.B,2006,110:2833

        11 Bandrés,I.;Giner,B.;Artigas,H.;Royo,F.M.;Lafuente,C. J.Phys.Chem.B,2008,112:3077

        12 Tong,J.;Liu,Q.S.;Guan,W.;Yang,J.Z.J.Phys.Chem.B,2007, 111:3197

        13 Tong,J.;Liu,Q.S.;Zhang,P.;Yang,J.Z.J.Chem.Eng.Data, 2007,52:1497

        14 Fang,D.W.;Guan,W.;Tong,J.;Wang,Z.W.;Yang,J.Z.J.Phys. Chem.B,2008,112:7499

        15 Tong,J.;Liu,Q.S.;Xu,W.G.;Fang,D.W.;Yang,J.Z.J.Phys. Chem.B,2008,112:4381

        16 Fernández,A.;Torrecilla,J.S.;García,J.;Rodríguez,F.J.Chem. Eng.Data,2007,52:1979

        17 Fernández,A.;García,J.;Torrecilla,J.S.;Oliet,M.;Rodríguez,F. J.Chem.Eng.Data,2008,53:1518

        18 Glasser,L.Thermochim.Acta,2004,421:87

        19 Troncoso,J.;Cerdeirina,C.A.;Sanmamed,Y.A.;Romani,L.; Rebelo,L.P.N.J.Chem.Eng.Data,2006,51:1856

        20 Hasse,B.;Lehmann,J.;Assenbaum,D.;Wasserscheid,P.; Leipertz,A.;Froba,A.P.J.Chem.Eng.Data,2009,54:2576

        21 Deetlefs,M.;Seddon,K.R.;Shara,M.Phys.Chem.Chem.Phys., 2006,8:642

        22 Zaitsau,D.H.;Kabo,G.J.;Strechan,A.A.;Paulechka,Y.U.; Tschersich,A.;Verevkin,S.P.;Heintz,A.J.Phys.Chem.A,2006, 110:7303

        23 Yang,J.Z.;Lu,X.M.;Gui,J.S.;Xu,W.G.Green Chem.,2004, 6:541

        24 Zhang,Q.G.;Yang,J.Z.;Lu,X.M.;Gui,J.S.;Huang,M.Fluid Phase Equilib.,2004,226:207

        25 Verevkin,S.P.Angew.Chem.Int.Edit.,2008,47:5071

        猜你喜歡
        劉青山遼寧大連中國(guó)科學(xué)院
        《中國(guó)科學(xué)院院刊》新媒體
        中國(guó)科學(xué)院院士
        ——李振聲
        遼寧大連:10年資助4207名農(nóng)民工上大學(xué)
        祝賀戴永久編委當(dāng)選中國(guó)科學(xué)院院
        劉青山 張子善 兩人都吸毒
        紅土地(2017年4期)2017-06-23 12:44:04
        孫子垚
        “白草莓”亮相遼寧大連
        《中國(guó)科學(xué)院院刊》創(chuàng)刊30周年
        智解矛盾
        故事林(2015年23期)2015-05-14 15:22:19
        劉青山:“在反貪污的今天,拿我做典型,以教育全黨”
        記者觀察(2013年6期)2013-04-29 14:11:58
        日本高清一区二区不卡| 国产一区二区三区在线电影| 国产做无码视频在线观看| 久久久精品人妻一区二区三区蜜桃 | 亚洲国产精品无码久久一区二区| 精品少妇人妻av一区二区| 国产精品99久久久久久宅男| 天堂在线观看av一区二区三区 | 成人国产精品一区二区视频| 国产真实伦在线观看| 久久亚洲AV无码精品色午夜| av成人资源在线观看| 日本少妇又色又紧又爽又刺激 | 亚洲美女影院| 久久蜜臀av一区三区| av一区二区三区在线| 国产精品久久久久9999吃药| 久久伊人色av天堂九九| 中文字幕乱码亚洲无线精品一区| 精品日本一区二区视频| 国产熟女自拍av网站| 99无码精品二区在线视频| 丰满五十六十老熟女hd| 国产精品女同久久久久久| 国产一区二区黄色网页| 欧洲熟妇色xxxx欧美老妇软件| 野花在线无码视频在线播放| 四虎成人在线| 国产精品久久久看三级| 国产aⅴ激情无码久久久无码| 欧美日韩视频无码一区二区三| 99riav精品国产| 人妻有码av中文幕久久| 人妻熟女一区二区三区app下载| 国产亚洲欧美日韩综合一区在线观看 | 日本三级欧美三级人妇视频 | 久久亚洲黄色| 色偷偷女人的天堂亚洲网| 好看的中文字幕中文在线| 色综合久久无码五十路人妻| 中国极品少妇videossexhd|