亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        咪唑基離子液體的物理化學(xué)性質(zhì)估算及預(yù)測(cè)

        2010-12-12 02:41:34劉青山譚志誠(chéng)WELZBIERMANNUrs
        物理化學(xué)學(xué)報(bào) 2010年6期
        關(guān)鍵詞:劉青山遼寧大連中國(guó)科學(xué)院

        劉青山 楊 淼 譚志誠(chéng),2,* WELZ-BIERMANN Urs,*

        (1中國(guó)科學(xué)院大連化學(xué)物理研究所,中國(guó)離子液體實(shí)驗(yàn)室,遼寧大連 116023; 2中國(guó)科學(xué)院大連化學(xué)物理研究所,熱化學(xué)實(shí)驗(yàn)室,遼寧大連 116023)

        ILs as organic salts,often exhibit interesting properties,such as low melting points,good solvation properties,and nonvolatility,which are required both by industrial and scientific communities for their broad application range as electrolytes in batteries and supercapacitors[1-2],reaction media in nanoscience[3], physical chemistry[4-5]and many other areas.Therefore,the data of physicochemical properties of ILs are fundamental for their future application and valuable for an insight into the origins of their unique behavior.Recently,more and more publications reported the experimental physicochemical properties of various ILs[6-15].Although there is a significant amount of data related to imidazolium-based ILs,properties of homologue of[Cnmim] [EtSO4],[Cnmim][OcSO4],and[Cnmim][NTf2](n=1-6)covered inthis publication are still limited[16-17].In this regard,we estimated various physicochemical properties of[C2mim][EtSO4],[C4mim] [OcSO4],and[C2mim][NTf2]by using their experimental density and surface tension data.In the next step,the physicochemical properties of their homologues[Cnmim][EtSO4],[Cnmim][OcSO4], and[Cnmim][NTf2](n=1-6)were predicted from the estimated values of their molecular volumes and parachors.In the present paper,the ionic liquid cations are 1-alkyl-3-methylimidazolium ([Cnmim]+),tetra-alkyl ammonium([TAA]+),N-octyl-3-methylpyridinium([m3opy]+);the anions of the ILs are ethylsulfate ([EtSO4]-),octylsulfate([OcSO4]-),bis(trifluoromethylsulfony) imide([NTf2]-),and tetrafluoroborate([BF4]-).

        1 Volumetric,entropy and lattice energy

        The molecular volume,Vm,can be calculated from experimental density using the following equation: where M is molar mass,ρ is density,and N is Avogadro′s constant.

        According to Glasser′s theory[18],the standard molar entropy, S?,could be estimated from the following equation:

        The lattice energy,UPOT,was estimated according to the following equation[18]:

        The contribution methylene(—CH2—)group to the molecular volume is 0.0272 nm3for[Cnmim][BF4][18],0.0282 nm3for [Cnmim][NTf2][18],0.0270 nm3for[Cnmim][AlCl4][15],and 0.0278 nm3for[Cnmim][Ala][14].Due to the similar values of the contribution of per—CH2—to the molecular volume,the group of methylene in the alkyl chains of the imidazolium-based ILs could be considered to have the similar chemical environment.Hense, the mean value of the contribution can be calculated to be 0.0275 nm3,the physicochemical properties(density,standard entropy, latticeenergy)of the homologues of[Cnmim][EtSO4]and[Cnmim] [OcSO4](n=1-6)could be predicted.Using the value 0.0282 nm3for the contribution of per—CH2—to the molecular volume for the homologues of[Cnmim][NTf2](n=1-6)[18],the physicochemical properties of all IL homologues can be predicted.The calculated density value(1.4381 g·cm-3)for[C4mim][NTf2]is in good agreement with the experimental values(1.4366 g·cm-3[6], 1.43410 and 1.43573 g·cm-3[19]).The predicted density value (1.0881 g·cm-3)for[C2mim][OcSO4]is also in good agreement with the experimental value of 1.0942 g·cm-3[20].

        All of these estimated and predicted physicochemical property data are listed in Tables 1-3.

        Based on the plots of S?against the number of the carbons,n, in the alkyl chain of the ILs(see Fig.1),the contribution of per methylene group to S?was calculated to be 35.1 J·K-1·mol-1for [Cnmim][NTf2],34.3 J·K-1·mol-1for[Cnmim][EtSO4],and 34.3 J·K-1·mol-1for[Cnmim][OcSO4].The above calculated values are in good agreement with the literature values of 35.1 J·K-1·mol-1for[Cnmim][NTf2][18],33.9 J·K-1·mol-1for[Cnmim][BF4][18],33.7 J·K-1·mol-1for[Cnmim][AlCl4][15],and 34.6 J·K-1·mol-1for [Cnmim][Ala][14].According to these various values for the contribution of per methylene group to the standard molar entropy in the homologue series with different anions,it could be concluded that these contributions are relatively similar for all imidazolium-based ILs.

        2 Parachors and molar enthalpy of vaporization

        The parachor,P,was estimated from the following equation[21]:

        where γ is the surface tension.

        According to literature[15],the contribution of per methylene (—CH2—)group to parachor is 31.1.The values of parachors for the homologue series of the imidazolium-based ILs[Cnmim] [EtSO4],[Cnmim][OcSO4],and[Cnmim][NTf2](n=1-6)were predicted.

        The values of molar enthalpies of vaporization were estimated in terms of Kabo′s empirical equation[22]:

        where V is molar volume.

        According to Eq.(4),the surface tension can be calculated from predicted density and parachor data.The calculated value(31.71 mJ·m-2)for the surface tension of[C4mim][NTf2]is in good agr-eement with the experimental value(32.80 mJ·m-2)[6].The molar enthalpy of vaporization,,then can be obtained based on the predicted density and surface tension data.

        Table 1 Estimated and predicted values of physicochemical properties of[Cnmim][EtSO4](n=1-6)at 298.15 K

        Table 2 Estimated and predicted values of physicochemical properties of[Cnmim][NTf2](n=1-6)at 298.15 K

        Table 3 Estimated and predicted values of the physicochemical properties of[Cnmim][OcSO4](n=1-6)at 298.15 K

        All of these data are listed in Tables 1-4.

        Fig.1 Plots of S?against the number of the carbon(n)in the alkyl chain of the ILs at 298.15 K(a)S?=570.7+34.27n,R=0.9999 for[Cnmim][OcSO4]; (b)S?=492.7+35.14n,R=0.9999 for[Cnmim][NTf2]; (c)S?=355.2+34.29n,R=0.9999 for[Cnmim][EtSO4]

        The plots of density,ρ,and surface tension,γ,against the number of carbon,n,in alkyl chain of ILs at 298.15 K are shown in Figs.2 and 3.

        FromtheFigs.2and3,itcanbeseenthatasfordensity:[Cnmim] [NTf2]>[Cnmim][EtSO4]>[Cnmim][OcSO4]and as for surface tension:[Cnmim][EtSO4]>[Cnmim][NTf2]>[Cnmim][OcSO4].

        3 Interstice model theory

        According to the interstice model[23-24],the interstice volume,v, could be estimated by classical statistical mechanics:

        where kBis the Boltzmann constant,T is the thermodynamic temperature.

        The molar volume of ionic liquids,V,consists of the inherent volume,Vi,and the volume of the interstice;whereas the molar volume of the interstice is Σv=2Nv:

        If the expansion volume of IL only results from the expansion of the interstice when the temperature increases,then,the thermal expansion coefficient,α,can be predicted from the interstice model:

        Table 4 Values of the molar enthalpies of vaporization of ILs at 298.15 K

        Fig.2 Plots of density(ρ)against n(n=1-6)at 298.15 K

        All data obtained by this estimation and prediction are listed in Tables 1-3.

        The prediction and estimation values of the thermalexpansion coefficients in Tables 1-3 are in good agreement with experimental values.It also can be noticed that the values of interstice fractions,Σv/V,differentiate only about 10%-15%for all ILs studied in the present article and these values are in good agreement with the values of volume expansion in the process from solid to liquid state for the majority of materials.Therefore the interstice model is applicable and the interstice model theory can be used to calculate the thermal expansion coefficient of imidazolium-based ILs.

        4 Prediction of enthalpy of vaporization

        Recently,Verevkin[25]has published an article titled“Predicting enthalpy of vaporization of ionic liquids:a simple rule for a complex property”,in which he predicted molar enthalpy of vaporization of ILs by a simple rule in case of lack of experimental data.He proposed the following simple rule:

        where ΔHiis the contribution of the ith element,niis the number of the element of the ith type in ILs,ΔHjis the contribution of the jth structural correction and njis the number of the element of the jth structural correction in ILs.The parameters[25]for predicting the molar enthalpy of vaporization of ILs are listed in Table 5.

        Verevkin pointed out that“a special structural correction couldbe also necessary for quaternary ammonium based ILs”[25].Herein,the structure of the quaternary ammonium cation is regarded to be the ring of imidazolium cation,therefore,its structural correction parameter is ΔH=27.1 kJ·mol-1.The predicted data are listed in Table 4.From this table,the values of the molar enthalpies of vaporization,predicted by Eq.(9)are in good agreementwiththe values estimated by Eq.(5)except for[C4mim] [OcSO4].This is because that the Eq.(5)is valid mainly for ILs [Cnmim][NTf2].Indeed,the assumption to consider the quaternary ammonium cation as a ring system needs confirmation.

        Table 5 Parameters for predicting the enthalpy of vaporization of ILs at 298.15 K[25]

        Fig.3 Plotsofsurfacetension(γ)againstn(n=1-6)at298.15K

        5 Conclusions

        The physicochemical properties(molecular volume,molar volume,parachor,interstice volume,interstice fraction,thermal expansion coefficient,standard entropy,lattice energy,and molar enthalpy of vaporization)of[C2mim][EtSO4],[C4mim][OcSO4], and[C2mim][NTf2]were estimated by using their experimental data of density and surface tension.Based on the estimated data of the molecular volume and parachor,the physicochemical properties(density,surface tension and all of the properties mentioned above)for their homologue series[Cnmim][EtSO4], [Cnmim][OcSO4],and[Cnmim][NTf2](n=1-6)were predicted.

        We compared the values of molar enthalpies of vaporization for[C2mim][EtSO4],[C4mim][OcSO4],[C2mim][NTf2],[C4mim] [NTf2],[N4111][NTf2],[N8881][NTf2],and[m3opy][BF4],estimated by Kabo′s empirical equation with those predicted by Verevkin′s simple rule,and found that the values calculated in terms of the two approaches are in good agreement with each other.Hence,it is suggested that the molar enthalpy of vaporization of ILs could be estimated in terms of Verevkin′s simple rule when the experimental data are not available.

        1 Tsunashima,K.;Sugiya,M.Electrochem.Commun.,2007,9: 2353

        2 Seki,S.;Kobayashi,Y.;Miyashiro,H.;Ohno,Y.;Usami,A.;Mita, Y.;Watanabe,M.;Terada,N.Chem.Commun.,2006:544

        3 Itoh,H.;Naka,K.;Chujo,Y.J.Am.Chem.Soc.,2004,126:3026

        4 Du,Z.;Yu,Y.L.;Wang,J.H.Chem.Eur.J.,2007,13:2130

        5 Endres,F.;Abedin,S.Z.E.Phys.Chem.Chem.Phys.,2006,8: 2101

        6 Wandschneider,A.;Lehmann,J.K.;Heintz,A.J.Chem.Eng. Data,2008,53:596

        7 Bandres,I.;Giner,B.;Artigas,H.;Lafuente,C.;Royo,F.M. J.Chem.Eng.Data,2009,54:236

        8 Sun,J.;Forsyth,M.;MacFarlane,D.R.J.Phys.Chem.B,1998, 102:8858

        9 Tokuda,H.;Hayamizu,K.;Ishii,K.;Susan,M.A.B.H.; Watanabe,M.J.Phys.Chem.B,2004,108:16593

        10 Tokuda,H.;Ishii,K.;Susan,M.A.B.H.;Tsuzuki,S.;Hayamizu, K.;Watanabe,M.J.Phys.Chem.B,2006,110:2833

        11 Bandrés,I.;Giner,B.;Artigas,H.;Royo,F.M.;Lafuente,C. J.Phys.Chem.B,2008,112:3077

        12 Tong,J.;Liu,Q.S.;Guan,W.;Yang,J.Z.J.Phys.Chem.B,2007, 111:3197

        13 Tong,J.;Liu,Q.S.;Zhang,P.;Yang,J.Z.J.Chem.Eng.Data, 2007,52:1497

        14 Fang,D.W.;Guan,W.;Tong,J.;Wang,Z.W.;Yang,J.Z.J.Phys. Chem.B,2008,112:7499

        15 Tong,J.;Liu,Q.S.;Xu,W.G.;Fang,D.W.;Yang,J.Z.J.Phys. Chem.B,2008,112:4381

        16 Fernández,A.;Torrecilla,J.S.;García,J.;Rodríguez,F.J.Chem. Eng.Data,2007,52:1979

        17 Fernández,A.;García,J.;Torrecilla,J.S.;Oliet,M.;Rodríguez,F. J.Chem.Eng.Data,2008,53:1518

        18 Glasser,L.Thermochim.Acta,2004,421:87

        19 Troncoso,J.;Cerdeirina,C.A.;Sanmamed,Y.A.;Romani,L.; Rebelo,L.P.N.J.Chem.Eng.Data,2006,51:1856

        20 Hasse,B.;Lehmann,J.;Assenbaum,D.;Wasserscheid,P.; Leipertz,A.;Froba,A.P.J.Chem.Eng.Data,2009,54:2576

        21 Deetlefs,M.;Seddon,K.R.;Shara,M.Phys.Chem.Chem.Phys., 2006,8:642

        22 Zaitsau,D.H.;Kabo,G.J.;Strechan,A.A.;Paulechka,Y.U.; Tschersich,A.;Verevkin,S.P.;Heintz,A.J.Phys.Chem.A,2006, 110:7303

        23 Yang,J.Z.;Lu,X.M.;Gui,J.S.;Xu,W.G.Green Chem.,2004, 6:541

        24 Zhang,Q.G.;Yang,J.Z.;Lu,X.M.;Gui,J.S.;Huang,M.Fluid Phase Equilib.,2004,226:207

        25 Verevkin,S.P.Angew.Chem.Int.Edit.,2008,47:5071

        猜你喜歡
        劉青山遼寧大連中國(guó)科學(xué)院
        《中國(guó)科學(xué)院院刊》新媒體
        中國(guó)科學(xué)院院士
        ——李振聲
        遼寧大連:10年資助4207名農(nóng)民工上大學(xué)
        祝賀戴永久編委當(dāng)選中國(guó)科學(xué)院院
        劉青山 張子善 兩人都吸毒
        紅土地(2017年4期)2017-06-23 12:44:04
        孫子垚
        “白草莓”亮相遼寧大連
        《中國(guó)科學(xué)院院刊》創(chuàng)刊30周年
        智解矛盾
        故事林(2015年23期)2015-05-14 15:22:19
        劉青山:“在反貪污的今天,拿我做典型,以教育全黨”
        記者觀察(2013年6期)2013-04-29 14:11:58
        久久香蕉成人免费大片| 又黄又爽又色视频| 人妻aⅴ中文字幕| 国产精品一区二区 尿失禁| 国产一区二区三区免费精品| 丝袜美腿精品福利在线视频| 免费无码精品黄av电影| 亚洲精品无码mv在线观看| 亚欧免费视频一区二区三区| 在线小黄片视频免费播放| 色天使久久综合网天天| 夜夜欢性恔免费视频| 神马不卡一区二区三级| 国产成人无码精品久久99| 中文字幕人妻少妇久久| 男女一区视频在线观看| 色天使久久综合网天天| 丰满少妇被猛男猛烈进入久久| 亚洲精品国产老熟女久久| 中文字幕一区二区三区| 日本久久精品中文字幕| 无码人妻久久一区二区三区app| 国产精品成人免费视频网站京东| 亚洲先锋影院一区二区| 一本色道久久综合亚洲精品不| 亚洲精品久久久久久久蜜桃| 亚洲碰碰人人av熟女天堂| 久久精品女人天堂AV一个| av天堂中文亚洲官网| 亚洲熟女综合色一区二区三区| ā片在线观看免费观看| 午夜精品一区二区三区无码不卡| 能看不卡视频网站在线| 精品国品一二三产品区别在线观看 | 亚洲欧美日韩激情在线观看| 蜜桃在线观看免费高清| 成人影片麻豆国产影片免费观看| 成人国产精品一区二区网站公司| 激情婷婷六月| 国产一区二区三区porn| 成人大片免费观看视频|