亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一類修正Navier-Stokes方程解衰減速率的上下界估計

        2010-09-05 12:59:31吳珞
        上海第二工業(yè)大學學報 2010年3期

        吳珞

        一類修正Navier-Stokes方程解衰減速率的上下界估計

        吳珞

        (上海第二工業(yè)大學理學院,上海 201209)

        Navier-Stokes方程描述了具有小速度梯度的不可壓縮粘性流體運動規(guī)律,在流體動力學研究中有著重要的應(yīng)用。1966年,Ladyzhenskaya O. A. 放棄了速度梯度很小的限制,提出了幾種描述不可壓縮粘性流體運動規(guī)律的修正Navier-Stokes方程。為估計整個三維空間上一類修正Navier-Stokes方程解衰減速率的上下界,使用改進的Fourier分解方法得到當初值模衰減速率上界為;對某些初值時,解的模衰減速率下界為(t+1)?34。

        修正Navier-Stokes;大時間行為;衰減率;上界;下界

        0 引言

        文獻[1]和[2]獨立研究了不可壓縮粘性流體運動規(guī)律,提出了描述速度梯度較小的流體運動規(guī)律的經(jīng)典Navier-Stokes方程。1966年,文獻[3]和[4]放棄了流體速度梯度較小的限制,給出了幾種修正Navier-Stokes方程,其中之一形式如下

        的修正Navier-Stokes方程問題。當初值滿足一定條件,n≤3時,該問題存在整體唯一解[5-8]。

        文獻[9]首先提出了經(jīng)典Navier-Stokes方程解的衰減估計問題。文獻[10]討論了小初值解的衰減估計問題。1985年和1986年,文獻[11-13]利用Fourier分解方法給出整個空間經(jīng)典Navier-Stokes方程解的衰減估計,證明當初始值u∈L2∩Lq(1≤q <2)時,解的L2模,并且給出了解的衰減下界估計。1991年,文獻[14]討論了帶權(quán)空間上解的衰減下界估計。之后,有一系列這方面的研究成果出現(xiàn),例如文獻[15-23]。

        有關(guān)修正Navier-Stokes方程解的衰減估計問題研究不多。文獻[24,25]使用Fourier分解方法研究了文獻[3]和[4]提出的另一類修正Navier-Stokes方程解的衰減估計問題,其方程為

        其中?u(τ)為?u(τ)的L2模。本文將使用Fourier分解方法研究三維空間上一類修正Navier-Stokes方程(1)~(4)解的衰減估計,將證明當初值(1≤p<2)時,問題(1)~(4)解的L2模,對某些初值。

        本文的第1節(jié)將回顧記號、定義和結(jié)論。在第2節(jié),我們將討論修正Navier-Stokes方程問題解的衰減上界。在第3節(jié),我們將給出解的衰減下界估計。

        在本文中,我們假設(shè)n=3且f=0。為了書寫方便,取μ0=1,μ1=1。

        1 記號、定義和結(jié)論

        2 解的衰減上界估計

        為證明上述定理,我們給出以下兩個引理:

        引理2.2[12]設(shè),1≤p<2,r( t)>0,則

        引理2.3設(shè)u是問題(1)~(4)的解,則

        證明在(1)兩邊做Fourier變換得到

        證畢。

        證明定理2.1由(1)和(2)知

        3 解的衰減下界估計

        為了估計修正Navier-Stokes方程問題(1)~(4)解的衰減下界,我們記w=u?v=u?,則

        證明證明與引理2.3相似。

        成立。

        證明定理3.1由(18),使用(5)和(6)知

        與證明(15)相似,我們可證:對任取r( t)>0,

        為估計(20),我們回顧文獻[13]中的一個不等式

        在(20)中應(yīng)用引理3.2,定理3.1,(7)和(21),我們可推出

        4 結(jié)論

        當外力f=0時,三維空間上一類修正Navier-Stokes方程解衰減速率有上下界。當初值(1≤p<2)時,解的L2模的衰減速率上界為;對某些初值)時,解的L2模的衰減速率下界為。當外力隨時間無限增大時有一定衰減速率,應(yīng)用本文方法易知修正Navier-Stokes方程解有相同的上下界。

        [1] NAVIER C L M H. On the laws of motion of fluids taking into consideration the adhesion of the molecules[J]. Ann.Chim.Phys. ,1822,19:234-245.

        [2] STOKES G H. On the theories of the internal friction of fluids in motion[J]. Trans.Cambridge Phil.Soc. ,1845,8:287-319.

        [3] LADYZHENSKAYA O A.On certain nonlinear problems of the theory of continuous media[C] // s. n. . Internat.Congress of Mathematicians. Moscow:s. n. ,1966:149.

        [4] LADYZHENSKAYA O A.The Mathematical Theory of Viscous Incompressible Flow[M]. New York: Gordon and Breach,1969.

        [5] LADYZHENSKAYA O A.On new equations for the description of the motion of viscous incompressible fluids, and the global solvability of their boundary value problems[J]. Trudy Mat.Inst.Akad.Nauk SSSR,1967, 102:85-104.

        [6] LADYZHENSKAYA O A.On modifications of the Navier-Stokes equations for large gradients of velocities[J]. Zap.Nauchn.Sem.Leningr.Otd. Mat.Inst. , 1968, 7:126-154.

        [7] LADYZHENSKAYA O A. The Mathematical Problems of the Dynamics of a Viscous Incompressible Fluid (in Russian)[M]. Moscow: Nauka, 1970. [8] LIONS J L.Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires[M]. Paris: Gauthier Villars, 1969.

        [9] LERAY J. Essai sur le mouvement d'un liquide visqueux emplissant l'espace[J]. Acta Math. , 1934, 63:193-248.

        [10] KATO T. Strong Lpsolutions of the Navier-Stokes equations with applications to weak solutions[J].Math.Zeit. , 1984, 187:471-480.

        [11] SCHONBEK M E.L2decay of weak solutions of the Navier-Stokes equations[J]. Arch.Rational Mech.Anal. , 1985, 88, 209-222.

        [12] SCHONBEK M E. Large time behaviour of solutions to the Navier-Stockes equations[J]. Comm.Partial Differential Equations, 1986, 11(7):733-763.

        [13] KAJIKIYA R,MIYAKAWA T. On L2decay of weak solutions of Navier-Stokes equations inRn[J]. Math.Z. , 1986, 192:135-148.

        [14] SCHONBEK M E. Lower bounds of rates of decay for solutions of the Navier-Stockes equations[J]. J.Amer.Math.Soc. , 1991, 4:423-449.

        [15] ZHANG L. Sharp rate of decay of solutions to 2-dimensional Navier-Stokes equation[J]. Comm.Partial Differential Equations, 1995, 20:119-127. [16] CARPIO A. Large time behavior of incompressible Navier-Stokes equations[J]. SIAM J.Math.Anal. , 1996, 27:449-475.

        [17] OGAWA T. Energy decay for a weak solution of the Navier-Stokes equation with slowly varying external forces[J]. J.Funct.Anal. , 1997, 144:325-358.

        [18] CHEN Z M,MIYAKAWA T.Decay properties of weak solutions to a perturbed Navier-Stokes systems in Rn[J]. Adv.Math.Sci.Appl. , 1997, 7:741-770.

        [19] TAKAHASHI S. A weighed equation approach to decay rate estimates for the Navier-Stokes Equations[J].Nonlinear Anal. , 1999, 37:751-789.

        [20] OLIVER M. Remark on the rate of decay of higher order derivatives for solutions to the Navier-Stokes equations in Rn[J]. J.Funct.Anal. , 2000, 172:1-18.

        [21] HE C,XIN Z P. On the decay properties of solutions to the nonstationary Navier-Stokes equations in R3[J]. Proc.Royal.Soc.Edinb: Sect A, 2001, 131:597-619.

        [22] BAEA H O, JIN B J. Upper and lower bounds of temporal and spatial decays for the Navier-Stokes equations[J]. J.Differential Equations, 2005, 209:365-391.

        [23] KUKAVICA I. Weighted bounds for the velocity and the vorticity for the Navier-Stokes equations[J].Nonlinearity, 2006, 19:293-303.

        [24] 董柏青, 李用聲. 一類修正的Navier-Stokes方程的長時間性態(tài)[J]. 數(shù)學物理學報, 2006, 26(A)(4):498-505.

        [25] DONG B Q, JIANG W. On the decay of higher order derivatives of solutions to Ladyzhenskaya modelfor incompressible viscous flows[J]. Science in China, Series A: Mathematics, 2008, 51:925-934.

        [26] TEMAM R. Navier-Stokes equations,theory and numerical analysis[M]. New York: North-Holland Amsterdam, 1977.

        Upper and Lower Bounds of Decay Rates for a Solution of a Modified Navier-Stokes Equations

        WULuo
        (School of Science,Shanghai Second Polytechnic University,Shanghai 201209,P.R.China)

        The Navier-Stokes equations have many important application in fluid dynamic,which describe motion characteristics of viscous incompressible fluids for small gradients of the velocities.In 1966,Ladyzhenskaya O.A.suggested several variants of modified Navier-Stokes equations to a determinate description of the nonstationary flows of viscous incompressible fluids for large gradients of the velocities.Forestimating upper and lower bounds of decay rates for a modified Navier-Stokes equations in the whole three-dimensional space,by improving the Fourier splitting methods,the paper proves that upper bounds of decay rates of L2norm to the solution arefor initial value(1≤p<2) and lower bounds of ones arefor some initial value

        modified Navier-Stokes equations;large time behavior;decay rate;upper bounds;lower bounds

        O175.2

        A

        1001-4543(2010)03-0173-05

        2010-06-03;

        2010-06-29

        吳珞(1963—),男,遼寧遼陽人,教授,博士,主要研究領(lǐng)域為應(yīng)用數(shù)學,電子郵件:wuluo@sspu.cn

        上海市自然科學基金(No.09ZR1412800);上海市教育委員會科研創(chuàng)新項目基金(No.10ZZ131)

        三年在线观看免费大全下载 | 伦伦影院午夜理论片| 精品国产一区av天美传媒 | 最近中文字幕精品在线| 97在线视频人妻无码| 日产精品久久久久久久性色 | 日本一区二区三区在线观看免费| 中文字幕中文字幕777| 国产亚洲精品成人aa片新蒲金| 亚洲精品欧美二区三区中文字幕| 亚洲地区一区二区三区| 一区二区三区在线乱码| 日韩经典午夜福利发布| 少女高清影视在线观看动漫| 性一交一乱一伦一视频一二三区| 视频一区中文字幕日韩| 欧美群妇大交群| 无码成人aaaaa毛片| 日本成人字幕在线不卡| 日韩亚洲一区二区三区在线 | 日本成人久久| 男女视频网站免费精品播放| 日韩人妻另类中文字幕| 青青草视频免费观看| 中文岛国精品亚洲一区| 精品国产三区在线观看| 亚洲欧美日韩另类精品一区| 九九久久精品国产| 91久久精品一二三区蜜桃| 亚洲av毛片在线免费观看| 亚洲精品美女久久久久久久| 人妻熟妇乱系列| 国产激情视频高清在线免费观看| 摸丰满大乳奶水www免费| 免费无码国产v片在线观看| 国产美女被遭强高潮露开双腿| 久久久亚洲免费视频网| 中文字幕人妻少妇引诱隔壁| 视频一区欧美| 青青草绿色华人播放在线视频 | 少妇无码av无码一区|