朱 焱
1)廣義承力比最大準(zhǔn)則法[1]。
該準(zhǔn)則認(rèn)為:元件的承力比越大,該元件受荷載情況就越嚴(yán)重,相應(yīng)的失效可能性就越大;元件的承力比之比越大,則該元件對上一級元件的失效就越敏感,也就越容易失效。承力比準(zhǔn)則可描述為:定義約界參數(shù) ck(0<ck≤1),滿足 λ(k)rk≥ckmax[λ(k)rk]的元件rk將有資格成為該階段的候選失效元件。
2)優(yōu)化準(zhǔn)則法[2]。
設(shè)元件r1,r2,…,rk-1失效時對應(yīng)的荷載增量因子分別為在失效歷程的第k階段,定義結(jié)構(gòu)元件的有效強度R(k)rk和有效承力比為算法選擇參數(shù))該法認(rèn)為滿足的元件,rk將有資格成為該階段的失效候選元件。優(yōu)化準(zhǔn)則法和廣義承力比最大準(zhǔn)則法的區(qū)別在于:前者根據(jù)荷載累積情況對元件rk的有效承載力進行了實時修正。
3)荷載增量最小準(zhǔn)則法[3]。
優(yōu)化準(zhǔn)則法的物理依據(jù)是:在結(jié)構(gòu)失效歷程的每一階段,以“使系統(tǒng)失效的荷載增量最小化”為準(zhǔn)則來選取本階段的候選失效元件。基于此思想,提出了識別結(jié)構(gòu)系統(tǒng)主要失效模式的荷載增量最小準(zhǔn)則法。
給定分枝約界參數(shù)ck(ck≥1),滿足下式的元件rk將成為第k階段的失效候選元件:
由于ΔF(k)rk對應(yīng)的是沿失效路徑r1→r2→…→rk由失效歷程的第k-1階段演變到失效歷程第k階段的荷載增量因子,當(dāng)rk取滿足條件ΔF(k)rk=min[ΔF(k)rk]所對應(yīng)的元件時,系統(tǒng)的外載增量取值最小。因此,式(1)保證了在失效歷程的任意階段,總是使系統(tǒng)外載增量取值較小的那些元件進入主要失效模式。
4)階段臨界強度分枝—約界法[4]。
對于高冗余度的結(jié)構(gòu),后者往往是構(gòu)成系統(tǒng)臨界強度的主要成分。階段臨界強度分枝—約界法解決了此問題。定義失效歷程第k階段元件rk所對應(yīng)的系統(tǒng)階段臨界強度,則滿足下式的元件 rk成為失效歷程第k階段的失效候選元件:
此時的約界參數(shù)ck類似于工程設(shè)計中的安全系數(shù),其合理的取值區(qū)間是1≤ck≤2。系統(tǒng)階段臨界強度分枝—約界法不僅克服了約界參數(shù)難于選擇的缺點,而且使約界更合理。
從傳力角度看,實際復(fù)雜結(jié)構(gòu)的主要失效模式是由主要系統(tǒng)中的一個元件和附加系統(tǒng)中的多個元件構(gòu)成。用矩陣力法可以很方便地求出基本系統(tǒng)和多余力系統(tǒng),但結(jié)果受節(jié)點編號的影響,并不一定符合結(jié)構(gòu)實際傳力路線。姚衛(wèi)星等[5,6]針對自動矩陣力法的這一缺陷,發(fā)展了一種考慮結(jié)構(gòu)元件強度比的自動矩陣力法,使得基本系統(tǒng)符合結(jié)構(gòu)中力的傳遞路線。
對于一個結(jié)構(gòu)系統(tǒng),平衡方程可寫為:D X =sF,其中,D為m×n階平衡矩陣,m為自由度數(shù),n為元件數(shù);X 為元件內(nèi)力矢量;F為荷載分布矢量;s為荷載幅度。在滿足平衡方程的前提下,s可以逐漸增大,以致使得多個元件達到它們的強度值,如果再增大s,結(jié)構(gòu)就會變成機構(gòu)。這個過程可通過求解下面的線性規(guī)劃問題來實現(xiàn):在滿足約束條件(即平衡方程)D X=sF(-R-≤X≤R+)的前提下,求解荷載幅度s的最大值,其中 R+,R-分別表示元件的拉伸和壓縮強度。
分枝—約界法中的主要運算包括分枝和約界兩種操作。當(dāng)結(jié)構(gòu)的失效模式不止一個時,就會出現(xiàn)分枝現(xiàn)象。分枝運算就是選擇失效路中具有較高失效概率的分枝。如果在每一個分支點都考慮所有的分枝,則只需分枝操作便可生成完整的失效樹集,這是簡單的窮舉法。簡單枚舉會導(dǎo)致組合爆炸。避免組合爆炸的方法就是提前刪除不太可能發(fā)展為主要失效模式的分枝,這就是約界。分枝—約界法的分枝和約界同時進行,效率較高且一般不會遺漏主要失效模式。
β約界法的基本思想為:在失效歷程的第k階段,對于具有相同前序失效元件的潛在失效元件rk,失效事件 E(rkk)所對應(yīng)的可靠指標(biāo)為。滿足條件Δβ(k)]的元件 rk將成為此分枝下的候選失效元件。文獻[7]提出了動態(tài)反饋環(huán)節(jié)的全局β約界法,提高了計算效率,實現(xiàn)了β約界法和分枝—約界法的統(tǒng)一。
此方法首先對結(jié)構(gòu)進行整體分析,計算出所有潛在失效元件的可靠指標(biāo)β以及所有β的均值βav,取最小β(記為β0)所對應(yīng)的元件為初始失效元件,然后對結(jié)構(gòu)進行重分析,計算失效歷程第2階段各潛在失效元件的β,選擇β最小但是大于上一階段β0的潛在失效元件為次級失效元件,依次計算,直到結(jié)構(gòu)失效,從而獲得第一代表機構(gòu)(失效模式)。更換第一代表機構(gòu)最后階段的失效元件,如果更換失效元件后的結(jié)構(gòu)也失效,則得到另一個主要分枝;如果不失效,則繼續(xù)搜索,直到結(jié)構(gòu)失效。第一代表機構(gòu)及其主要分枝稱為第一失效樹。當(dāng)?shù)谝皇渖梢院?變更第一代表機構(gòu)的初始失效元件,按照生成第一代表機構(gòu)的原理生成第二代表機構(gòu),并在最后階段進行分枝,從而獲得第二代表機構(gòu)及其主要分枝,得到第二失效樹。此方法僅在第一代表機構(gòu)的初始階段和最后階段進行分枝。
極限狀態(tài)體系以結(jié)構(gòu)受力的嚴(yán)重程度判斷失效模式,與傳統(tǒng)的確定性建筑結(jié)構(gòu)設(shè)計規(guī)范間存在一致的對應(yīng)關(guān)系,物理意義明確,但是計算結(jié)果表明,當(dāng)荷載復(fù)雜時,極限狀態(tài)體系不易反映荷載的隨機性,容易遺漏主要失效模式。概率評估體系以失效概率來鑒別主要失效模式,與計算體系失效概率的目的相吻合,一般不容易遺漏主要失效模式,并且概率評估體系適合于考慮材料隨機性等復(fù)雜情況,適用范圍較廣。
[1] Moses F.New directions and research needs in system reliability research[J].Structural Safety,1990(8):11.
[2] Feng Y S.Enumerating significant failure modesof a structural system by using criterion methods[J].Computers and Structures,1988,30(5):66-67.
[3] 馮元生,董 聰.枚舉結(jié)構(gòu)主要失效模式的一種方法[J].航空學(xué)報,1991,12(9):44.
[4] 董 聰,馮元生.枚舉結(jié)構(gòu)主要失效模式的一種新方法[J].西北工業(yè)大學(xué)學(xué)報,1991,9(3):39-40.
[5] 姚衛(wèi)星,顧 怡.用自動矩陣力法枚舉結(jié)構(gòu)的主要模式[Z].中國航空學(xué)會結(jié)構(gòu)設(shè)計專業(yè)委員會第一屆學(xué)術(shù)交流大會論文,1996.
[6] 姚衛(wèi)星,顧 怡.用自動矩陣力法枚舉結(jié)構(gòu)的主要模式[J].計算結(jié)構(gòu)力學(xué)及其應(yīng)用,1996,13(1):24.
[7] 董 聰,楊慶雄.冗余桁架結(jié)構(gòu)系統(tǒng)可靠性分析理論與算法[J].計算結(jié)構(gòu)力學(xué)及其應(yīng)用,1992,9(4):57-58.