亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        L2(q)的一個(gè)物征性質(zhì)

        2010-06-29 06:14:30趙俊英韓章家
        關(guān)鍵詞:理學(xué)院工程學(xué)院四川

        趙俊英, 韓章家

        (1.天津商業(yè)大學(xué)理學(xué)院,天津300134;2.成都信息工程學(xué)院數(shù)學(xué)學(xué)院,四川成都610225)

        1 Introduction

        All groups considered in this paper are finite groups.The reader may refer to[1]for the notations of simple groups.

        In group theory it is an usual way to get the information on the structure of a group G by studying it's subgroups.It was proved in[2]that if G is one of PSL(2,2n),Sz(22m+1),An(n≤10),K3-groups,Mathieu groups and Janko groups,then G is uniquely determined by the set of orders of it's maximal abelian subgroups.In[3],it is proved that alternative groups whose prime graph has three connected components can be uniquely determined by the set of orders of its maximal abelian subgroups.In this paper we will show that the group L2(q),q≡3,5(mod 8)can be determined up to isomorphism by the set of orders of it's maximal abelian subgroups.

        Notations:If G is a finite group then Γ(G)denotes the prime graph of G;t(Γ(G))denotes the number of prime graph components of G;πi(1≤i≤t(Γ(G)))denote the set of vertices of prime graph components of G.If G isof even order,then π1always denotes the even prime graph component of G.M(G)denotes the set of ordersof maximal abelian subgroups of G.

        Assume that π1,π2,…,πtare all prime graph components of G.Then|G|=m1m2…mt,where π(mi)=πi,i=1,2,…,t.Positive numbers m1,m2,…,mtare called the order components of G[4].The order components of finite simple groups with non-connected prime graphs are listed in Tables 1-4 given by Chen[5].

        The following lemma follows from the definition of order component,Theorem A and Lemma 3 in[6].

        Lemma1 Let G be a finite group with disconnected prime graph.Then one of the following statements holds:

        (i)G is a Frobenius group or a 2-Frobenius group;

        Lemma2 Let G be a Frobenius or a 2-Frobenius group,then t(Γ(G))=2[7].

        The following result is important for the proof in our theorem.

        Lemma3 Let M(G)=M(L2(q))and q≡3,5(mod 8),where q=tm,then

        (i)G has a maximal abelian subgroup of order tmand the order of any maximal abelian 2-subgroup is four;

        (ii)If 2? q-1,then G has no abelian subgroup of order q-1,and G has no abelian subgroup of order tr,where(t,r)=1.

        Proof.The lemma follows from Theorem 3.6.25 in[8]and Lemma 2.

        Lemma4 Let t(Γ(G))≥2 andIf N is a π1-group and a1,a2,…,arare order components of G,then every a1,a2,…,aris a divisor of|H|-1[5].

        2 Main result

        Now we can show that the group L2(q),q≡3,5(mod 8)is characterized by it's sets of orders of maximal abelian subgroups.

        Theorem1 Let G be a finite group.If M(G)=M(M),where M=L2(q),q≡3,5(mod 8),then G?M.

        Proof.Since t(Γ(M))=3,it follows by Lemma 1 and Lemma 2 that G has a normal seriessatisfying t(Γ(K/H))≥3 and some odd order components of K/H are equal to the odd order components of G.

        If t(Γ(K/H))=6,then K/H ?J4by[6]andis equal to one of 23,29,31,37 or 43.It is impossible.

        If t(Γ(K/H))=6,then K/H ?E8(q′)by[6],where q′≡0,1,4(mod 5).

        We get a system of equations:

        It can be easily shown that this system of equations has no solution,so K/H ?E8(q′).where q′0,1,4(mod 5).By the same way we can easily have that K/H ?E8(q′),q≡2,3(mod 5).Hence,if t(Γ(K/H))=4,then K/H is isomorphic to one of the following groups:2B2(22m+1),A2(4),2E6(2),M22,J1,ON,Ly,F′24and M.

        If K/H ?2B2(22m+1),then We get a system of equations:

        It iseasy to check that there are no solutions for all above equations.Hence,K/H?2B2(22m+1).Similarly,we have that K/H?A2(4),and2E6(2).If K/H is isomorphic to any sporadic simple group,then by way of calculating we have that the only possibility is K/H?M22.In this case,q=11 and Lemma 3 implies that the order of any Sylow 2-subgroup is 8 at most,which is a contradiction.Thisproves that t(Γ(K/H))≠4.If t(Γ(K/H))=3,then by[6],K/H is isomorphic to one of the following groups:

        Ap(p and p-2 prime),A1(q′),G2(q′)(3|q′),2G2(32m+1),2Dp(3)(p=2n+1,n ≥2),2Dp+1(2)(p=2n-1,n ≥2),F4(q′)(2|q′),E7(2),E7(3),A2(2),2A5(2),2F4(22m+1)(m ≥1),M11,M23,M24,J3,HS,Suz,Co2,F23,B and Th.

        Obviously,K/H can not isomorphic to of the groups E7(2),E7(3),A2(2),2A5(2),J3,HS,Suz,F23,B,Th,M23and M24.If K/H ?G2(q′)(3|q′),then,we have:

        Thus q′=3,q=13.In this case,the orders of some maximal 2-subgroups are greater than 4,which contradicts Lemma 3.By the same reason we have K/H ?2G2(q′).

        If K/H ?2Dp(3)(p=2n+1,n≥2),then the following equations hold:

        It iseasy to check that all these equationshave no solutions,hence K/H?2Dp(3)(p=2n+1,n≥2).By using the same argument,we know that K/H can not be isomorphic to F4(q′)(2|q′),2F4(q′)(q′=22m+1,m ≥1)and2Dp+1(2),p=2n-1,n≥2.If K/H?Ap,then we can get p=q=5.The theorem follows by[11].Hence the only possibility is K/H=A1(q′),which forces that q=q′and then K/H=A1(q).We now claim that H=1.Otherwise the center Z(T)of a Sylow t-subgroup T of H is normal in G.Consequently,if 4|(q+1),we haveby Lemma 4,this implies that G has an abelian subgroup of order greater than q,which contradicts Lemma 3.This proves our claim,hence K?L2(q).Since CG(K)=1,we have(q)).Note that the outer automorphisms of L2(q)are field automorphisms or diagonal automorphisms of order two and every field automorphism ? centralizes the prime field,so the order of ? is a power of two.If G ≠L2(q),then G has a cyclic subgroup of order 2kt(k≠0),which contradicts Lemma 3.IfG has nontrivial diagonal automorphisms,then there is an element of order q-1 in G,which contradicts Lemma 3 too.Hence we obtain that G?L2(q).The proof is complete.

        [1]D Gorenstein.Finite Groups[M].New York:Harper-Row,1968.

        [2]Wang Linhong.A characterization of some classes of finite simple groups[D].Chongqi:Southwest China Normal University,2005.

        [3]G Y Chen.Characterization of Alternating Groups by the Set of Orders of Maximal Subgroups[J].Siberian Mathematical Journal,2006,47(3).

        [4]G Y Chen.On Thompson's Conjecture[J].J.Algebra,1996,185:184-193.

        [5]G Y Chen.A new characterization of spordic simple groups[J].Algebra Colloq,1996,3(1):49-58.

        [6]J S Williams.Prime Graph Components of Finite Groups[J].J.Algebra,1981,69:487-513.

        [7]G Y Chen.On Frobenius and 2-Frobenuis group[J].J.Southwest China Normal Univ,1995,20(5):485-487.

        [8]M Suzuki.Group Theory[M].Berlin:Springer-Verlag,1980.

        [9]G Y Chen,S H Guo.2Dn(3)(9≤2m+1 not a prime)can be characterized by itsorder component[J].J.Appl.Math.Comput,2005,19(1-2):353-362.

        [10]A S Kondratév.Prime graph componentsof finite simple groups[J].Math.USSRSbornik,1990,67(1):235-247.

        [11]Li xianhua,Bi Jianxing.On the finite group with the same or-ders of solvable subgroups as the simple group Ln(q)[J].Comm.Algeba,2005,33(5):1337-1343.

        猜你喜歡
        理學(xué)院工程學(xué)院四川
        昆明理工大學(xué)理學(xué)院學(xué)科簡(jiǎn)介
        昆明理工大學(xué)理學(xué)院簡(jiǎn)介
        福建工程學(xué)院
        A gift I treasure
        福建工程學(xué)院
        四川:不只辣,還很甜
        福建工程學(xué)院
        福建工程學(xué)院
        西安航空學(xué)院專(zhuān)業(yè)介紹
        ———理學(xué)院
        關(guān)于反射倒向隨機(jī)微分方程的解的一些性質(zhì)
        久久久久女人精品毛片| 尤物无码一区| 精品国产福利一区二区三区| 久久久精品人妻一区二| 少妇被黑人整得嗷嗷叫视频| 亚洲色偷偷偷综合网| 久久国产色av免费观看| 性大毛片视频| 最近免费中文字幕| 国产a级午夜毛片| 国产chinese在线视频| 亚洲av免费高清不卡| 永久免费看黄网站性色| 国产一区二区三区视频地址| 久久综合99re88久久爱| 国产婷婷色一区二区三区在线| 久久亚洲精品ab无码播放| 午夜免费福利一区二区无码AV| 人妻尤物娇呻雪白丰挺| 国产亚洲人成在线观看| 看全色黄大色黄大片 视频| 97夜夜澡人人爽人人喊中国片| 久久人妻公开中文字幕| 白白色免费视频一区二区| 亚洲一区二区三区一站| 高清不卡av一区二区| 亚洲欧美中文字幕5发布| 一个人看的www免费视频中文| 中文字幕麻豆一区二区| 精品国产精品三级在线专区| 亚洲色大成网站www久久九九 | 久久久久国产一区二区三区| 久久狠狠高潮亚洲精品暴力打| 久久网站在线免费观看| 国产精品综合一区久久| 狂野欧美性猛xxxx乱大交| av人摸人人人澡人人超碰小说| 蜜桃成人永久免费av大| 国产毛片av一区二区| 亚洲一区二区三区av无码| 比比资源先锋影音网|