張國平
(湖南機(jī)電職業(yè)技術(shù)學(xué)院,湖南 長沙 410151)
汽輪機(jī)是發(fā)電系統(tǒng)的關(guān)鍵設(shè)備,由于長期處于高速運行狀態(tài),故障發(fā)生頻率較高。而且任何一個小小的故障,都可能引起連鎖反應(yīng),造成巨大經(jīng)濟(jì)損失,甚至災(zāi)難性后果。1988年2月28日,陜西秦嶺發(fā)電廠200MW的5號汽輪發(fā)電機(jī)組發(fā)生了事故,造成經(jīng)濟(jì)損失約3000萬元[1]。汽輪機(jī)的故障診斷,已經(jīng)成為國內(nèi)外研究的熱點,開展汽輪機(jī)故障診斷研究,對于生產(chǎn)實踐中避免重大事故,有著重要的現(xiàn)實意義。
汽輪機(jī)啟動和停止過程中,振動信號包含了豐富狀態(tài)信息,對于狀態(tài)監(jiān)測具有獨特的價值。然而,啟動和停止過程信號,要比平穩(wěn)過程信號復(fù)雜得多,其信號頻率和幅值均隨時間而變化,屬于典型的非平穩(wěn)信號。針對這些特點,本文引入了連續(xù)HMM。HMM是一種時間序列的統(tǒng)計模型[2],能用參數(shù)描述隨機(jī)過程統(tǒng)計特性的概率模型,是一種雙隨機(jī)過程。其由兩部分組成:馬爾可夫鏈和一般隨機(jī)過程。HMM的基本理論,創(chuàng)立于20世紀(jì)70年代,80年代中期得到傳播,之后逐漸成為信號處理領(lǐng)域中的一個重要的研究方向。目前國內(nèi)外還沒有非常成熟、有效的對汽輪機(jī)進(jìn)行診斷的方法。本文將HMM應(yīng)用到汽輪機(jī)故障診斷系統(tǒng)中來,是一種有針對性的信號的建模和識別工具。
如圖1所示,汽輪機(jī)指蒸汽在汽輪機(jī)中膨脹做功,將熱能轉(zhuǎn)化為機(jī)械能,其主要由高壓缸和低壓缸組成。高、低壓轉(zhuǎn)子通過剛性聯(lián)軸器,接成一個軸系,再通過剛性聯(lián)軸器與發(fā)電機(jī)轉(zhuǎn)子相聯(lián)。
圖1 汽輪機(jī)結(jié)構(gòu)圖
傳統(tǒng)的監(jiān)測系統(tǒng),一般是設(shè)置閾值,通過超限報警,并不對振動信號及振動故障進(jìn)行分析診斷。本文對汽輪機(jī)的故障分析,是通過振動監(jiān)測的方法實現(xiàn)的。振動分析法簡單直觀,診斷結(jié)果可信度高,并具有無損性和在線性等優(yōu)點。因此在工業(yè)生產(chǎn)和科學(xué)研究中,振動分析法得到了極為廣泛的重視[3]。汽輪機(jī)故障,主要體現(xiàn)在轉(zhuǎn)子質(zhì)量不平衡、轉(zhuǎn)子不對中、滑動軸承油膜振蕩等故障。汽輪機(jī)設(shè)備常見的振動故障及其對應(yīng)的頻率特征如下:
(1)由質(zhì)量不平衡引起的強(qiáng)迫振動,其振動頻率等于1 X(X代表轉(zhuǎn)速)。
(2)由轉(zhuǎn)子的不均勻升溫,而產(chǎn)生的熱彎曲變形,相當(dāng)于給轉(zhuǎn)子附加不平衡,由此導(dǎo)致的強(qiáng)迫振動頻率為1 X。
(3)由機(jī)組的軸線不對中,引起的強(qiáng)迫振動,其頻率為1 X及2 X;
(4)剛度不對稱的水平轉(zhuǎn)子,由于重力引起的強(qiáng)迫振動,頻率為2X;
(5)發(fā)電機(jī)定子由于磁拉力不均勻,而引起的強(qiáng)迫振動,其頻率為3 X;
(6)由于油膜軸承的不穩(wěn)定,而導(dǎo)致的自激振蕩,其頻率為(1/2)X。
HMM是在馬爾可夫鏈的基礎(chǔ)上發(fā)展起來的[4~5],即將馬爾可夫模型的概念,擴(kuò)展到一個雙重的內(nèi)含不可見從屬隨機(jī)過程的隨機(jī)過程,它只能通過另一套產(chǎn)生觀察序列的隨機(jī)過程,才能觀察到。
圖2 HMM基本組成結(jié)構(gòu)框圖
采用最大似然準(zhǔn)則的Baum-Welch算法,是目前HMM采用的主要訓(xùn)練方法。針對不同的HMM類型,其訓(xùn)練算法略有差別,本文主要介紹連續(xù)HMM訓(xùn)練算法。在連續(xù)HMM中不再采用離散的矩陣來描述觀測層,而是采用連續(xù)觀測密度函數(shù)進(jìn)行描述。定義ξt(i,j)為給定訓(xùn)練序列(觀察值序列)O和模型λ時,時刻t時Markov鏈處于θi狀態(tài)和時刻t+1時處于θi狀態(tài)時的概率,即
其中,αt(i),βt(i)為前向變量和后向變量。
常用的概率密度函數(shù),通常表示為下列密度函數(shù)的有限混合的形式,
其中,
o是觀測矢量;
cjk為混合系數(shù),表示狀態(tài)j中第k個混合密度函數(shù)的系數(shù);
M為混合度,表示包含的混合密度函數(shù)個數(shù);
N(o)為任意的對數(shù)凹函數(shù)或橢圓對稱密度函數(shù),其均值向量為μjk,方差矩陣為σjk,N(o)通常采用高斯密度函數(shù)。
連續(xù)HMM的訓(xùn)練模型[6]如圖3所示。
圖3 連續(xù)HMM訓(xùn)練模型
對連續(xù)HMM采用Baum-Welch算法時,定義中間變量
則有
系統(tǒng)分為硬件平臺和軟件平臺。硬件由加速度傳感器、信號調(diào)理器和嵌入式工控機(jī)等部件組成。其中壓電式加速度傳感器的電荷靈敏度為48.4mV/(ms-2),工作電流為2~10mA,工作電壓為12~24 V(DC),頻率范圍為 0.2~2 kHz,最大允許加速度為100m/s2。在模擬振動試驗臺上采集到的加速度信號如圖4所示。根據(jù)試驗臺轉(zhuǎn)速的大小,此圖能夠反映機(jī)械故障的信號特征。
圖4 轉(zhuǎn)子不平衡波形圖
圖5 轉(zhuǎn)子不平衡頻譜圖
對于振動臺運行狀態(tài),選4組數(shù)據(jù)用于識別,以檢驗系統(tǒng)診斷效果。對轉(zhuǎn)子不平衡、軸承基座松動、動靜件摩擦以及轉(zhuǎn)子不對中運行狀態(tài)等4組數(shù)據(jù),分別進(jìn)行了測試,其識別的具體情況如表1??偟淖R別率接近90%,識別時間約為46ms,結(jié)果較為理想。
表1 CHMM的典型故障識別率(%)
本文開發(fā)的基于連續(xù)HMM的在線系統(tǒng)在模擬試驗臺的狀態(tài)識別上,有著較好的識別率。實驗證明該系統(tǒng)是有效的。實驗中發(fā)現(xiàn),有時候會產(chǎn)生誤判,這可能與傳感器的靈敏度或外界干擾、振動測點的選擇以及傳感器的安裝有較大的關(guān)系。
雖然實驗取得了良好的效果,但是系統(tǒng)的可靠性、魯棒性還有待進(jìn)一步提高,真正應(yīng)用于汽輪機(jī)故障診斷,還有許多工作要做。
[1]徐 敏.設(shè)備故障診斷手冊[M].西安:西安交通大學(xué)出版社,1998.
[2]Rabiner L R.An introduction to the hidden Markov models[C].IEEE ASSPMag,1986.
[3]陸汝華,楊勝躍.基于DHMM的軸承故障音頻診斷方法[J].計算機(jī)工程與應(yīng)用,2007,(17):218-220.
[4]K.T.Abou-Moustafa,M.Cheriet,C.Y.Suen.On the structure of hidden Markov models[J].Pattern Recognition Letters,2004,(25):923–931.
[5]馮長建.HMM動態(tài)模式識別理論、方法以及在旋轉(zhuǎn)機(jī)械故障診斷中的應(yīng)用[D].杭州:浙江大學(xué)機(jī)械系,2002.
[6]宋雪萍,馬 輝.基于CHMM的旋轉(zhuǎn)機(jī)械故障診斷技術(shù)[J].中國機(jī)械工程,2006,(5):126-130.