董 崗
摘要:文章通過(guò)建立存在成本差異的Hotelling模型,結(jié)合效用和反應(yīng)函數(shù)對(duì)兩廠商的定價(jià)選址策略進(jìn)行分析,研究表明處于成本劣勢(shì)的廠商一般會(huì)選擇最小差異化的策略,而擁有成本優(yōu)勢(shì)的廠商則會(huì)在最小差異化和最大差異化原則之間進(jìn)行權(quán)衡取舍,目的都是為了實(shí)現(xiàn)利潤(rùn)最大化或損失最小化。
關(guān)鍵詞:成本差異;Hotelling模型;動(dòng)態(tài)博弈;反應(yīng)函數(shù)
中圖分類號(hào):F224 文獻(xiàn)標(biāo)識(shí)碼:A
Abstract: Through establishment Hotelling model under existence of cost differences, combining with the utility function and response function, the paper analyses pricing and situation selection strategy of the two entrepreneurs, research shows that: the entrepreneur of cost disadvantage always chooses the smallest difference of strategy, while the entrepreneur of cost advantage will make trade-off between the largest and the smallest differences principle, in order to maximize their profits or minimize losses.
Key words: cost difference; Hotelling model; dynamic game; reaction function
0引言
自從1929年Hotelling提出了著名的Hotelling模型[1]之后,其經(jīng)常被用于競(jìng)爭(zhēng)企業(yè)在市場(chǎng)中的選址、定價(jià)分析。Hotelling模型(1929)通過(guò)一次成本函數(shù)研究?jī)蓚€(gè)廠商的價(jià)格競(jìng)爭(zhēng)問(wèn)題;Aspremont and Gabszewicz(1979)[2]指出了Hotelling的缺陷,構(gòu)建二次成本函數(shù)求出Hotelling模型均衡解存在的條件;Economides(1986)[3]構(gòu)建冪成本函數(shù)Hotelling模型,研究了價(jià)格均衡的存在條件;Gabszewicz and Thisse(1986)[4],Anderson(1988)[5]構(gòu)建一次與二次之和的成本函數(shù)Hotelling模型得出不存在價(jià)格均衡的結(jié)論。本文研究了兩廠商存在成本差異、尤其是在成本差異顯著的情況下,具有成本優(yōu)勢(shì)的廠商是直接進(jìn)行價(jià)格戰(zhàn)、還是采取最大差異化策略將對(duì)方擠出市場(chǎng),從而實(shí)現(xiàn)利潤(rùn)最大化,通過(guò)構(gòu)建相應(yīng)的Hotelling模型,分析了廠商采取最優(yōu)策略的條件以及在動(dòng)態(tài)非合作博弈情況下的市場(chǎng)均衡價(jià)格和廠商均衡利潤(rùn)。