王宜潔
(閩江學院數(shù)學系,福建福州 350108)
一類具有時滯和反饋控制的非線性離散模型的持久性
王宜潔
(閩江學院數(shù)學系,福建福州 350108)
研究了一類具有時滯和反饋控制的非線性單種群離散模型的持久性,獲得了該系統(tǒng)持久的充分條件,并通過例子表明結(jié)果的可行性,所得結(jié)果推廣了已有文獻的相關(guān)結(jié)果.
持久性;非線性;離散;反饋控制;時滯
其中a:Z→(0,1),c,k,r,b:Z→R+是ω-周期函數(shù),m,θ和δ是正常數(shù).系統(tǒng)(1)的一些特殊情形已得到廣泛研究,如在假設(shè)θ=δ=1下,Li和Zhu[1]利用重合度理論中的延拓定理,研究了系統(tǒng)至少有一正的ω-周期解.文[2]則進一步通過發(fā)展文[3-7]中的分析方法,研究系統(tǒng)的持久性.但另一方面,越來越多的學者認為非線性模型能更加精確,更好地刻畫現(xiàn)實世界,是更加符合實際的[89],受文[8-9]啟發(fā),本文提出并研究系統(tǒng)(1)的動力學行為.
引理1[6]設(shè)x(k+1)≤x(k)exp{r(k)(1?ax(k))},k≥k0,{x(k)}為正序列,a是正常數(shù), k0∈N,則
引理2設(shè){x(k)}滿足x(k+1)≤x(k)exp{a(k)?b(k)xθ(k)},k≥k0,其中{a(k)},{b(k)}為正序列,x(k0)>0,θ是正常數(shù),k0∈N,則
引理2及以下引理3、引理4的證明與文[6]中引理2.1、引理2.2的證明類似,為了完備起見,這里給出詳細證明.
證明由x(k+1)≤x(k)exp{a(k)?b(k)xθ(k)},k≥k0得
通過簡單計算,易知系統(tǒng)滿足條件(H1),(H2),故系統(tǒng)(16)是持久的.下圖1是系統(tǒng)(16)具有初值: N(?1)=0.9,N(0)=0.95,μ(?1)=1.5,μ(0)=1.6的解的數(shù)值模擬,從圖中可以看出系統(tǒng)持久.
圖1 解的數(shù)值模擬圖
文章在文[2]模型的基礎(chǔ)上提出了具有時滯和反饋控制的非線性離散模型,利用文[2]的關(guān)于持久性的分析技巧,得到保證系統(tǒng)(1)持久的充分條件,并通過例子及數(shù)值模擬表明結(jié)果的可行性,所得結(jié)果推廣和完善了文[2]的結(jié)果.
[1]Li Y K,Zhu L E.Existence of positive periodic solutions for difference equations with feedback control[J]. Appl.Math.Lett.,2005,18:61-67.
[2]Chen F D.Permanence of a single species discrete model with feedback control and dely[J].Appl.Math. Lett.,2007,20:729-733.
[3]Zhou Z,Zou X.Stable periodic solutions in a discrete periodic logistic equation[J].Appl.Math.Lett., 2003,16(2):165-171.
[4]Huo H F,Li W T.Permanence and global stability for nonautonomous discrete model of plankton allelopathy[J].Appl.Math.Lett.,2004,17(9):1007-1013.
[5]Chen X X,Chen F D.Almost-periodic solutions of a delay population equation with feedback control[J]. Nonlinear Anal.Real World Appl.,2006,7(4):559-571.
[6]Yang X T.Uniform persistence and periodic solutions for a discrete predator-prey system with delays[J].J. Math.Anal.Appl.,2006,316(1):161-177.
[7]Chen F D.The Permanence and global attractivity of Lotka-Volterra competition system with feedback controls[J].Nonlinear Anal.Real World Appl.,2006,7(1):133-143.
[8]Chen F D,Xie X D.Periodicity and stability of a nonlinear periodic integro-differential prey-competition model with infinite delays[J].Commun.Nonlinear.Sci.Numer.Simul.,2007,12(6):876-885.
[9]Chen F D,Wu L P,Li Z.Permanence and global attractivity of the discrete Gilpin-Ayala type population model[J].Comput.Math.Appl.,2007,53(8):1214-1227.
[10]王聯(lián),王慕秋.常差分方程[M].烏魯木齊:新疆大學出版社,1991.
Permanence of a nonlinear single species discrete model with feedback control and delay
WANG Yi-jie
(Department of Mathematics,Minjiang University,Fuzhou 350108,China)
This paper discusses a nonlinear single species discrete model with feedback control and delay. Sufficient conditions are obtained for the permanence of the system.An example shows the feasibility of the result.The result generalizes and supplements some known results.
permanence,nonlinear,discrete,feedback control,delay
O175
A
1008-5513(2009)04-0822-06
2008-07-08.
閩江學院科技育苗B類項目(YKY08012B).
王宜潔(1974-),碩士,研究方向:常微分方程與動力系統(tǒng).
2000MSC:34D40