林娟,謝碧華
(1.福建商業(yè)高等專科學(xué)?;A(chǔ)部,福建福州 350012; 2.福建師范大學(xué)數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院,福建福州 350007)
雙解析函數(shù)的一般復(fù)合邊值問題關(guān)于邊界曲線的穩(wěn)定性
林娟1,謝碧華2
(1.福建商業(yè)高等??茖W(xué)?;A(chǔ)部,福建福州 350012; 2.福建師范大學(xué)數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院,福建福州 350007)
開口弧段Γ上的雙解析函數(shù)的Riemann邊值問題與單位圓周L上雙解析函數(shù)的Hilbert邊值問題復(fù)合而成的一般復(fù)合邊值問題,當(dāng)L與Γ發(fā)生微小的光滑攝動(dòng)后,借助于推廣的拉甫倫捷夫近似于圓的共形映射,將星形域映為單位圓域,從而得出攝動(dòng)后的問題的解的表達(dá)式,同時(shí)討論了解的穩(wěn)定性情況,并給出誤差估計(jì).
雙解析函數(shù);復(fù)合邊值問題;光滑攝動(dòng);共形映射;穩(wěn)定性
解析函數(shù)邊值問題不僅在理論上有著重要意義,而且在實(shí)際應(yīng)用中也有著重要意義,自以Muskhelishvili為首的前蘇聯(lián)學(xué)派在這一領(lǐng)域做出大量杰出的開創(chuàng)性工作以來,得到了許多重要結(jié)果,國(guó)內(nèi)尤為突出的是文[1],不少研究者還把經(jīng)典的解析函數(shù)邊值問題理論向各種函數(shù)類上推廣[24].當(dāng)邊界曲線發(fā)生微小的光滑攝動(dòng),解析函數(shù)的邊值問題的解的穩(wěn)定性問題,近年來得到許多學(xué)者關(guān)注.文[5-8]也研究了相關(guān)攝動(dòng)穩(wěn)定性的問題,文[9]研究了雙解析函數(shù)一般復(fù)合邊值問題(簡(jiǎn)稱為B-RH問題)的解的情況,本文將討論當(dāng)G1(z)=G2(z)時(shí),它的解關(guān)于邊界攝動(dòng)的穩(wěn)定性.
設(shè)L是復(fù)平面C中的單位圓周,D為L(zhǎng)所界定的單位圓域,Γ=?ab是一條開口的光滑弧段,且Γ?D,記C2(L+Γ)為L(zhǎng)+Γ上具有二階連續(xù)導(dǎo)數(shù)的函數(shù)類,定義
其中ω∈C2(L+Γ).對(duì)于充分小的ρ>0,記B(ρ)={ω∈C2(L+Γ):‖ω‖2<ρ}.L經(jīng)過擾動(dòng)ω∈B(ρ)后得到曲線
設(shè)曲線Lω是Lyapunov曲線,它所界定的區(qū)域關(guān)于原點(diǎn)是星形域Dω(近似于單位圓盤).Γ經(jīng)過擾動(dòng)ω∈B(ρ)后得到曲線
記E1為從a沿Γ至b的左側(cè)與從a沿Γω至b的右側(cè)所形成的區(qū)域,E2為從a沿Γ至b的右側(cè)與從a沿Γω至b的左側(cè)所形成的區(qū)域,D(D)為L(zhǎng)ω所圍成的內(nèi)(外)部區(qū)域.
3.1 當(dāng)K1≥0且K2≥0時(shí),B-RH問題的解的穩(wěn)定性
3.2 當(dāng)K1<0且K2<0時(shí),B-RH問題的解的穩(wěn)定性
3.3 當(dāng)K1≥0且K2<0或K1<0且K2≥0時(shí),B-RH問題的解的穩(wěn)定性
討論同3.1,3.2.
[1]Lu Jianke.Boundary Value Problems for Analytic Functions[M].Singapore:World Scientific,1993.
[2]黃沙.Clifford分析中雙正則函數(shù)的非線性邊值問題[J].中國(guó)科學(xué):A輯,1996,39(1):1152-1164.
[3]趙楨.雙解析函數(shù)與復(fù)調(diào)和函數(shù)以及它們的基本邊值問題[J].北京師范大學(xué)學(xué)報(bào):自然科學(xué)版,1997,31(2):175-179.
[4]李玉成,蘭文華.廣義解析函數(shù)的帶位移的非線性邊值問題[J].純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué),2008,24(1):34-40.
[5]Zhang Hongmei,Wang Chuanrong,Zhu Yucan.Stability of solutions to Hilbert boundary value problem under perturbation of the boundary curve[J].J.Math.Anal.Appl.,2003,284:601-617.
[6]Wang chuanrong,Zhang hongmei,Zhu Yucan.The Riemann boundary value problem with respect to the perturbation of boundary curve[J].Complex Variables and Elliptic Equations,2006,51(8/9/10/11):831-845.
[7]Lin Juan,Wang Chuanrong.The stability of a kind of Cauchy type integral with respect to perturbation of integral curve and its application[C]//Yoichi Imayoshi,Yohei Komori,Masaharu Nishio,et al.Complex Analysis and its Applications.Osaka:Osaka Municipal Universities Press,2008.
[8]Lin Juan,Wang Chuanrong.Riemann boundary value problem with respect to the perturbation of boundary curve to be an open Arc[J].Acta.Math.Sci.,2009,29B(5):1481-1488.
[9]謝碧華,林娟.雙解析函數(shù)的一般復(fù)合邊值問題[J].福建師范大學(xué)學(xué)報(bào):自然科學(xué)版,2009,25(4):22-25.
[10]王傳榮.復(fù)變函數(shù)方法[M].廈門:廈門大學(xué)出版社,1999.
The stability of the general compound boundary value problem for bianalytic functions about boundary curve
LIN Juan1,XIE Bi-hua2
(1.Department of Foundation,Fujian Commercial College,Fuzhou350012,China;
2.College of Mathematics and Computer Science,Fujian Normal University,Fuzhou350007,China)
For the general compound boundary value problems combining Riemann boundary value problem for bianalytic functions on an open arc Γ and Hilbert boundary value problem for bianalytic functions on a unit circle L,when smooth perturbation happens for Γ and L,by extending Lavrentjev’s conformal mapping on a region approximating to a unit disc from a star-like domain onto a unit disc,the authors show the solutions of the perturbed problem.They also discuss the stability of the solutions and give error estimates.
bianalytic functions,compound boundary value problem,smooth perturbation,conformal mapping,stability
O175.8
A
1008-5513(2009)04-0816-06
2008-09-14.
福建省自然科學(xué)基金(2008J0187),福建省教育廳科技項(xiàng)目(JA08255).
林娟(1965-),碩士,研究方向:邊值問題與積分方程.
2000MSC:30E20,30E25