李昊然
同學(xué)們學(xué)過的軸對稱、平移、旋轉(zhuǎn)以及中心對稱這些變換后的圖形都是全等的,它們在同學(xué)們的生活和學(xué)習(xí)中形成了一道美麗的風(fēng)景線,同時也給社會帶來了美麗與和諧.
一、軸對稱變換
這部分內(nèi)容主要有以下幾點(diǎn):(1)判斷一個圖形是不是軸對稱圖形;(2)弄清軸對稱與軸對稱圖形的區(qū)別與聯(lián)系;(3)找出對稱軸的條數(shù).
【溫馨提示】注意理解軸對稱和軸對稱圖形的有關(guān)概念,對稱軸的概念以及判斷,對圖形要多觀察,有時可借助于直覺判斷.
例1(1)(2008年·煙臺市)下列交通標(biāo)志中,不是軸對稱圖形的是
().
(2)(2008年·青島市)圖1的各圖形中,軸對稱圖形的個數(shù)是().
A. 1 B. 2 C. 3 D. 4
分析: 本例主要考查軸對稱圖形的識別:一個圖形如果沿著某條直線對折,直線兩旁的部分能夠完全重合,則可判定該圖形是軸對稱圖形.求解這類題時,應(yīng)根據(jù)軸對稱圖形的定義去觀察、分析它的各個選項(xiàng),然后再作選擇.
解:(1)觀察4個圖形,易知只有C中圖案不是軸對稱圖形,故應(yīng)選C.
(2)觀察4個圖形,易知只有第1個與第4個圖案不是軸對稱圖形,故應(yīng)選B.
點(diǎn)評:本題考查的是生活中的符號、標(biāo)志,提醒我們要留意身邊符號的意義,要學(xué)會欣賞軸對稱圖形帶給我們的美.
二、平移變換
在同一平面內(nèi),將一個圖形沿著某個方向移動一定的距離,這樣的圖形運(yùn)動稱為平移.平移是繼軸對稱以后的又一個圖形的基本變換,平移既可以表示物體(圖形)運(yùn)動的過程,也可以表示物體(圖形)運(yùn)動后最終的位置與初始位置的關(guān)系,平移不改變圖形的形狀和大?。?
例2(2008年·重慶市)作圖題.(不要求寫作法)
如圖2,在10×10的方格紙中,有一個格點(diǎn)四邊形ABCD(即四邊形的頂點(diǎn)都在格點(diǎn)上).
(1)在給出的方格紙中,畫出四邊形ABCD向下平移5格后的四邊形A1B1C1D1.
(2)在給出的方格紙中,畫出四邊形ABCD關(guān)于直線l對稱的四邊形A2B2C2D2.
分析: 在平移作圖時,常用的方法有兩種:一是確定對應(yīng)點(diǎn),由對應(yīng)點(diǎn)得到平移后的圖形;二是確定對應(yīng)線段,由對應(yīng)線段得到平移后的圖形.
解:作圖如圖3.
點(diǎn)評:平移時要搞清平移的方向和平移的距離.軸對稱首先要找到對稱軸,然后分別作已知點(diǎn)的對稱點(diǎn),連線即可得到所求圖形.
三、旋轉(zhuǎn)變換
在平面內(nèi),將一個圖形繞一個定點(diǎn)沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運(yùn)動稱為旋轉(zhuǎn),這個定點(diǎn)稱為旋轉(zhuǎn)中心,轉(zhuǎn)動的角度稱為旋轉(zhuǎn)角,旋轉(zhuǎn)不改變圖形的大小和形狀.
要理解好概念,應(yīng)注意以下兩點(diǎn):
(1)圖形的旋轉(zhuǎn)是由旋轉(zhuǎn)中心和旋轉(zhuǎn)角所決定的;
(2)注意圖形旋轉(zhuǎn)的對應(yīng)元素.
例3(2008年·無錫市)如圖4,△OAB繞點(diǎn)O逆時針旋轉(zhuǎn)80°到△OCD的位置,已知∠AOB=45°,則∠AOD等于().
A. 55° B. 45°
C. 40° D. 35°
分析: 根據(jù)旋轉(zhuǎn)圖形的性質(zhì),旋轉(zhuǎn)不改變圖形的大小和形狀.
解:由題意得△OAB≌△OCD,所以∠AOB=∠COD=45°,所以∠AOD=80° - 45°=35°.
故應(yīng)選 D.
點(diǎn)評:本題考查旋轉(zhuǎn)的性質(zhì),即圖形中每一個點(diǎn)都繞著旋轉(zhuǎn)中心旋轉(zhuǎn)了同樣大小的角度,對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,對應(yīng)線段、對應(yīng)角都相等,圖形的形狀、大小都不發(fā)生變化.
四、中心對稱變換
把一個圖形繞著某一點(diǎn)旋轉(zhuǎn)180°,如果它能和另一個圖形重合,那么我們就說這兩個圖形成中心對稱.這個點(diǎn)叫做對稱中心,這兩個圖形中的對應(yīng)點(diǎn)叫做關(guān)于對稱中心的對稱點(diǎn).
例4 (2008年·安徽?。┤鐖D5,在平面直角坐標(biāo)系中,一顆棋子從點(diǎn)P處開始依次關(guān)于點(diǎn)A、B、C進(jìn)行循環(huán)對稱跳動,即第一次跳到點(diǎn)P關(guān)于點(diǎn)A的對稱點(diǎn)M處,接著跳到點(diǎn)M關(guān)于點(diǎn)B的對稱點(diǎn)N處,第三次再跳到點(diǎn)N關(guān)于點(diǎn)C的對稱點(diǎn)處……
如此下去.
(1)在圖中畫出點(diǎn)M、N,并寫出點(diǎn)M、N的坐標(biāo):.
(2)求經(jīng)過第2 008次跳動之后,棋子落點(diǎn)與點(diǎn)P的距離.
分析: 解本題時,可在坐標(biāo)系中先讓P點(diǎn)依次關(guān)于點(diǎn)A、B、C作循環(huán)對稱跳動,分別畫出對稱點(diǎn),根據(jù)坐標(biāo)系寫出對稱點(diǎn)的坐標(biāo);然后觀察跳動的規(guī)律,每跳動3次后回到P處,可以得出經(jīng)過2 008次跳動后,棋子落在點(diǎn)M處,計算PM的距離得出結(jié)果.
解:(1)M(-2,0),N(4,4)(畫圖略).
(2)棋子跳動3次后又回到點(diǎn)P處,所以經(jīng)過第2 008次跳動后,棋子落在點(diǎn)M處.
PM== =2.
答:經(jīng)過第2 008次跳動后,棋子落點(diǎn)與P點(diǎn)的距離為2.
點(diǎn)評:本題主要考查中心對稱和坐標(biāo)的知識.一個圖形繞某點(diǎn)旋轉(zhuǎn)180°后能與另一個圖形重合,那么這兩個圖形關(guān)于這一點(diǎn)對稱,即中心對稱.解題時要充分結(jié)合坐標(biāo)系進(jìn)行考慮.
五、綜合變換
例5(2008年·南京市)如圖6,菱形 ABCD與菱形EFGH的形狀、大小完全相同.
(1)請從下列序號中選擇正確選項(xiàng)的序號填寫.
①點(diǎn)E、F、G、H,②點(diǎn)G、F、E、H,③點(diǎn)E、H、G、F,④點(diǎn)G、H、E、F.
如果圖6(1)經(jīng)過一次平移后得到圖6(2),那么點(diǎn)A、B、C、D的對應(yīng)點(diǎn)分別是.
如果圖6(1)經(jīng)過一次軸對稱后得到圖6(2),那么點(diǎn)A、B、C、D的對應(yīng)點(diǎn)分別是.
如果圖6(1)經(jīng)過一次旋轉(zhuǎn)后得到圖6(2),那么點(diǎn)A、B、C、D的對應(yīng)點(diǎn)分別是.
(2)①圖6(1),圖6(2)關(guān)于點(diǎn)O成中心對稱,請畫出對稱中心(保留作圖痕跡,不寫作法).
②寫出兩個圖形成中心對稱的一條性質(zhì):.(可以結(jié)合所畫圖形敘述)
分析: 題中先給出了兩個全等的菱形,然后要求同學(xué)們按照題目中給出的提示和要求進(jìn)行變換,做題時一定要根據(jù)這幾種全等變換的有關(guān)性質(zhì)進(jìn)行畫圖與判斷.
解:(1)①②④
(2)①畫圖略.
②答案不唯一,如對應(yīng)線段相等,OC=OE等.
點(diǎn)評:本題是對平移、軸對稱、旋轉(zhuǎn)及中心對稱等相關(guān)知識的考查.(1)根據(jù)平移、軸對稱、旋轉(zhuǎn)的概念解決.(2)對應(yīng)點(diǎn)的連線交于對稱中心.(3)寫出一條性質(zhì)即可,如對應(yīng)線段相等,對應(yīng)角相等,連接對稱點(diǎn)的線段都經(jīng)過對稱中心并且被對稱中心平分等.
注:“本文中所涉及到的圖表、注解、公式等內(nèi)容請以PDF格式閱讀原文”。
中學(xué)生數(shù)理化·八年級數(shù)學(xué)華師大版2008年11期