在高考物理中,連接體模型是一個關(guān)鍵考點,考查學(xué)生對物體間相互作用規(guī)律、運動和力的關(guān)系的理解和應(yīng)用能力,熟練掌握該模型的解題方法對處理物體運動相關(guān)問題有很大幫助.
1相對靜止類連接體模型
1. 1 解題方法
整體法:當(dāng)求解系統(tǒng)所受的外力或加速度時,優(yōu)先考慮整體法.將連接體看作一個整體,分析整體受到的外力,然后利用牛頓第二定律求出整體的加速度.
隔離法:當(dāng)需要求解連接體之間的內(nèi)力時,使用隔離法.將連接體中的某個物體隔離出來,單獨分析它的受力情況,再利用牛頓第二定律求出物體間的內(nèi)力.
1. 2 典例賞析
例1形狀不同的物塊 A,B,C 按照圖1所示放置在水平光滑的桌面上,三者保持靜止?fàn)顟B(tài).已知A,B,C 的質(zhì)量分別為 m,2m,3m,B 的斜面傾角 θ= 30° ,A與 B 接觸面之間的動摩擦因數(shù) ,B與C 接觸面之間的動摩擦因數(shù)
,重力加速度為g .假定最大靜摩擦力與滑動摩擦力相等,求:當(dāng)在物塊 C 上作用一個水平向右的外力 F 在什么范圍內(nèi)時,三個物塊能保持相對靜止?
圖1
解析根據(jù)題意可以獲得的關(guān)鍵信息有以下幾條: ① 當(dāng) B,C 間的靜摩擦力達到最大時, A 和 B 共同的加速度達到最大; ② 當(dāng) A,B 間的靜摩擦力沿斜面向下達到最大靜摩擦力時,A向右運動的加速度達到最大.本題的關(guān)鍵點是整體運動的最大加速度要取兩個加速度中較小的那一個.
先以三個物塊為整體進行分析,設(shè)它們的加速度大小為 a1 ,則由牛頓第二定律得
因為 A 和 B 之間無相對運動,所以可將兩者為
整體進行分析,設(shè)兩者的加速度為 aAB ,由牛頓第二
定律得 又知 f2max?μ2(mA+mB)g ,故解得
業(yè)再以隔離法分析 A ,可由牛頓第二定律得
其中 f1?μ1N1,aA=a1
根據(jù)以上可知 F 的大小范圍為02(mA+mB+mc)g=3mg.
2相互運動類連接體模型
2.1 解題方法
隔離法對存在相對運動的連接體中的各物體,首先利用隔離法對單個物體進行受力分析.明確每個物體所受的力,包括外力和內(nèi)力(如彈力、摩擦力).
整體法在對單個物體進行受力分析后,如果需要進一步分析整個系統(tǒng)的運動狀態(tài),可以使用整體法.此時,將連接體看作一個整體,分析整體受到的外力,然后利用牛頓第二定律求出整體的加速度或運動狀態(tài).
2.2 典例賞析
例2如圖2所示,一根足夠長的光滑直桿傾斜固定在豎直平面內(nèi),其與水平方向的傾斜角 θ= 60° ,在其上部點 O 處套有一個質(zhì)量為 ψm 的物塊,并用輕質(zhì)細繩連接一個質(zhì)量為 Ψm 的小球,輕質(zhì)細繩跨過與點 O 在同一水平高度的兩個小定滑輪,已知輕桿和兩個小定滑輪在同一豎直平面內(nèi),并測得 OO1=L .重力加速度為 g ,由靜止釋放小物塊(運動過程中小球不與其他物體發(fā)生碰撞).求:
(1)小球運動到最低點時小物塊的加速度大??;(2)小物塊運動到距離點 O 為 L 的點 D 處時的速度大小.
解析本題涉及輕繩和輕桿兩類相對運動的連接體問題,綜合性較強,除需運用牛頓第二定律、整體與隔離法外,也要善于根據(jù)不同情況正確選擇研究系統(tǒng),然后利用系統(tǒng)的機械能守恒來解題.此外,本題分析的關(guān)鍵是要抓住輕繩連接的兩個物體的速度沿輕繩方向的分速度始終相等這一規(guī)律.
(1)根據(jù)題意,在小物塊剛釋放時,其沿輕桿做加速下滑運動,加速度的方向沿輕桿向下,根據(jù)幾何知識可知滑輪 O1 左側(cè)的輕繩(即線段 OO1 )先縮短,與此同時 O1 右側(cè)的輕繩伸長,可知小球?qū)⑾蛳录铀龠\動.由幾何知識知,當(dāng) OO1 與輕桿垂直時,OO1 間的輕質(zhì)細繩最短,也即小球在此時運動到最低點.利用隔離法,以小物塊為研究對象,分析其受力情況,然后根據(jù)牛頓第二定律可得 mgsinθ=ma ,解得小球運動到最低點時小物塊的加速度大小為
(2)如圖3所示,在小物塊到達 D 點時,將其速度沿著輕繩方向和垂直輕繩方向分解,設(shè)小物塊運動到距離點 O 為 L 的點 D 處時,小物塊的速度大小為 v ,小球的速度大小為 v1 .因為在沿輕質(zhì)細繩方向上小物塊與小球的速度大小相等,則有 ,可得小物塊運動到距離點 O 為 L 的點 D 處時
圖2
圖3
根據(jù)題意可知,小物塊與小球組成的系統(tǒng)機械能守恒,則有 mu2,又有
可解得小物塊運動到距離點 O 為 L 的點 D 處時的速度大小為
3結(jié)語
在解決連接體問題時,無論是相對靜止類還是相互運動類,都需要先明確問題的類型和求解目標(biāo),然后選擇合適的解題方法(整體法或隔離法).在解題過程中,需注重受力分析的正確性和完整性,確保不漏掉任何一個力.同時,要注意區(qū)分內(nèi)力和外力,并正確應(yīng)用牛頓第二定律進行求解.
參考文獻:
[1]鄺玉蘭.以連接體模型為例的高中物理習(xí)題實驗化教學(xué)探究[J].廣西物理, ,2023,44(1):108-111+133
[2孔令濱.例析高中物理常見連接體模型J」.高中數(shù)理化,2024(6):40-41.