亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Convergence Rate of Estimator for Nonparametric Regression Model under-mixing Errors

        2017-03-14 02:46:30

        (School of Mathematical Sciences,Anhui University,Hefei 230601,China)

        §1.Introduction

        Let{Xn,n≥1}be a random variable sequence defined on a fixed probability space(?,F,P).Write FS=σ(Xi,i∈S?N).Givenσ-algebras B,R in F,let

        De fine the

        Definition 1.1A sequence of random variables{Xn,n≥1}is said to be a-mixing sequence if there existsk∈N such that(k)<1.

        Recently,Wang et al[20]studied the nonparametric regression model based on-mixing errors and obtained the complete consistency of the estimator of unknown functiong(x).In this paper,we also investigate this nonparametric regression model and give the convergence rate for the estimator of unknown functiong(x).

        Consider a fixed design regression model

        wherexniare design points on a setAinRqfor someq≥1,g(·)is an unknown function onAandεniare random errors.Assume that for eachn,(εn1,···,εnn)has the same distribution as(ε1,···,εn).As an estimator ofg(·),the following weighted regression estimator is given:

        whereWni(x)=Wni(x;xn1,···,xnn)are weighted functions.

        The estimators of nonparametric regression model such as weighted regression estimator has been studied by many authors.For example,under the independent errors,Georgiev and Greblicki[21],Müller[22]and Georgiev[23]studied the consistency and asymptotic normality for the estimator.Many authors extended the results of estimator ofg(x)to the dependent cases,for example,Roussas et al[24]for strong mixing errors,Tran et al[25],Hu et al[26]and Hu et al[27]for the linear time series,Liang and Jing[28]for the negatively associated(NA)errors,Yang et al[29]and Peng et al[30]for the negatively orthant dependent(NOD)errors,etc.

        Recall that the sequence{Xn,n≥1}is stochastically dominated by a nonnegative random variableXif

        The method of stochastically dominated by a nonnegative random variable can be seen in many papers such as Adler and Rosalsky[31],Adler et al[32],Wu[33],etc.Hanson and Wright[34]and Wright[35]obtained a bound on tail probabilities for quadratic forms in the independent random variables by using the following condition.There existC>0 andγ>0 such that for alln≥1 and allx≥0,we haveP(|Xn|≥x)≤CHere,we can see it to be a formerly method of stochastically dominated by a nonnegative random variable.

        In this paper,we investigate the nonparametric regression model(1.1)based on-mixing errors,which are stochastically dominated by a nonnegative random variable.We obtain the convergence rate for the weighted estimator of unknown functiong(x)inpth-mean,which implies the convergence rate in probability.Moreover,an example of the nearest neighbor estimator is illustrated and convergence rates of estimator are presented.For the details,please see our Theorem 2.1 and Example 2.1 in Section 2.

        Under the nonparametric regression model of(1.1),for any fixed pointx∈AinRq(q≥1)and somep≥1,we list some assumptions on weighted functionWni(x)=Wni(x;xn1,···,xnn)as follows:

        Lemma 1.1[5]For a positive integern0≥1 and positive real numbersp≥2 and 0≤r<1,there is a positive constantC=C(p,n0,r)such that if{Xn,n≥1}is a sequence of-mixing random variables with≤r,EXn=0 andE|Xn|p<∞for everyn≥1,then for alln≥1

        Lemma 1.2[31?33]Let{Xn,n≥1}be a sequence of random variables,which is stochastically dominated by a nonnegative random variableX.Then,for anyα>0 andb>0,the following two statements hold:

        and

        whereC1andC2are positive constants.Consequently,it hasE|Xn|α≤C3EXαfor alln≥1,whereC3is a positive constant.

        §2.The Main Result and Its Proofs

        First,we study the convergence rate of the estimator(1.2)forg(x)inpth-mean,which implies the convergence rate in probability.

        Theorem 2.1Let{εn,n≥1}be a mean zeromixing sequence withn0≥1,0≤r<1 and≤r.Assume that the sequence of{εn,n≥1}is stochastically dominated by a nonnegative random variableZwithEZ2p<∞for somep≥1.Suppose that the conditions(H1)-(H3)hold true andg(x)satis fies a local Lipschitz condition around the pointx∈A.Then it has

        which implies

        Let 1≤kn≤n,the nearest neighbor weight function estimator ofg(x)in model(1.1)is defined as follows:

        where

        So,for everyx∈[0,1],by de finition ofRi(x)and choice ofxniandkn=[n1/2],it follows

        Meanwhile,it is easy to check that

        In addition,We assume thatg(x)satis fies a local Lipschitz condition around the pointx∈[0,1].So by(2.4)-(2.7),it can be found that the assumptions of(H1)-(H3)withp=2 are satis fied.Consequently,we make use of Theorem 2.1 and obtain that

        which yields

        Proof of Theorem 2.1On the one hand,forx∈A,it can be seen that

        Since thatg(x)satisfies a local Lipschitz condition around the pointx,by(H1)-(H3)and the inequality above,we get that

        By the fact that for eachn,(εn1,...,εnn)has the same distribution as(ε1,...,εn),we establish that{Wni(x)εi,1≤i≤n}is also a mean zero-mixing sequence with the same mixing coefficients.Then,forx∈Aandp≥1,byEZ2p<∞,(H2)and Lemmas 1.1 and 1.2,we have that

        On the other hand,for somep≥1,it can be checked byCrinequality that

        Therefore,(2.1)follows from(2.8)-(2.10)immediately.Last,by Markov inequality and(2.1),it has for allλ>0 that

        So we establish that the result of(2.2).

        Acknowledgements

        The authors are deeply grateful to the editor and the anonymous referees for their careful reading and insightful comments,which helped in improving an earlier version of this paper.

        [1]STEIN S.A bound for the error in the normal approximation to the distribution of a sum of dependent random variables[J].Proc Sixth Berkeley Symp on Math Statist and Prob,1972,2:583-602.

        [2]BRADLEY R C.Every “l(fā)owerψ-mixing” Markov chain is “interlacedρ-mixing”[J].Stochastic Process Appl,1997,72(2):221-239.

        [3]BRADLEY R C.On the spectral density and asymptotic normality of weakly dependent random fields[J].J Theoret Probab,1992,5(2):355-373.

        [4]PELIGRAD M.Maximum of partial sums and an invariance principle for a class of weak dependent random variables[J].Proc Amer Math Soc,1998,126(4):1181-1189.

        [5]UTEV V,PELIGRAD M.Maximal inequalities and an invariance principle for a class of weakly dependent random variables[J].J Theoret Probab 2003,16(1):101-115.

        [6]PELIGRAD M,GUT A.Almost-sure results for a class of dependent random variables[J]J Theoret Probab,1999,12(1):87-104.

        [7]WU Qun-ying.Convergence properties ofρ-mixing random sequences[J].Chin J of Eng Math,2001,18(3):58-64 turn to 50.

        [8]GAN Shi-xin.Almost sure convergence for-mixing random variable sequences[J].Stat Probab Lett,2004,67(4):289-298.

        [9]KUCZMASZEWSKA A.On complete convergence for arrays of rowwise dependent random variables[J].Stat Probab Lett,2007,77(11):1050-1060.

        [10]AN Jun,YUAN De-mei.Complete convergence of weighted sums forρ?-mixing sequence of random variables[J].Stat Probab Lett,2008,78(12):1466-1472.

        [11]SUNG S H.Complete convergence for weighted sums ofρ?-mixing random variables[J].Discrete Dyn Nat Soc,2010,Article ID 630608,13 pages.

        [12]WANG Xue-jun,LI Xiao-qin,YANG Wen-zhi,et al.On complete convergence for arrays of rowwiseweakly dependent random variables[J].Appl Math Lett,2012,25(11):1916-1920.

        [13]SUNG S H.On the strong convergence for weighted sums ofρ?-mixing random variables[J].Stat Pap 2013,54(3):773-781.

        [14]SUNG S H.On inverse moments for a class of nonnegative random variables[J].J Inequal Appl,2010,Article ID 823767,13 pages.

        [15]HU Shu-he,WANG Xing-hui,YANG Wen-zhi,et al.A note on the inverse moment for the nonnegative random variables[J].Commun Stat Theory Methods,2014,43(8):1 750-1757.

        [16]YANG Wen-zhi,HU Shu-he.Large deviation for a least squares estimator in a nonlinear regression model[J].Statist Probab Lett,2014,91:135-144.

        [17]SHEN Ai-ting,ZHU Hua-yan,ZHANG Ying.Exponential inequalities and complete convergence for extended negatively dependent random variables[J].Chin Quart J of Math,2014,29(3):344-355.

        [18]WU Yong-feng,SHEN Guang-jun.Complete moment convergence for arrays of rowwise negatively associated random variables[J].Chin Quart J of Math,2013,28(4):510-521.

        [19]ZHENG Lu-lu,XU Chen,HUANG Xu-feng,et al.On the strong rates of convergence for arrays of rowwise extended negatively dependent random variables[J].Chin Quart J of Math,2014,29(4):592-601.

        [20]WANG Xue-jun,XIA Feng-xi,GE Mei-mei,et al.Complete consistency of the estimator of nonparametric regression models based on-mixing sequences[J].Abstr Appl Anal,2012,Article ID 907286,12 pages.

        [21]GEORGIEV A A,GREBLICKI W.Nonparametric function recovering from noisy observations[J].J Stat Plan Infer,1986,13(1):1-14.

        [22]MüLLER H G.Weak and universal consistency of moving weighted averages[J].Period Math Hungar,1987,18(3):241-250.

        [23]GEORGIEV A A.Consistent nonparametric multiple regression:the fixed design case[J].J Multivar Anal,1988,25(1):100-110.

        [24]ROUSSAS G G,TRAN L T,IOANNIDES D A.Fixed design regression for time series:Asymptotic normality[J].J Multivar Anal,1992,40(2):262-291

        [25]TRAN L,ROUSSAS G,YAKOWITZ S,et al.Fixed-design regression for linear time series[J].Ann Stat,1996,24(3):975-991.

        [26]HU Shu-he,ZHU Chun-hua,CHEN Ye-bin.Fixed-design regression for linear time series[J].Acta Math Sci Ser B Engl Ed,2002,22(1):9-18.

        [27]HU Shu-he,PAN Guang-min,GAO Qi-bing.Estimate problem of regression models with linear process errors[J].App1 Math J Chinese Univ Ser A,2003,18(1):81-90.

        [28]LIANG Han-ying,JING Bing-yi.Asymptotic properties for estimates of nonparametric regression models based on negatively associated sequences[J].J Multivar Anal,2005,95(2):227-245.

        [29]YANG Wen-zhi,WANG Xue-jun,WANG Xing-hui,et al.The consistency for estimator of nonparametric regression model based on NOD errors.J Inequal Appl,2012,2012:140,pages 13.

        [30]PENG Zhi-qing,ZHENG Lu-lu,LIU Yan-fang,et al.Asymptotic property for the estimator of nonparametric regression models under negatively orthant dependent errors[J].Chin Quart J of Math,2015,30(2):300-307.

        [31]ADLER A,ROSALSKY A.Some general strong laws for weighted sums of stochastically dominated random variables[J].Stoch Anal Appl 1987,5(1):1-16.

        [32]ADLER A,ROSALSKY A,TAYLOR R L.Strong laws of large numbers for weighted sums of random elements in normed linear spaces[J].Int J Math Math Sci,1989,12(3):507-530.

        [33]WU Qun-ying.Probability Limit Theory for Mixed Sequence[M].Science Press,Beijing 2006.

        [34]HANSON D L,WRIGHT F T.A bound on tail probabilities for quadratic forms in independent random variables[J].Ann Math Statist,1971,42(3):1079-1083.

        [35]WRIGHT F T.A bound on tail probabilities for quadratic forms in independent random variables whose distributions are not necessarily symmetric[J].Ann Probab,1973,1(6):1068-1070.

        国产成人综合久久亚洲精品| 久久精品国产亚洲av成人擦边| 欧美在线Aⅴ性色| 黄片国产一区二区三区| 青青草狠吊色在线视频| 国产不卡视频一区二区三区| 无码不卡av东京热毛片| 天堂а√在线最新版中文| 国产成人午夜福利在线小电影| 国产高清一区在线观看| 亚洲精品视频一区二区三区四区| 成人自拍小视频在线看| 国产爆乳无码一区二区麻豆| 亚洲国产午夜精品理论片在线播放 | 少妇一级aa一区二区三区片| 国产三级精品三级在专区中文| 亚洲sm另类一区二区三区| 风韵丰满熟妇啪啪区老熟熟女| 超级碰碰色偷偷免费视频| 日日摸夜夜添无码无码av| 日韩中文在线视频| 国产一区二区三区四区色| 日韩不卡一区二区三区色图| 人人人妻人人人妻人人人| 白丝兔女郎m开腿sm调教室| 日日碰狠狠丁香久燥| 国产亚洲sss在线观看| 国产一区二区三区蜜桃av| 二区三区日本高清视频| 国产成人av一区二区三区在线观看 | 中文字幕久久久久久久系列| 国产精品农村妇女一区二区三区| 野花视频在线观看免费| 欧美老熟妇乱xxxxx| 熟女熟妇伦av网站| 日韩在线精品在线观看| 成年女人18毛片观看| 日本av在线一区二区| 欧美成免费a级毛片| 午夜丰满少妇性开放视频| 九色91精品国产网站|