亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Fekete-Szeg? Problem for Certain Subclass of p-Valent Analytic Functions using Quasi-Subordination

        2017-03-14 02:46:34

        (1.School of Mathematics and Statistics,Chifeng University,Inner Mongolia 024000,China;2.School of Computer and Information Engineering,Chifeng University,Inner Mongolia 024000,China)

        §1.Introduction

        LetApdenote the class of functions of the form

        which are analytic in the unit diskD={z:|z|<1}.For simplicity,we writeA1=:A.

        For two analytic functionsfandg,the functionfis subordinate toginD(see[1]),written as follows

        if there exists an analytic functionω,withω(0)=0 and|ω(z)|<1 such that

        In particular,if the functiongis univalent in D,thenf(z)?g(z)is equivalent tof(0)=g(0)andf(D)?g(D).

        Ma and Minda[2]introduced and studied the classesS?(φ)andC(φ)as below

        and

        whereφ(z)is an analytic function with positive real part inD,φ(D)is symmetric with respect to the real axis and starlike with respect toφ(0)=1 andφ′(0)>0.The classS?(φ)andC(φ)include several well-known subclasses of starlike and convex functions as special case.

        In the year 1970,Robertson[3]introduced the concept of quasi-subordination.For two analytic functionsfandg,the functionfis quasi-subordinate toginD,written as follows

        if there exist analytic functions?andω,with|?(z)|≤1,ω(0)=0 and|ω(z)|<1 such that

        Observe that when?(z)=1,thenf(z)=g(ω(z)),so thatf(z)?g(z)inD.Also notice that ifω(z)=z,thenf(z)=?(z)g(z)and it is said thatfis majorized bygand writtenf(z)?g(z)inD.Hence it is obvious that quasi-subordination is a generalization of subordination as well as majorization.See[4-6]for works related to quasi-subordination.

        Mohd and Darus[7]introduced the classes(φ)andCq(φ)as below

        and

        The two classes are analogous to the Ma-Minda starlike and convex classes defined in the form of quasi-subordination.

        Letf(m)be then-th order ordinary differential operator,for a functionf∈Ap,that is,

        wherep>m,p∈N;n∈N0=N∪{0},z∈D.

        Throughout this paper it is assumed that functionφ(z)is analytic inDwithφ(0)=1.Using the operatorf(m),we now de fine the following class ofp-valent analytic functions.

        De finition 1.1Let the class(λ,b;φ)consists of functionsf(z)∈Apsatisfying the quasi-subordination

        Clearly,we have the following relationship:

        It is well known that then-th coefficient of a univalent functionf(z)∈Ais bounded byn(see[8]).The bounds for coefficient give information about various geometric properties of the function.Many authors have also investigated the bounds for the Fekete-Szeg? coefficient for various classes[7,9-23].In particular,some authors start to study the Fekete-Szeg? problem for various classes using quasi-subordination[7,22,23].In this paper,we obtain coefficient estimates for the functions in the above defined class.

        Let ? be the class of analytic functionsω(z),normalized byω(0)=0,and satisfying the condition|ω(z)|<1.We need the following lemmas to prove our main results.

        Lemma 1.2[24]Ifω∈?,then for any complex numbert

        The result is sharp for the functionsω(z)=z2orω(z)=z.

        Lemma 1.3[2]Ifω∈?,then

        Whent<?1 ort>1,equality holds if and only ifω(z)=zor one of its rotations.If?1<t<1,then equality holds if and only ifω(z)=z2or one of its rotations.Equality holds fort=?1 if and only ifω(z)=or one of its rotations while fort=1,equality holds if and only ifω(z)=or one of its rotations.

        Also the sharp upper bound above can be improved as follows then?1<t<1:

        and

        §2.Main Results

        Throughout,letf(z)=z+ap+1zp+1+ap+2zp+2+···,φ(z)=1+B1z+B2z2+···,?(z)=c0+c1z+c2z2+···,ω(z)=ω1z+ω2z2+···,B1∈RandB1>0.

        Theorem 2.1Iff(z)∈Apbelongs to(λ,b;φ),then

        and,for any complex numberμ,

        where

        ProofIff(z)(λ,b;φ),then there exist analytic functions?(z)andω(z),with|?(z)|≤1,ω(0)=0 and|ω(z)|<1 such that

        Since

        it follows from(2.3)that

        Further,

        where

        Since?(z)is analytic and bounded inD,we have[25,page 172]

        By using this fact and the well-known inequality|ω1|≤1 in(2.6)and(2.7),we get

        and

        Applying Lemma 1.2 and the triangle inequality to(2.8),we obtain(2.2).The result is sharp for the function

        or

        Forμ=0 in(2.2),we have(2.1).The proof of theorem 2.1 is complete.

        Corollary 2.2[7]Iff(z)∈Abelongs to(φ),then

        and,for any complex numberμ,

        Corollary 2.3[7]Iff(z)∈Abelongs toCq(φ),then

        and,for any complex numberμ,

        Theorem 2.4Iff(z)∈Apsatis fies

        then the following inequalities hold

        and,for any complex numberμ,

        where

        ProofThe result follows by takingω(z)=zin the proof of Theorem 2.1.

        Theorem 2.5Iff(z)∈Apbelongs toRpm,q(λ,b;φ),then for any real numberμandb>0

        Further,ifσ1≤μ≤σ3,then

        Ifσ3≤μ≤σ2,then

        For any real numberμandb<0,

        Further,ifσ2≤μ≤σ3,then

        Ifσ3≤μ≤σ1,then

        where

        ProofWe assume thatb>0.From(2.2),we have

        Ifμ≤σ1,thent≤?1.Thus,by applying Lemma 1.3,we get the first inequality in(2.10).

        Ifμ≥σ2,thent≥1.Applying Lemma 1.3,we have the last inequality in(2.10).

        Whenσ1≤μ≤σ2,then|t|≤1.Thus applying Lemma 1.3,we obtain the middle inequality in(2.10).

        Moreover,(2.11)and(2.12)are established by an application of Lemma 1.3.

        Applying Lemma 1.3,we can prove(2.13)?(2.15)forb<0.The proof of theorem 2.5 is complete.

        Corollary 2.6Iff(z)∈Abelongs to(φ),then for any real numberμ

        Further,ifσ1≤μ≤σ3,then

        Ifσ3≤μ≤σ2,then

        [1]LITTLEWOOD J E.Lectures on the Theory of Functions.Oxford University Press,1944.

        [2]MA W,MINDA D.A unified treatment of some special classes of univalent functions[C].Conference Proceedings Lecture Notes Analysis,Cambridge:International Press,1994,157-169.

        [3]ROBERTSON M S.Quasi-subordination and coefficient conjectures[J].Bulletin of the American Mathematical Society,1970,76:1-9.

        [4]ALTMATS O,OWA S.Majorizations and quasi-subordinations for certain analytic functions[J].Proceedings of the Japan Academy,1982,68(7):181-185.

        [5]Lee S Y.Quasi-subordinate functions and coefficient conjectures[J].Journal of the Korean Mathematical Society,1975,12(1):43-50.

        [6]REN F Y,OWA S,FUKUI S.Some inequalities on quasi-subordinate functions[]J.Bulletin of the Australian Mathematical Society,1991,43(2):317-324.

        [7]MOHD M M,DARUS M.Fekete-Szeg? problems for quasi-subordination classes[J].Abstract and Applied Analysis,2012,3(2):1-14.

        [8]FRASIN B A.Neighborhoods of certain multivalent functions with negative coefficients[J].Appl Math Comput,2007,193:1-6.

        [9]AHUJA O P,JAHANGIRI M.Fekete-Szeg? problem for a uni fied class of analytic functions[J].Panamerican Mathematical Journal,1997,7(2):67-78.

        [10]ALI R M,Lee S K,RAVICHANDRAN V,et al.The Fekete-Szeg? coefficient functional for transforms of analytic functions[J].Bulletin of the Iranian Mathematical Society,2009,35(2):119-142.

        [11]CHO N E,OWA S.On the Fekete-Szeg? problem for stronglyα-logarithmic quasiconvex functions[J].Southeast Asian Bulletin of Mathematics,2004,28(3):420-430.

        [12]CHOI J H,KIM Y C,SUGAWA T.A general approach to the Fekete-Szeg? problem[J].Journal of the Mathematical Society of Japan,2007,59(3):707-727.

        [13]DARUS M,TUNESKI N.On the Fekete-Szeg? problem for generalized close-to-convex functions[J].International Mathematical Journal,2003,4(6):561-568.

        [14]DARUS M,SHANMUGAM T N,SIVASUBRAMANIAN S.Fekete-Szeg? inequality for a certain class of analytic functions[J].Math Tome,2007,49(72):29-34.

        [15]DIXIT K K,PAL S K.On a class of univalent functions related to complex order[J].Indian Journal of Pure and Applied Mathematics,1995,26(9):889-896.

        [16]KANAS S.An uni fied approach to the Fekete-Szeg? problem[J].Applied Mathematics and Computation,2012,218:8453-8461.

        [17]KANAS S,DARWISH H E.Fekete-Szeg? problem for starlike and convex functions of complex order[J].Applied Mathematics Letters,2010,23(7):777-782.

        [18]KANAS S,LECKO A.On the Fekete-Szeg? problem and the domain of convexity for a certain class of univalent functions[J].Zeszyty Naukowe Politechniki Rzezowskiej.Matematyka i Fizyka,1990,10:49-57.

        [19]KWON O S,CHO N E.On the Fekete-Szeg? problem for certain analytic functions[J].Journal of the Korea Society of Mathematical Education,2003,10(4):265-271.

        [20]RAVICHANDRAN V,DARUS M,KHAN M H,et al.Fekete-Szeg? inequality for certain class of analytic functions[J].The Australian Journal of Mathematical Analysis and Applications.2004,1(2):2-7.

        [21]RAVICHANDRAN V,GANGADHARAN A,DAURS M.Fekete-Szeg? inequality for certain clas of Bazilevic functions[J].Far East Journal of Mathematical Sciences,2004,15(2):171-180.

        [22]SRUTHA B,PREMA S.Coefficient problem for certain subclass of analytic functions using quasi-subordination[J].Mathematics and Decision sciences,2013,13(6):47-53.

        [23]SRUTHA B,LOKESH P.Fekete-Szeg? problem for certain subclass of analytic univalent function using quasi-subordination.Mathematica Aeterna,2013,3(3):193-199.

        [24]KEOGH F R,MERKES E P.A coefficient inequality for certain classes of analytic functions[J].Proc Amer Math Soc,1969,20:8-12.

        [25]NEHARI Z.Conformal mapping.Dover,New York,NY,USA,Reprinting of the 1952 edition(1975).

        一本大道久久东京热无码av| 精品+无码+在线观看| 肉色欧美久久久久久久免费看| 九九精品国产亚洲av日韩| 精精国产xxxx视频在线| 色偷偷亚洲第一综合网| 国产亚洲av一线观看| 视频在线国产一区二区 | 奇米影视第四色首页| 精品香蕉久久久爽爽| AV熟妇导航网| 偷窥偷拍一区二区三区| 精品人妻av区乱码色片| 久久久亚洲av成人网站| 国产精品污www一区二区三区| 国产高清一级毛片在线看| 久久婷婷国产色一区二区三区| 国产日本精品一二三四区| 美女脱了内裤张开腿让男人桶网站 | 亚洲精品国产成人片| 一本一道久久a久久精品综合| 99热这里只有精品国产66| 成人性生交大片免费看7| 少妇被黑人嗷嗷大叫视频| 狠狠的干性视频| 久久国产精品二国产精品| 亚洲最稳定资源在线观看| 午夜视频一区二区在线观看| 妺妺窝人体色www在线| 国产精品自在线拍国产手机版| 无码毛片高潮一级一免费| 国产成人精品自拍在线观看| 精品国产日韩一区2区3区 | 亚洲精品无码成人a片| 国产精品一区二区三区精品| 国内精品女同一区二区三区| 久久精品国产亚洲夜色av网站| 精品水蜜桃久久久久久久| 2022国内精品免费福利视频| 亚洲色图偷拍自拍亚洲色图| 精品人妻一区二区三区久久|