中圖分類號:S667.7 文獻標(biāo)志碼:A 文章編號:1009-9980(2025)07-1442-13
Abstract: 【Objective】Mango is renowned as the“King of Tropical Fruits”for its delicious flesh and distinctive flavor. It is a respiratory climacteric fruit that turns yellow and soft after harvest due to a rapid increase in respiratory rate.Ethephon (ETH) induces the generation of endogenous ethylene,thereby achieving the effect of rapidly initiating the ripening process. This process is non-adjustable and irreversible,resulting in excessive over-ripening, softening, and roting of a large number of fruits. It has become a key factor restricting the development of the mango industry and post-harvest storage and preservation.Therefore, there is an urgent need to study new ripening technologies to addressthe existing issues and extend the shelf life of mangoes.A significant amount ofresearch have indicated that exogenous methyl jasmonate (MeJA) treatment plays a role in regulating the quality of post-harvest fruits. However, the mechanism of action of the MeJA on mangoes remains unclear. Therefore,this study explored the influence and mechanism of the exogenous MeJA treatment on the quality of post-harvest mango fruits,providing theoretical support for the application of the MeJA in post-harvest storage and preservation of the fruits and offering new ideas to solve the problem of rapid rotting after ethylene treatment.【Methods】The test mango variety was Tainong No.1 harvested from the mango plantation in Baoping Village, Yazhou District,Sanya City,Hainan Province.Immediately after harvest, they were transported to the laboratory.The diseased and damaged fruits were screened and removed. The fruit stalks were cut off,and they were washed and soaked in 0.1% chlorinated detergent for 20 minutes to remove residual pectin and pathogens. After drying, they were evenly divided into five groups. Different concentrations of the MeJA solutions of 0.5,1,and 2 mmol L-1 were used for soaking treatment for 5 minutes,followed by sealing for20 hours.Ethephon treatment at 0.5g?L-1(ETH) and water treatment were used as control groups.The chroma,hardness,ethylene release rate,and TSS physiological indicators of each group of the mangoes during storage were detected. Simultaneously, the effects of 1mmol?L-1 MeJA on the texture, protopectin content, soluble pectin content of mangoes were determined,and the specific effects on the enzyme activities of key enzymes and the expresson levels of key enzyme genes in the cell wall degradation pathway were analyzed in depth.【Results】Compared with the water control group, the 1 and 2mmol?L-1 MeJA groups both promoted the degradation of chlorophyll facilitated fruit color transformation,promoted the decrease in hardness,increased the ethylene release rate and soluble solids content,while the effect of the 0.5mmol?L-1 group was not significant. Both the ETH group and 2mmol?L-1 MeJA significantly promoted the rapid ripening of the fruits. The 1mmol?L-1 treatment promoted the color transformation of mango fruits and inhibited the rate of hardness decrease compared with the ETH group. Additionally, compared with the water control group, the 1mmol?L-1 (204 MeJA could promote changes in the texture of the mangoes,facilitate the decrease in protopectin content and the increase in soluble pectin content, increase the activities of polygalacturonase (PG), pectin methylesterase (PME), pectin lyase (PL), cellulase (CX), and the expression levels of their encoding genes MiPME,MiPL and MiPG. The correlation analysis was conducted on the hardness,texture, enzyme activity,and gene expression levels of the Tainong No.1 mango fruits after the exogenous MeJA treatment.The PME enzyme activity was significantly and positively correlated with the MiPME2, the correlation between the PL enzyme activity and the MiPL2 gene expression was greater than those of the MiPLl gene,and MiPG enzyme activity was significantly and positively correlated with the MiPG3 gene expression. 【Conclusion】 The study showed that after the methyl jasmonate treatment, the differential expression of cell walldegradation enzyme genes would lead to changes in the activities of PME, PL,and PG enzymes,promoting the transformation of protopectin to soluble pectin in the fruit, ultimately resulting in the softening of the mangoes.
Key words: Mango; Methyl jasmonate; Storage and preservation; Softening; Gene expression
忙果(MangiferaindicaL.)是漆樹科忙果屬果樹,以果肉鮮美、風(fēng)味獨特而享有“熱帶果王\"的美譽。目前,中國是忙果的主產(chǎn)國之一,產(chǎn)量位居世界第三[1-2]。中國常見的栽培品種有貴妃、臺農(nóng)一號、金煌芒、澳芒等,臺農(nóng)一號因優(yōu)良的品質(zhì)、高產(chǎn)性和較強的適應(yīng)性在中國得到了廣泛的推廣和種植4,并且該品種因果形均勻,且色、香、味俱佳成為忙果內(nèi)銷量最佳的品種。忙果是典型的呼吸躍變型果實,采收后要經(jīng)歷后熟才能達到商品性狀,科學(xué)的催熟方式對提高忙果品質(zhì)和延長貨架期至關(guān)重要。乙烯利(ETH)催熟是采后處理中最常見的方法,例如1.2g?L-1 外源ETH處理顯著促進忙果成熟5, 0.2g?L-1 外源ETH促進香蕉成熟的效果最好。外源ETH通過誘導(dǎo)內(nèi)源乙烯生成從而達到快速啟動成熟過程的效果,經(jīng)歷后熟之后果實變黃、變軟,商品價值迅速降低,采后易腐爛變質(zhì)已成為制約忙果產(chǎn)業(yè)發(fā)展及采后貯藏保鮮的重要因素。
果實質(zhì)地作為衡量果實品質(zhì)的核心指標(biāo)之一,其變化特征直接影響消費者的食用體驗與市場接受度。采后果實質(zhì)地變化包括軟化、木質(zhì)化和自溶等,其中軟化是大多數(shù)肉質(zhì)果實常見的質(zhì)地變化。隨著果實成熟進程的推進,多種細(xì)胞壁水解酶活性顯著增強,使得細(xì)胞壁結(jié)構(gòu)和聚合物分子質(zhì)量發(fā)生顯著改變:纖維素分子鏈發(fā)生斷裂導(dǎo)致鏈長縮短,半纖維素聚合度明顯降低,而最突出的結(jié)構(gòu)變化體現(xiàn)在細(xì)胞壁中層中的原果膠在水解酶的作用下逐步解聚為可溶性果膠及果膠酸,致使相鄰細(xì)胞間黏附作用減弱,最終導(dǎo)致細(xì)胞分離和組織軟化,這一系列過程受到一系列細(xì)胞壁水解酶的協(xié)同調(diào)控,例如:果膠甲酯酶(pectinmethylesterase,PME)、果膠裂解酶(pec-tatelyase,PL)、多聚半乳糖醛酸酶(polygalacturo-nase,PG) ,β. -半乳糖苷酶( β -galactosidase, β. Gal)、纖維素酶(cellulase, CX)[8-11] 。Wolf等[12]和張清鳳[13]研究表明,PME可以使果膠的主要成分聚半乳糖醛酸聚糖(HG)去甲基酯化,進而使PL和PG發(fā)揮作用,同時還可以激活CX酶活性,共同促進了細(xì)胞壁的降解。Cai等[4的研究表明抑制草莓果實中PME酶活性可以延緩果實的軟化。王倩等[15研究結(jié)果表明番茄在貯藏第9天PG酶活性達到最高,是蕃茄果實軟化的關(guān)鍵酶。隨著可視化技術(shù)的發(fā)展,Huang等采用了共焦拉曼顯微鏡(CRM)、傅里葉變換紅外顯微鏡(FTIRM和受激拉曼散射顯微術(shù)(SRS)3種方法對呼吸躍變型果實水蜜桃的細(xì)胞壁成分變化情況進行可視化觀測,為細(xì)胞壁對果實軟化的影響提供了更直觀的認(rèn)識。
目前,國內(nèi)采后保鮮從1-MCP處理、溫度調(diào)節(jié)、輻射處理、涂膜保鮮等多方面開展了研究,近年來對于植物激素的研究也逐漸得到廣泛關(guān)注,大量研究結(jié)果表明外源激素處理具有調(diào)節(jié)采后果實品質(zhì)的作用。茉莉酸甲酯(methylJasmonate,MeJA)已被證明是一種廣泛存在于植物中的內(nèi)生激素,能在植物種子萌發(fā)、開花及果實成熟等多種發(fā)育過程中發(fā)揮作用,例如:金歡淳等研究表明, 100mg?L-1 MeJA能夠顯著改善葡萄果穗著色情況,高偉等[8研究表明, 10mmol?L-1MeJA 處理麝香葡萄果實可以使葡萄酒中香氣物質(zhì)含量大幅度提高,唐偉杰等[9研究表明, 10μmol?L-1MeJA 處理金冠蘋果的保鮮效果更佳,而 1500μmol?L-1 MeJA處理則加速果實的成熟與衰老。Han等[2研究結(jié)果表明,MeJA處理與草莓色素代謝、糖代謝、果實軟化和激素代謝相關(guān)基因的表達上調(diào)以及JA、花青素和糖含量的增加有關(guān)。Min等2研究結(jié)果表明,MeJA處理通過誘導(dǎo)與脂氧合酶途徑和乙烯生物合成相關(guān)酶的活性來保持番茄采后的品質(zhì)。
MeJA作為植物生長調(diào)節(jié)劑具有無毒無害、廣譜等優(yōu)點,已經(jīng)在蘋果[22]、李[23]、石榴[24]、弼猴桃[25]、藍(lán)莓[2等多種園藝作物上開展了茉莉酸甲酯的應(yīng)用研究,但MeJA對忙果的作用機制尚不明確,所以筆者在本試驗中通過測定MeJA處理后色澤、硬度、酶活性、質(zhì)構(gòu)等生理生化指標(biāo)和基因表達水平的變化,探究MeJA對采后忙果果實成熟軟化的影響,為解決乙烯處理后快速腐爛的問題提供參考,為MeJA在采后忙果貯藏中的應(yīng)用提供理論支持。
1 材料和方法
1.1 供試材料和采后處理
供試忙果品種為臺農(nóng)一號,2024年3月9日采摘于海南省三亞市崖州區(qū)保平村忙果種植園,成熟度大約為八成熟(花后 120d) ,在實驗室篩選去除病果、傷果,剪去果柄后用 0.1% 的氯消凈清洗并浸泡20min 以去除殘留的果膠和病菌,晾干后隨機分為5組。處理組為 0.5,1,2mmol?L-1 濃度的茉莉酸甲酯分別浸泡 5min 并晾干后的忙果,之后密封于塑料桶中 20h 取出。清水對照組用清水浸泡 5min ,其余操作均一致。ETH組用 0.5g?L-1 乙烯利溶液浸泡 5min ,其余操作均一致。將處理后的忙果裝入保鮮袋貯藏在20°C 恒溫箱中,自處理日起3d取樣1次,液氮處理后存放在 -80°C 冰箱用于后續(xù)的指標(biāo)測定。
1.2 試驗方法
試驗一共設(shè)置5個處理,每組設(shè)置20個忙果用來觀察表型,每組每隔3d取樣10個忙果充分混勻,用于測定指標(biāo)和后續(xù)轉(zhuǎn)錄組送測(果肉果皮分別取樣),每組測定乙烯釋放率9個,測定色澤6個,共計530個忙果左右。
色度值使用經(jīng)校正的色差計(日本)進行測定。測試時,沿著忙果橫向的最大周長位置,對其正面和反面分別進行測量,并記錄下 a*,b* 值。
采用英國制造的TA-XT2i質(zhì)構(gòu)分析儀對忙果的硬度、咀嚼性、回復(fù)性、脆度以及黏聚性等關(guān)鍵質(zhì)構(gòu)特性進行評估。每組隨機選取3個忙果作為樣品,測定前輕輕削去忙果正面與反面中央?yún)^(qū)域約 0.1cm 厚的表皮(每次削去的厚度保持一致),將處理好的忙果穩(wěn)固地安置在質(zhì)構(gòu)分析儀的測試平臺上,使用2mm 直徑的探針進行測定(深入果肉 ,整個過程需手動扶持忙果以確保穩(wěn)定,記錄儀器顯示此過程測定的質(zhì)構(gòu)數(shù)據(jù)。
可溶性固形物含量使用ATAGOPAL-1(日本)測定,每組隨機稱取2g處理好的果肉放置于紗布內(nèi),通過用力擠壓的方式提取出其中的汁液,每組設(shè)置3次重復(fù)。
乙烯釋放率使用ThermoScientific公司的Trace1300型氣相色譜系統(tǒng)測定。每組隨機挑選3個忙果放置在2L的燒杯內(nèi),杯口用保鮮膜密封,25°C 下靜置2h以充分釋放乙烯氣體,使用注射器抽取 1mL 的杯內(nèi)氣體立即注入氣相色譜儀中進行檢測,每組3個重復(fù)。
PG、CX活性及葉綠素含量參照曹建康等的方法測定,PME、PL、原果膠含量和可溶性果膠含量使用試劑盒(蘇州格銳思生物科技有限公司)進行測定,稱取柱果果肉質(zhì)量均與試劑盒要求一致。
1.3 細(xì)胞壁代謝途徑中關(guān)鍵基因表達分析
采用CTAB法提取忙果果肉總RNA和 1% 瓊脂糖凝膠電泳檢測RNA質(zhì)量,隨后用Monad公司MonScriptMRTIIIAll-in-OneMixwithdsDNase試劑盒進行反轉(zhuǎn)錄,合成cDNA。使用吐露港公司的222042×Q3 SYBRqPCRMasterMix(Universal)試劑盒進行PCR反應(yīng)。引物序列見表1。采用 2-ΔΔct 方法計算細(xì)胞壁代謝途徑中關(guān)鍵基因的相對表達量,每個基因設(shè)置3次重復(fù)。
1.4數(shù)據(jù)分析與處理
使用Excel軟件進行數(shù)據(jù)分析和差異顯著性分析,采用獨立樣本t檢驗進行顯著性分析,差異顯著性 (plt;0.05) 用不同小寫字母表示。使用Origin軟件進行相關(guān)性分析,使用GraphPad軟件制圖。
2 結(jié)果與分析
2.1不同濃度MeJA處理對忙果外觀品質(zhì)的影響
如圖1所示,CK在貯藏期第18天有明顯的轉(zhuǎn)黃,不同濃度外源MeJA處理的臺農(nóng)一號忙果
相較于CK都不同程度地加快由綠色向黃色轉(zhuǎn)變,0.5mmol?L-1 MeJA組提前3d轉(zhuǎn)黃,1和 2mmol?L-1 MeJA組提前6d轉(zhuǎn)黃。相較于ETH組,3組MeJA處理均慢于ETH組的轉(zhuǎn)變速度,但12d后ETH組忙果表面出現(xiàn)明顯病斑。
2.2不同濃度MeJA處理對忙果貯藏品質(zhì)的影響
由圖2-A可知,ETH處理后忙果色度 a* 在第 3~ 6天迅速上升,第6\~9天顯著高于MeJA和CK組,1和2mmol·LMeJA組在6d后顯著上升并且變化趨勢一致,在12d與ETH組沒有顯著差異, 0.5mmol?L-1 MeJA組在12d后逐漸上升,在18d后與ETH組沒有顯著差異。由圖2-B可知,ETH組的色度 b* 值在6\~18d顯著高于CK,1和 2mmol?L-1MeJA 組在 9~ 18d顯著高于CK,顯著上升期比ETH慢3d,比CK組快9d。由圖2-C可知,不同濃度MeJA處理可以促進果實硬度的下降,ETH組在6d后硬度迅速下降,1和 2mmol?L-1MeJA 組在9d后逐漸下降,其中2mmol·LMeJA組在12d后與ETH組不存在顯著
差異 ,1mmol?L-1MeJA 組在9~21d內(nèi)均與ETH組存在顯著差異,在貯藏后期硬度高于ETH組。由圖2-D可知,不同濃度MeJA處理后葉綠素含量均加速下降,其中2 :mmol?L-1MeJA 組在6d后與CK組存在顯著差異, 1mmol?L-1MeJA 組在9d后與CK組存在顯著差異,并且兩組在12d后與ETH組不存在顯著差異。如圖2-E所示,不同濃度MeJA組和ETH組均使得乙烯釋放高峰提前出現(xiàn)并且提升了峰值,試驗結(jié)果說明茉莉酸甲酯可能是通過促進乙烯釋放來促進果實成熟。如圖2-F所示,不同濃度MeJA組和ETH組均可以提升可溶性固形物含量, 0.5mmol?L-1 與CK組在貯藏期內(nèi)不存在顯著差異。
由上述不同濃度MeJA處理對忙果貯藏品質(zhì)的影響可知, 1mmol?L-1MeJA 和ETH處理均可以有效促進忙果果實葉綠素降解實現(xiàn)顏色的由綠轉(zhuǎn)黃。1mmol?L-1MeJA 葉綠素含量迅速下降期比ETH晚6d,但軟化速度慢于ETH組,并且在整個貯藏期硬度均高于ETH組,可以綜合提高采后果實的外觀品質(zhì)和貯藏能力。所以選取 1mmol?L-1MeJA 處理進行后續(xù)研究,旨在探究MeJA處理對果實軟化的影響,探究果實軟化的分子機制,為忙果采后品質(zhì)維持和MeJA在采后忙果貯藏中的應(yīng)用提供理論支持。
2.3 MeJA處理對忙果質(zhì)地特性的影響
咀嚼性代表咀嚼采后忙果所用的力,綜合反映樣品對咀嚼的持續(xù)抵抗能力,如圖3-A所示,忙果果實成熟過程中咀嚼性逐漸降低,MeJA處理后咀嚼性在0\~12d內(nèi)與CK組存在顯著差異。黏聚性代表了忙果果肉抵抗受損保持自身完整性的能力,如圖3-B所示,MeJA處理后黏聚性均低于CK組并且在貯藏后期存在顯著差異。脆度是忙果在壓縮過程中發(fā)生破裂的現(xiàn)象,如圖3-C所示,MeJA處理可以促進脆度的下降,并且在9d后顯著低于CK組?;貜?fù)性代表了采后忙果果肉受到壓縮、咀嚼后回彈的能力,如圖3-D所示,MeJA可以促進回復(fù)性下降。綜上所述, 1mmol?L-1 MeJA處理可以促進忙果果實質(zhì)構(gòu)發(fā)生變化,提升了忙果的質(zhì)構(gòu)品質(zhì),這說明, 1mmol?L-1 MeJA處理可以促進采后忙果果實的軟化。
2.4MeJA處理對細(xì)胞壁代謝物質(zhì)的影響
細(xì)胞壁是植物細(xì)胞的第一層屏障,果實的軟化主要與細(xì)胞壁的降解有關(guān),其中的原果膠降解為可溶性果膠,細(xì)胞間粘連力下降導(dǎo)致細(xì)胞壁結(jié)構(gòu)松散,直至果肉組織全部分解漿化,造成果實硬度的逐漸下降[28-30]。如圖4所示,MeJA處理后原果膠含量逐漸下降,在第6\~18天內(nèi)均顯著低于對照組,可溶性果膠含量在21d內(nèi)逐漸上升,并且在貯藏中期顯著高于CK組,這說明 1mmol?L-1MeJA 處理可以顯著促進原果膠轉(zhuǎn)化為可溶性果膠,促進果實軟化。
2.5MeJA處理對忙果細(xì)胞壁降解酶活性的影響果實軟化主要依靠果膠酶來催化,目前已經(jīng)發(fā)現(xiàn)的果膠酶類主要有PME、PG、PL等[31-32],此外,細(xì)胞壁結(jié)構(gòu)也會受到CX的作用[33]。由圖5-A可知,在
Fig.5Effects ofMeJA treatment on postharvest mango cell wall-degrading enzyme activities貯藏期間,忙果果實PME酶活性整體呈現(xiàn)先上升后下降的趨勢,MeJA處理后PME酶活性在第9\~12天顯著高于CK組,達到最高酶活性的時間比CK組短6d。由圖5-B可知,MeJA處理可以在貯藏前期提高PL酶活性,但在貯藏后期顯著低于CK組。由圖5-C可知,PG酶活性在21d內(nèi)呈現(xiàn)先上升后下降的趨勢,MeJA組PG酶活性在第12天達到最高(86.9ng?g-1?h-1) ,在貯藏前期MeJA組和CK組存在顯著差異。由圖5-D可知,MeJA可以促進CX酶活性提高,在第9\~15天顯著高于CK組,但整體酶活性保持在較低水平。這說明,MeJA處理可以促進果膠酶活性的提高,進而使忙果發(fā)生軟化。
2.6忙果軟化基因篩選及實時熒光定量分析
MiPME,MiPL和MiPG都是忙果細(xì)胞壁降解通路上的相關(guān)基因,根據(jù)筆者課題組對 1mmol?L-1 MeJA處理的臺農(nóng)一號柱果轉(zhuǎn)錄組數(shù)據(jù)進行統(tǒng)計分析,篩選出轉(zhuǎn)錄組中差異表達的注釋為MiPME基因17個,MiPL基因6個,MiPG基因18個,根據(jù)其fpkm值繪制熱圖(圖6),選取其中fpkm值較高且相對表達量升高的9個基因進行qRT-PCR驗證。結(jié)果如圖7所示,MeJA處理后MiPME相對表達量在貯藏期內(nèi)呈現(xiàn)上升的趨勢,MiPME1/2相對表達量在6~12d顯著高于CK組,MiPME2相對表達量在6d后維持在較高水平,CK組MiPME1在第18~21天顯著高于MeJA組。MeJA處理后MiPL相對表達量在貯藏期內(nèi)呈現(xiàn)先上升后下降的趨勢,MiPL表達量在第 6~ 12天均為CK組的3倍以上,在12d后CK組MiPL1表達量才大幅度上升,但MiPL2表達量在3~21d內(nèi)均較低。MeJA處理后MiPG3相對表達量在貯藏期內(nèi)呈現(xiàn)先上升后下降的趨勢,第12天表達量為CK組的3倍,MiPG1、MiPG2、MiPG4、MiPG5貯藏期內(nèi)呈現(xiàn)上升的趨勢,MiPG1相對表達量在第6、18天顯著高于CK組,MiPG2、MiPG4在第6~12天內(nèi)顯著高于CK組,并且均在第12天后表達量較高,MiPG5在第3~18天表達量較低,在第21天表達量在兩組中均顯著提升。綜上所述,MeJA促進果實軟化可能與這些酶基因的差異表達有關(guān)。
2.7MeJA介導(dǎo)的忙果果實軟化各指標(biāo)的相關(guān)性分 析
對外源MeJA處理后的臺農(nóng)一號果實的硬度、質(zhì)構(gòu)、酶活性、基因表達量等指標(biāo)進行相關(guān)性分析,結(jié)果如圖8所示,果實的硬度與原果膠含量、咀嚼性、脆度、黏聚性、回復(fù)性呈顯著正相關(guān) (rgt;0.9) ,原果膠含量與咀嚼性、硬度、脆度、黏聚性、回復(fù)性也存在顯著正相關(guān)( rgt;0.9 ,硬度與可溶性果膠含量、MiPME2、MiPL1、MiPG1、MiPG4基因表達量呈顯著負(fù)相關(guān) (rlt;–0.7) ,硬度與PME活性、PL活性呈負(fù)相關(guān)。PME活性與MiPME1、MiPME2基因表達量呈正相關(guān)。PL活性與MiPL2基因表達量相關(guān)性高于MiPL1基因。PG活性與MiPG3基因表達量呈正相
基因表達量呈負(fù)相關(guān)??扇苄怨z含量與MiPG1、MiPG2、MiPG4、MiPME2基因表達量呈顯著正相關(guān)( (rgt;0.7) 。由上述可知,MeJA處理后細(xì)胞壁降解酶基因的差異表達導(dǎo)致了PME、PL、PG活性的變化,使得忙果果實原果膠轉(zhuǎn)化為可溶性果膠,最終使得忙果硬度降低。
3討論
忙果的質(zhì)地決定了果實的口感,也直接影響采后的貯藏時間和經(jīng)濟價值。目前,除了硬度可以直觀地反映果實軟化程度外,質(zhì)構(gòu)相關(guān)指標(biāo)也可以反映貯藏期間果實質(zhì)地的變化。趙亞等4通過分析不同紅毛丹品系的TPA參數(shù),發(fā)現(xiàn)硬度、彈性與咀嚼性、粘附性、膠黏性等質(zhì)地參數(shù)之間相互呈正相關(guān),紅毛丹的TSS含量分別與其果實的凝聚性、膠黏性、彈性、咀嚼性、硬度和最大粘附性指標(biāo)呈正相關(guān),與
本研究結(jié)果一致。
細(xì)胞壁具有維持細(xì)胞形態(tài)的作用,其組成成分主要包括纖維素、半纖維素、果膠、木質(zhì)素等[35]。果實的軟化主要與細(xì)胞壁的降解有關(guān),這個過程中細(xì)胞壁水解酶將細(xì)胞壁分解導(dǎo)致細(xì)胞間粘附性和細(xì)胞內(nèi)部膨壓下降,進而降低了果實硬度。在忙果軟化方面:劉帥民[3研究表明褪黑素處理能顯著抑制貴妃忙果PG、PME、CX活性,還抑制了水溶性果膠升高,從而維持較低的果膠溶解度。Njie研究結(jié)果表明褪黑素(melatonin,MT)處理增加了忙果果皮細(xì)胞壁果膠的含量,抑制了PG、PME、CX和 β -Glu的活性,通過顯著下調(diào) MiPGI4,MiPME,MiCel 和Miβ-Glu的轉(zhuǎn)錄表達來抑制忙果軟化。徐萍等[7研究結(jié)果表明 0.5mmol?L-lMT 處理可以提高采后貴妃忙果的可溶性固形物含量,提高細(xì)胞降解酶 (PG,β. Gal、CX)的活性,從而促進采后忙果果實的細(xì)胞壁降解和果實軟化。這個結(jié)論也在本研究中得到驗證:外源MeJA處理可以通過影響細(xì)胞壁酶(PME、PL、PG、CX的活性和基因的相對表達量的途徑來降低原果膠含量和提升可溶性果膠含量,從而使得忙果果實硬度下降。類似的,細(xì)胞壁降解酶活性和果膠含量的高低也會影響其他水果的軟化進程:Sanchez等[38發(fā)現(xiàn)PME酶活性的先顯著下降再顯著上升與番木瓜的軟化過程有關(guān)。王倩等研究結(jié)果表明番茄中PG酶活性在果實成熟軟化過程中有顯著提高。上述結(jié)果表明果實的軟化與細(xì)胞壁降解酶(PME、PG、PL)活性的提高及其編碼基因高表達有關(guān)。
李秋利等研究表明不同濃度MeJA處理在果實生長過程中均增加了果實的可溶性固形物含量,與本研究結(jié)果一致。唐雙雙等4研究結(jié)果表明八成熟的草莓果實經(jīng) 1mol?L-1MeJA 熏蒸 24h 可以促進品質(zhì)指標(biāo)在貯藏后期接近全熟草莓。楊光凱等研究表明MeJA促進果實著色,有效降低蘋果果實葉綠素的含量,以上結(jié)果表明MeJA具有改善果實品質(zhì)的作用,與本研究結(jié)果一致。但也有研究結(jié)果表明,MeJA具有濃度效應(yīng), 50μmol?L-1 可以抑制藍(lán)莓CX、PG、PME和 β. -Gal酶活性和抑制其編碼基因的轉(zhuǎn)錄,抑制水溶性果膠的增加從而維持果實硬度。唐偉杰等[19]研究結(jié)果表明 10μmol?L-1MeJA 可以延緩果實衰老,而 1500μmol?L-1MeJA 處理則有相反效果,可以加速果實的成熟與衰老。綜上所述,Me-JA的作用會受到物種、品種、濃度、生長階段等多種因素的影響,在實際應(yīng)用中需要根據(jù)具體需求選擇合適的濃度來達到最佳效果。在本研究中,0.5、1?2mmol?L-1MeJA 處理可以促進忙果果實成熟,0.5mmol?L-1 濃度效果不顯著, 2mmol?L-1 MeJA效果最好,相較于乙烯, ?1mmol?L-1MeJA 在成熟過程中硬度下降較慢,針對這一現(xiàn)象筆者在本研究中對MeJA的轉(zhuǎn)錄組數(shù)據(jù)進行分析篩選和qRT-PCR驗證,進一步確定MeJA對軟化的作用和分子機制,為充分發(fā)揮MeJA的作用提供依據(jù)。
目前,茉莉酸甲酯(MeJA)對果實成熟的調(diào)控機制尚不明確,已有研究結(jié)果表明MeJA可能通過促進內(nèi)源乙烯的合成來促進果實成熟,例如:Tao等[42]研究結(jié)果表明,外源MeJA處理后,與乙烯生物合成相關(guān)的基因表達上調(diào),以及參與乙烯信號轉(zhuǎn)導(dǎo)的大多數(shù)基因的轉(zhuǎn)錄水平也顯著上調(diào),可以導(dǎo)致內(nèi)源乙烯產(chǎn)量增加,從而促進采后番茄的成熟,這與本研究結(jié)果MeJA處理后乙烯釋放量提高和峰值提前出現(xiàn)相吻合,但無法對一些研究論文中低濃度MeJA抑制成熟的結(jié)果進行解釋,所以MeJA促進果實成熟的分子機制還需要進一步研究和探索。
4結(jié)論
與CK組相比,1和 2mmol?L-1 濃度的MeJA處理均促進了葉綠素的降解,促進果實轉(zhuǎn)色,促進硬度的下降,提高乙烯釋放率和可溶性固形物含量,0.5mmol?L-1 處理效果不顯著。ETH組和 2mmol?L-1 MeJA均顯著促進了果實的快速成熟, 1mmol?L-1 MeJA處理在促進忙果果實色澤轉(zhuǎn)變的同時硬度下降速度慢于ETH組。此外,與CK組相比, 1mmol?L-1 MeJA可以促進原果膠含量的下降和可溶性果膠含量的提升,提高多聚半乳糖醛酸酶(PG)、果膠甲酯酶(PME)、果膠裂解酶(PL)、纖維素酶(CX)活性,及其編碼基因MiPME1/2、MiPL1/2、MiPG1-5的表達水平。綜上所述,茉莉酸甲酯處理可以通過調(diào)控細(xì)胞壁代謝通路中關(guān)鍵酶基因的表達水平來影響相關(guān)酶活性,從而促進忙果果實的成熟和軟化。
參考文獻References:
[1] 陳業(yè)淵,黨志國,林電,胡美姣,黃建峰,朱敏,張賀,韓冬銀,高 愛平,高兆銀,黃媛媛.中國忙果科學(xué)研究70年[J].熱帶作物 學(xué)報,2020,41(10):2034-2044. CHEN Yeyuan,DANG Zhiguo,LIN Dian,HU Meijiao, HUANG Jianfeng,ZHU Min,ZHANG He,HAN Dongyin, GAOAiping,GAO Zhaoyin,HUANG Yuanyuan.Mango scientificresearch in China in the past 7O years[J].Chinese Journal of Tropical Crops,2020,41(10):2034-2044.
[2] CARELLAA,GIANGUZZIG,SCALISIA,F(xiàn)ARINAV,INGLESEP,BIANCO RL.Fruit growth stage transitions in two mango cultivars grown in a Mediterranean environment[J]. Plants,2021,10(7):1332.
[3] 劉德兵,劉國銀,魏軍亞.海南忙果產(chǎn)業(yè)發(fā)展及分析[J].中國 熱帶農(nóng)業(yè),2022(2):11-18. LIUDebing,LIU Guoyin,WEI Junya.Development and analysisof mango industryin Hainan Province[J].China Tropical Agriculture,2022(2):11-18.
[4] 胡隆孝,曹琳彩,王凱,趙雷.采后催熟對‘臺農(nóng)一號'芒果理化 品質(zhì)及營養(yǎng)特性的影響[J].食品工業(yè)科技,2023,44(2):369- 375. HULongxiao,CAO Lincai,WANGKai,ZHAO Lei. Effectsof postharvest ripening on the physicochemical and nutraceutical properties of mango (Mangifera indica L.cv.TainungNo.1)[J]. Scienceand Technology ofFood Industry,2023,44(2):369-375.
[5] 馬冀恒,李雯,陳明敏,曾教科.不同處理對采后芒果質(zhì)構(gòu)的 影響[J].保鮮與加工,2021,21(12):10-15. MA Jiheng,LI Wen,CHEN Mingmin,ZENG Jiaoke. Effects of different treatments on texture of postharvest mango fruits[J]. Storage and Process,2021,21(12):10-15.
[6] 梁淑君,李大祥.不同濃度乙烯利對香蕉催熟的作用[C]//廣東 省教師繼續(xù)教育學(xué)會教師發(fā)展論壇學(xué)術(shù)研討會論文集(十 ).廣州,2023:566-570. LIANG Shujun,LI Daxiang.Effect of different concentrations of ethephon on ripening of bananas[C]//Proceedings of the Symposium on Teacher Development Forum of Guangdong Teachers' Continuing Education Society (XI).Guangzhou,2023:566- 570.
[7] NJIE A.采后褪黑素處理對低溫貯藏芒果果實軟化的影響[D]. 貴陽:貴州大學(xué),2023. NJIE A.Effect of postharvest melatonin treatment on softening of mango fruit stored at low temperature[D]. Guiyang: Guizhou University,2023.
[8] LARRIGAUDIERE C,PINTO E,VENDRELL M.Differential effectsof ethephon and seniphos on color development of ‘Starking Delicious’apple[J]. Journal of the American Society for Horticultural Science,1996,121(4):746-750.
[9] DAWSON D M, WATKINS C B,MELTON L D.Intermitent warming affects cell wall composition of‘Fantasia’nectaries during ripening and storage[J]. Journal of the American Society for Horticultural Science,1995,120(6):1057-1062.
[10] 胡留申,紀(jì)仁芬,李培環(huán),顧志新,施瑞炳,熊帥.硬肉桃果實 成熟前后呼吸和淀粉酶活性變化及其與硬度的關(guān)系[J].江蘇 農(nóng)業(yè)科學(xué),2013,41(2):152-153. HU Liushen,JI Renfen,LI Peihuan,GU Zhixin,SHI Ruibing, XIONG Shuai. Changes of respiration and amylase activity in hard-fleshed peach fruit beforeand afterripeningand theirrelationship with hardness[J].Jiangsu Agricultural Sciences,2013, 41(2): 152-153.
[11]李雯,邵遠(yuǎn)志,莊軍平,陳維信.蔗糖磷酸合成酶與香蕉果實 成熟、衰老的關(guān)系[J].園藝學(xué)報,2006,33(5):1087-1089. LI Wen,SHAO Yuanzhi,ZHUANG Junping,CHEN Weixin. Relationships between the sucrose phosphate synthase and ripening,senescence of banana fruits[J].Acta Horticulturae Sinica, 2006,33(5):1087-1089.
[12]WOLF S,RAUSCH T,GREINER S.The N-terminal pro region mediates retention of unprocessed type-I PME in the Golgi apparatus[J]. The Plant Journal,2009,58(3):361-375.
[13]張清鳳.果膠甲基酯酶在油菜素內(nèi)酯調(diào)節(jié)擬南芥生長發(fā)育中 的作用[D].蘭州:蘭州大學(xué),2017. ZHANG Qingfeng. Roles of pectin methylesterase in brassinosteroid regulationsof growthand development inArabidopsis[D]. Lanzhou:Lanzhou University,2017.
[14] CAI JF,MO XL,WE CJ,GAO Z,CHEN X,CHENG X. FvMYB79 activates the transcription ofFvPME38 to positively regulate the softening of strawberry fruit[J]. International Journal of Molecular Sciences,2022,23(1):101.
[15]王倩,郟艷紅,孫海波,吉立柱.不同耐貯性粉果番茄貯藏期 間果實軟化相關(guān)酶活性的研究[J].保鮮與加工,2020,20(1): 72-77. WANG Qian,JIA Yanhong,SUN Haibo,JI Lizhu. Research on the activities of enzymes involved in fruits softening of pink tomato with different storage property during storage[J]. Storage and Process,2020,20(1):72-77.
[16]HUANG WN,NIE Y T,ZHU N,YANG Y F,ZHU C Q, JI M B,WU D,CHEN K S.Hybrid label-free molecular microscopiesfor simultaneousvisualization ofchanges incell wall polysaccharides of peach at single- and multiple-cell levels during postharvest storage[J]. Cells,2020,9(3):761.
[17]金歡淳,張培安,張濤,金聯(lián)宇,董天宇,胡丹,房經(jīng)貴.不同濃 度茉莉酸甲酯對妮娜皇后果實著色與品質(zhì)形成的影響[J].浙 江農(nóng)業(yè)科學(xué),2023,64(9):2165-2172. JIN Huanchun,ZHANG Pei’an,ZHANG Tao,JIN Lianyu, DONG Tianyu,HU Dan,F(xiàn)ANG Jinggui. Effects of different concentrations of methyl jasmonate on fruit coloration and quality formation of Queen Nina[J]. Journal of Zhejiang Agricultural Sciences,2023,64(9):2165-2172.
[18]高偉,崔芳銘,劉敏.茉莉酸甲酯對‘小白玫瑰'和‘玫瑰香'葡 萄酒香氣的影響[J].中國農(nóng)業(yè)大學(xué)學(xué)報,2024,29(7):79-88. GAO Wei,CUI Fangming,LIU Min.Effects of methyl jasmonate on the aroma of‘Muscat Blanc’and‘Muscat Hamburg' wines[J]. Journal of China Agricultural University,2O24,29(7): 79-88.
[19]唐偉杰,張瀅支,張良,呂靜祎,孫明宇,葛永紅,陳敬鑫.不同 濃度茉莉酸甲酯處理對\"金冠\"蘋果保鮮效果的影響[J].包裝 與食品機械,2024,42(1):12-18. TANG Weijie, ZHANG Yingzhi, ZHANG Liang,LU Jingyi, SUNMingyu,GE Yonghong,CHEN Jingxin.Effects of different concentrations of methyl jasmonate treatment on preservationof‘Jinguan’apple fruit[J].Packaging andFood Machinery, 2024,42(1):12-18.
[20]HANYL,CHEN C,YAN ZM,LI J,WANG YH. The methyl jasmonate accelerates the strawberry fruits ripening process[J]. Scientia Horticulturae,2019,249:250-256.
[21]MIN DD,LI Z L,AI W,LIJ Z,ZHOU JX,ZHANG X H,MU D,LIFJ,LIXA,GUOYY.The co-regulationof ethylene biosynthesis and ascorbate- glutathione cycle by methy jasmonate contributes to aroma formation of tomato fruit during postharvest ripening[J].Journal of Agricultural and Food Chemistry, 2020,68(39):10822-10832.
[22]張夢媛.MeJA對采后蘋果果實品質(zhì)和乙烯生物合成及其信 號轉(zhuǎn)導(dǎo)途徑關(guān)鍵基因表達的影響[D].錦州:渤海大學(xué),2019. ZHANG Mengyuan.Effects of MeJA on quality and expression of key genes involved in ethylene biosynthesis and signal transduction pathway during postharvest ripening of apple fruit[D]. Jinzhou:Bohai University,2019.
[23]MARTINEZ-ESPLA A,ZAPATA P J,CASTILLO S,GUILLEN F,MARTINEZ-ROMERO D, VALERO D,SERRANO M. Preharvest application of methyl jasmonate (MeJA) in two plum cultivars.1. Improvement of fruit growth and quality attributes atharvest[J].Postharvest Biologyand Technology,2014,98:98- 105.
[24] 安娜,趙志永,賈曉昱,楊克箐.1-甲基環(huán)丙烯結(jié)合茉莉酸甲酯 霧化熏蒸對石榴采后品質(zhì)的影響[J].食品安全質(zhì)量檢測學(xué)報, 2023,14(15):287-296. ANNa,ZHAO Zhiyong,JIA Xiaoyu,YANG Keqing.Effects of 1-methylcyclopropene combined with methyl jasmonate aerosol fumigation onpostharvest quality of pomegranate fruit[J]. Journal ofFoodSafetyamp;Quality,2023,14(15):287-296.
[25]肖劉華,康乃慧,李樹成,鄭致遠(yuǎn),羅繞繞,陳金印,陳明,向妙 蓮.茉莉酸甲酯對獼猴桃果實抗葡萄座腔菌過程中能量代謝 和膜脂代謝的影響[J].中國農(nóng)業(yè)科學(xué),2024,57(7):1377-1393. XIAO Liuhua,KANG Naihui,LI Shucheng,ZHENG Zhiyuan, LUO Raorao,CHEN Jinyin,CHEN Ming,XIANG Miaolian. Effectof methyl jasmonate on energymetabolism and membrane lipidmetabolism duringresistance to Botryosphaeria dothidea in kiwifruit[J]. Scientia Agricultura Sinica,2024,57(7):1377- 1393.
[26] 羅冬蘭,瞿光凡,孫雁征,半婷婷,張雨,曹森,巴良杰.茉莉酸 甲酯處理對藍(lán)莓貯藏品質(zhì)的影響[J].中國南方果樹,2022,51 (4):161-166. LUO Donglan,QU Guangfan,SUN Yanzheng,MI Tingting, ZHANG Yu,CAO Sen,BA Liangjie.Effect of methyl jasmonate on storage quality of blueberry[J]. South China Fruits, 2022,51(4):161-166.
[27]曹建康,姜微波,趙玉梅.果蔬采后生理生化實驗指導(dǎo)[M].北 京:中國輕工業(yè)出版社,2007. CAO Jiankang,JIANG Weibo,ZHAO Yumei. Experimental guidance of postharvest physiology and biochemistry of fruits and vegetables[M]. Beijing:China Light Industry Press,2007.
[28] CHEN HJ,CAO S F,F(xiàn)ANG X J,MU HL,YANG HL, WANG X,XU QQ,GAO HY. Changes in fruit firmness,cell wall composition and cell walldegrading enzymes in postharvest blueberries during storage[J]. Scientia Horticulturae,2015,188:44-48.
[29]WANGD D,YEATSTH,ULUISIK S,ROSE JKC,SEYMOUR G B.Fruit softening:Revisiting the role of pectin[J]. Trends in Plant Science,2018,23(4):302-310.
[30]張鵬龍,陳復(fù)生,楊宏順,李里特,宮保文,王留留.果實成熟 軟化過程中細(xì)胞壁降解研究進展[J].食品科技,2010,35(11): 62-66. ZHANG Penglong,CHEN Fusheng,YANG Hongshun,LI Lite, GONG Baowen,WANG Liuliu.Research advances on cell wall disassembly in fruit ripening and softening[J].Food Science and Technology,2010,35(11):62-66.
[31]BRUMMELL D A,CIN V D,CRISOSTO CH,LABAVITCH J M. Cell wall metabolism during maturation,ripening and senescence of peach fruit[J]. Journal of Experimental Botany,2004, 55(405):2029-2039.
[32]佟兆國,王飛,高志紅,周軍,徐秋紅,章鎮(zhèn).果膠降解相關(guān)酶 與果實成熟軟化[J].果樹學(xué)報,2011,28(2):305-312. TONG Zhaoguo,WANG Fei, GAO Zhihong,ZHOU Jun,XU Qiuhong,ZHANG Zhen. Advances in research on the relationshipbetweenpectolytic enzymesand fruit softening[J].Journal ofFruit Science,2011,28(2):305-312.
[33]WEIYY,ZHOUDD,WANG ZJ,TUSC,SHAO XF,PENG J,PAN L Q,TU K.Hot air treatment reduces postharvest decay and delayssofteningof cherry tomato by regulating gene expression and activities ofcell wall-degrading enzymes[J]. Journal of the Science ofFood and Agriculture,2018,98(6):2105-2112.
[34]趙亞,郭利軍,胡福初,馮學(xué)杰,羅志文,陳哲,王祥和,鄧會棟,范 鴻雁.海南不同紅毛丹品系資源果實質(zhì)構(gòu)特性的比較分析[J]. 分子植物育種,2019,17(8):2646-2654. ZHAO Ya,GUO Lijun,HU Fuchu,F(xiàn)ENG Xuejie,LUO Zhiwen, CHEN Zhe,WANG Xianghe,DENG Huidong,F(xiàn)AN Hongyan. Comparison of texture parameters among different rambutan (Nephelium lappaceum L.) germplasm resources of Hainan[J]. MolecularPlantBreeding,2019,17(8):2646-2654.
[35]PANIAGUA C,POSE S,MORRISVJ,KIRBY AR,QUESADAMA,MERCADO JA.Fruit softening and pectin disassembly:An overview of nanostructural pectin modificationsassessed by atomic force microscopy[J].Annals of Botany,2014, 114(6): 1375-1383.
[36]劉帥民.褪黑素處理對采后芒果成熟和衰老的影響[D].??冢?海南大學(xué),2020. LIU Shuaimin.Effects of melatonin treatment on ripening and senescence of postharvest mango[D]. Haikou:Hainan University,2020.
[37]徐萍,黃婷,劉士琦,胡美姣,高兆銀,劉家糧,張正科.褪黑素 對冷藏后芒果果實冷害和后熟的影響及生理機制[J].食品科 學(xué),2024,45(8):218-227. XU Ping,HUANG Ting,LIU Shiqi,HU Meijiao,GAO Zhaoyin, LIU Jialiang,ZHANG Zhengke.Effect of melatonin on chilling injury and ripening of postharvest mango fruits during shelf life afterrefrigeration and underlying physiological mechanism[J]. Food Science,2024,45(8):218-227.
[38]SANCHEZ N,GUTIERREZ-LOPEZ GF,CAEZ-RAMIREZ G. Correlation among PME activity,viscoelastic,and structural parameters for Carica papaya edible tissue along ripening[J]. Journal of Food Science,2020,85(6):1805-1814.
[39]李秋利,高登濤,魏志峰,王志強,劉軍偉,楊文佳.茉莉酸類物 質(zhì)對‘映霜紅'桃果實品質(zhì)的影響[J].中國南方果樹,2018,47 (3):107-112. LI Qiuli, GAO Dengtao,WEI Zhifeng, WANG Zhiqiang,LIU Junwei,YANG Wenjia.Effects of jasmonates on fruit quality of ‘Yingshuanghong’peach[J]. South China Fruits,2018,47(3): 107-112.
[40]唐雙雙,鄭永華,汪開拓,王曉梅,金鵬.茉莉酸甲酯處理對不 同成熟度草莓果實采后腐爛和品質(zhì)的影響[J].食品科學(xué), 2008,29(6):448-452. TANG Shuangshuang,ZHENG Yonghua,WANG Kaituo, WANG Xiaomei,JIN Peng. Effect of methy jamonate on decay andqualityof postharveststrawberryfruitatdifferentmaturity stages[J].Food Science,2008,29(6):448-452.
[41]楊光凱,武媛麗,高燕,張小軍,郝燕燕.外源茉莉酸甲酯對蘋 果果實品質(zhì)的影響[J].果樹資源學(xué)報,2021,2(5):15-22. YANG Guangkai,WU Yuanli, GAO Yan, ZHANG Xiaojun, HAO Yanyan.Effects of exogenous methyl jasmonate on the quality of apple[J].Journal ofFruitResources,2021,2(5):15-22.
[42]TAOXY,WUQ,LIJY,WANGD,NASSARAWASS,YING TJ.Ethylene biosynthesis and signal transduction are enhanced during accelerated ripening of postharvest tomato treated with exogenousmethyl jasmonate[J].Scientia Horticulturae,2021, 281.100065