[摘要] 上肢功能障礙是腦卒中的常見后遺癥,嚴(yán)重影響腦卒中患者的生活質(zhì)量。選取安全性、可靠性、穩(wěn)定性高的評(píng)估工具是護(hù)理人員明確該類患者護(hù)理目標(biāo)并制定護(hù)理方案的重要依據(jù)。目前臨床常采用量表、運(yùn)動(dòng)生物力學(xué)和電生理學(xué)三類工具評(píng)估腦卒中后上肢功能障礙。本文對(duì)腦卒中后上肢功能障礙評(píng)估工具進(jìn)行綜述,為該類評(píng)估工具的研發(fā)提供數(shù)據(jù)及研究方向的參考。
[關(guān)鍵詞] 腦卒中;上肢功能障礙;評(píng)估工具
[中圖分類號(hào)] R743.3" """"[文獻(xiàn)標(biāo)識(shí)碼] A """""[DOI] 10.3969/j.issn.1673-9701.2025.18.030
隨著生活與醫(yī)療水平的雙重提高,腦卒中幸存者人數(shù)增多,但伴隨的肢體功能障礙問題愈發(fā)凸顯。據(jù)統(tǒng)計(jì)50%~85%的腦卒中患者遺留上肢功能障礙,其恢復(fù)速度受上肢運(yùn)動(dòng)復(fù)雜性影響慢于下肢,嚴(yán)重影響患者的日常生活能力、生命質(zhì)量及心理健康,同時(shí)也加重照護(hù)者負(fù)擔(dān)[1-3]。精確評(píng)估患肢功能狀態(tài)對(duì)明確護(hù)理目標(biāo)、制定護(hù)理方案至關(guān)重要。鑒于患肢癥狀與腦神經(jīng)損傷緊密關(guān)聯(lián)且神經(jīng)系統(tǒng)具有復(fù)雜難測(cè)性,臨床常采用量表評(píng)估肢體功能或預(yù)測(cè)神經(jīng)損傷。隨著醫(yī)學(xué)信息技術(shù)的進(jìn)步,生物醫(yī)學(xué)測(cè)量技術(shù)(如表面肌電圖、穿戴式傳感器)也逐漸應(yīng)用于上肢功能評(píng)估獲取更加客觀、精準(zhǔn)的數(shù)據(jù)。本文探討腦卒中后上肢功能評(píng)估常用及新興工具的原理與發(fā)展現(xiàn)狀,為精準(zhǔn)選擇可靠、有效的評(píng)估工具提供理論支撐。
1 "臨床觀察量表評(píng)估
針對(duì)腦卒中后上肢功能障礙的臨床癥狀與肌肉特性,研究者綜合生物與物理因素開發(fā)系列評(píng)估量表。上肢動(dòng)作研究測(cè)試(action research arm test,ARAT)量表旨在精準(zhǔn)評(píng)估并預(yù)測(cè)患者的上肢運(yùn)動(dòng)能力,可量化評(píng)估關(guān)節(jié)運(yùn)動(dòng)與反射水平,但存在測(cè)試者間測(cè)量差異及平臺(tái)期患者適用性有限等情況[4-5]。
1.1" Fugl-Meyer運(yùn)動(dòng)功能評(píng)估量表上肢部分
Fugl-Meyer運(yùn)動(dòng)功能評(píng)估量表上肢部分(Fugl- Meyer assessment- upper extremity,F(xiàn)MA-UE)是唯一被推薦應(yīng)用于評(píng)估缺血性腦卒中(ischemic stroke,IS)上肢運(yùn)動(dòng)恢復(fù)的金標(biāo)準(zhǔn),顯示出良好的可靠性、有效性和反應(yīng)性[6-8]。上肢功能的恢復(fù)是按順序進(jìn)行的,從肢體不能自主運(yùn)動(dòng)的遲緩階段到反射活動(dòng)的恢復(fù),再到刻板的協(xié)同自主運(yùn)動(dòng)的發(fā)展,最后到肢體協(xié)同作用的相對(duì)獨(dú)立性,即運(yùn)動(dòng)的恢復(fù)。FMA-UE采用從近端到遠(yuǎn)端關(guān)節(jié)的分層方式進(jìn)行運(yùn)動(dòng)功能的評(píng)估[9]。IS后遺癥患者中也可觀察到異常的上肢協(xié)同和代償運(yùn)動(dòng)。FMA-UE由33個(gè)按層次結(jié)構(gòu)排列的項(xiàng)目(反射項(xiàng)目、運(yùn)動(dòng)控制和肌肉力量)組成,證明FMA-UE具有多維性[10]。然而多項(xiàng)研究中確定性因素分析表明,F(xiàn)MA-UE包含的3個(gè)反射項(xiàng)目(肱二頭肌、肱三頭肌和正常反射項(xiàng)目)是不必要的,僅需剩余的30條目即可評(píng)估上肢功能[11-12]。單維性是正確解釋內(nèi)部一致性的必要條件[13]。Hijikata等[10]研究發(fā)現(xiàn)FMA-UE中的27個(gè)項(xiàng)目是單維的,這與Tauchi等[12]的研究結(jié)果一致,證實(shí)FMA-UE作為一種可靠的評(píng)估工具,可應(yīng)用于IS上肢功能障礙患者的評(píng)估。FMA-UE是中度至重度缺陷腦卒中患者上肢運(yùn)動(dòng)功能的有效評(píng)估工具,但對(duì)輕度損傷患者可能存在頂棚效應(yīng)。值得注意的是,由于運(yùn)動(dòng)學(xué)偏差和日常生活限制,F(xiàn)MA-UE評(píng)分滿分不能直接說(shuō)明患肢完全恢復(fù)[14]。此外FMA-UE采用3點(diǎn)序數(shù)列表(“非”“部分”“完全”)進(jìn)行評(píng)估,但“部分”列表涉及內(nèi)容較廣泛,因此嚴(yán)重程度的臨界值尚未確定。在未來(lái)研究中,應(yīng)根據(jù)IS后上肢功能損傷程度并聯(lián)合其他可靠量表進(jìn)行準(zhǔn)確評(píng)估。
1.2 "ARAT量表
在腦卒中恢復(fù)與康復(fù)圓桌會(huì)議共識(shí)中,ARAT量表與FMA-UE一并被認(rèn)為可評(píng)估腦卒中患者的上肢功能[15-16]。相較于FMA-UE,ARAT量表可充分評(píng)估患者的手部精細(xì)功能。該量表由19個(gè)項(xiàng)目4個(gè)維度(抓握、抓握、捏合、粗略運(yùn)動(dòng))組成,按4點(diǎn)序數(shù)從肢體任何部分不能執(zhí)行任務(wù)到正常執(zhí)行任務(wù)進(jìn)行0~3等級(jí)評(píng)分,評(píng)分0~57分,分高低與肢體功能狀態(tài)成正比。初步研究表明ARAT量表作為一種腦卒中后肢體評(píng)估的穩(wěn)定方法,已被證明具有良好的心理測(cè)量特性[17]。然而對(duì)該量表的頂棚效應(yīng)與地板效應(yīng)目前仍存在爭(zhēng)議。在Amano等[18]研究中,ARAT量表頂棚效應(yīng)值為25/30;Kristersson等[19]對(duì)腦卒中后第3天、第10天、第4周患者的上肢功能分別采用ARAT量表測(cè)定,結(jié)果均顯示出地板效應(yīng)。不難看出,不同研究獲得ARAT量表評(píng)分最高值或最低值的參與者所占百分比差異較大,即產(chǎn)生頂棚效應(yīng)與地板效應(yīng),進(jìn)而使人質(zhì)疑該量表是否真正涵蓋被測(cè)能力的全部范圍。針對(duì)已知不良效應(yīng),ARAT量表應(yīng)用手部運(yùn)動(dòng)數(shù)據(jù)開發(fā)機(jī)器學(xué)習(xí)模型可評(píng)估腦卒中后患者的手部運(yùn)動(dòng)能力和預(yù)測(cè)分?jǐn)?shù)。通過(guò)讓患者佩戴集成多個(gè)傳感器的數(shù)據(jù)手套Cyber Glove Ⅱ進(jìn)行ARAT測(cè)量,在ARAT執(zhí)行過(guò)程中,護(hù)理人員可對(duì)腦卒中后上肢功能情況進(jìn)行更加客觀、敏感和準(zhǔn)確的評(píng)估[20]。但受佩戴數(shù)據(jù)手套影響,患者是否可準(zhǔn)確抓取細(xì)小物體并進(jìn)行準(zhǔn)確評(píng)估及對(duì)關(guān)節(jié)間活動(dòng)角的記錄分析,應(yīng)在未來(lái)研究中予以考慮。此外Daghsen等[21]創(chuàng)建ARAT量表縮短版本,選擇相比于原版ARAT不存在頂棚效應(yīng)和地板效應(yīng)的子量表并進(jìn)行外部驗(yàn)證,結(jié)果發(fā)現(xiàn)縮短的ARAT量表顯示出良好的內(nèi)部一致性,可較可靠地評(píng)估或預(yù)測(cè)上肢功能,有效性和穩(wěn)定性良好??傊?,ARAT量表作為腦卒中患者上肢功能評(píng)估或預(yù)測(cè)的常用量表被證明效果良好。但如何解決該量表的不良效應(yīng)使量表更具普適性是未來(lái)的研究重點(diǎn)。
2" 運(yùn)動(dòng)生物力學(xué)評(píng)估工具:穿戴式傳感器
運(yùn)動(dòng)生物力學(xué)通過(guò)量化分析峰值速度、持續(xù)時(shí)間、加速剖面中的零線交叉頻次、抖動(dòng)參數(shù)、肩關(guān)節(jié)角度、肘關(guān)節(jié)和腕關(guān)節(jié)活動(dòng)度及軀干位移等關(guān)鍵指標(biāo),為腦卒中后上肢功能提供客觀評(píng)估手段[22]。多數(shù)運(yùn)動(dòng)單元的數(shù)量可量化評(píng)價(jià),但在數(shù)據(jù)采集、應(yīng)用與分析策略上卻呈現(xiàn)多樣性。穿戴式傳感器作為監(jiān)測(cè)上肢功能的核心工具,可客觀、實(shí)時(shí)反映患者肢體狀態(tài),在臨床實(shí)踐中得到廣泛應(yīng)用。
穿戴式傳感器融合傳感、無(wú)線通信等先進(jìn)技術(shù),通過(guò)直接穿戴或與皮膚緊密貼合的方式,實(shí)現(xiàn)對(duì)軀體運(yùn)動(dòng)時(shí)間、運(yùn)動(dòng)幅度及運(yùn)動(dòng)變異性的精確測(cè)量。這類傳感器種類繁多,包括加速度計(jì)、慣性測(cè)量單元(inertial measurement unit,IMU)、應(yīng)變傳感器及Cyber Glove等。具體而言,將上述傳感器固定于患者的軀干、肩部、肘部、手腕等關(guān)鍵部位,可實(shí)時(shí)監(jiān)測(cè)并記錄關(guān)節(jié)運(yùn)動(dòng)的時(shí)間與變量特征[23-25]。
鑒于腦神經(jīng)的可塑性與重組性,腦卒中后上肢功能的恢復(fù)過(guò)程常并存運(yùn)動(dòng)恢復(fù)與運(yùn)動(dòng)代償2種機(jī)制。當(dāng)患者嘗試使用患側(cè)上肢完成任務(wù)時(shí),對(duì)側(cè)病變的M1區(qū)可能過(guò)度激活,支持患側(cè)肢體運(yùn)動(dòng)。這種支持作用可促使肢體剩余運(yùn)動(dòng)能力適應(yīng)或替代原有功能,進(jìn)而產(chǎn)生新運(yùn)動(dòng)模式(身體前傾、抬高肩膀或肘部等),揭示大腦在應(yīng)對(duì)特定任務(wù)具有補(bǔ)償機(jī)制[26-27]。然而長(zhǎng)期依賴運(yùn)動(dòng)代償可導(dǎo)致關(guān)節(jié)慢性疼痛、受損肌肉功能受限、患側(cè)手臂運(yùn)動(dòng)恢復(fù)不理想及日常生活活動(dòng)中上肢運(yùn)動(dòng)模式異常[28-29]。
穿戴式傳感器是臨床檢測(cè)補(bǔ)償性運(yùn)動(dòng)的首選技術(shù),可全面、細(xì)致監(jiān)測(cè)各種補(bǔ)償模式[30]。為深入探究后運(yùn)動(dòng)補(bǔ)償狀態(tài)下的上肢狀況及運(yùn)動(dòng)參與度,研究者巧妙運(yùn)用IMU集成陀螺儀、加速度計(jì)和磁力計(jì)3種高精度傳感器,可在固有坐標(biāo)系內(nèi)精確測(cè)量三維角速率、加速度和磁場(chǎng)矢量,為進(jìn)一步研究提供可靠數(shù)據(jù)基礎(chǔ)。相較于高清攝像機(jī)記錄,IMU無(wú)須電纜連接或保持傳感器之間的清晰視線,但在解決磁干擾、積分漂移及傳感器與測(cè)量段未對(duì)準(zhǔn)等問題時(shí),需采用更復(fù)雜的傳感器融合算法[31]。
IMU通過(guò)確保傳感器與測(cè)量段的精準(zhǔn)校準(zhǔn)及磁場(chǎng)的均勻性,提供與光學(xué)系統(tǒng)相媲美的精度,確保對(duì)運(yùn)動(dòng)性能的無(wú)影響評(píng)估[32-34]。部分研究者還利用加速度計(jì)在特定時(shí)間段內(nèi)提取并計(jì)數(shù)特定動(dòng)作,以此評(píng)估上肢運(yùn)動(dòng)狀態(tài)。實(shí)際上,加速度計(jì)所測(cè)量的是一種獨(dú)特的運(yùn)動(dòng)“數(shù)量”,其與臨床功能測(cè)試(如ARAT和UEFM)所評(píng)估的運(yùn)動(dòng)“質(zhì)量”相互獨(dú)立,但共同構(gòu)成對(duì)上肢運(yùn)動(dòng)功能的全面評(píng)價(jià)。加速度計(jì)可精確量化不同環(huán)境下運(yùn)動(dòng)障礙(如痙攣、震顫、肌張力過(guò)高等)的運(yùn)動(dòng)性能和活動(dòng)量,為臨床干預(yù)提供有力數(shù)據(jù)支持[35-36]。
綜上,穿戴式傳感器在腦卒中后上肢補(bǔ)償策略評(píng)估中展現(xiàn)出極高的臨床實(shí)用價(jià)值,憑借其不受時(shí)空限制的精確連續(xù)監(jiān)測(cè)能力,可穩(wěn)定且精準(zhǔn)記錄相關(guān)數(shù)據(jù),為臨床評(píng)估提供準(zhǔn)確且動(dòng)態(tài)的數(shù)據(jù)信息,使醫(yī)務(wù)人員更準(zhǔn)確地掌握患者上肢功能恢復(fù)情況。在病房環(huán)境中,該設(shè)備穿戴方便且無(wú)須依賴復(fù)雜的光電系統(tǒng),護(hù)理人員通過(guò)標(biāo)準(zhǔn)化流程便可快速分析數(shù)據(jù),獲取患者的運(yùn)動(dòng)參數(shù),為臨床評(píng)估帶來(lái)巨大便利。然而值得注意的是,傳感器置于肢體表面可在一定程度上引發(fā)患者的不自然運(yùn)動(dòng),干擾患者的正常動(dòng)作表現(xiàn),進(jìn)而影響評(píng)估結(jié)果的準(zhǔn)確性,給臨床判斷帶來(lái)一定偏差。未來(lái),仍需深入探討如何進(jìn)一步降低傳感器對(duì)患者運(yùn)動(dòng)的影響、如何降低數(shù)據(jù)分析偏差等相關(guān)問題,不斷優(yōu)化評(píng)估體系,更好地服務(wù)于腦卒中患者康復(fù)護(hù)理方案的制定。
3 "電生理學(xué)評(píng)估工具:表面肌電圖
表面肌電圖(surface electromyography,sEMG)又稱動(dòng)態(tài)肌電圖,是一種在皮膚表面獲取肌肉收縮期間產(chǎn)生的運(yùn)動(dòng)單元?jiǎng)幼麟娢坏拇鷶?shù)和,并提供定量信息(波形、振幅、功率譜密度等)反映神經(jīng)肌肉功能(肢間協(xié)調(diào),肌肉激活和共同激活模式等),進(jìn)而推測(cè)神經(jīng)肌肉病變特性的評(píng)估手段[37-38]。當(dāng)運(yùn)動(dòng)神經(jīng)元被激活(即放電)時(shí),神經(jīng)肌肉接頭處的突觸傳遞導(dǎo)致電位的瞬時(shí)變化稱為動(dòng)作電位。動(dòng)作電位在經(jīng)過(guò)時(shí)間和空間疊加后經(jīng)過(guò)組織和皮膚,在皮膚表面可檢測(cè)到電位差信號(hào)。sEMG已被應(yīng)用于觸發(fā)特定目標(biāo)肌肉群的神經(jīng)肌肉電刺激,以客觀了解IS后上肢功能狀態(tài)[39]。
目前,sEMG作為一種簡(jiǎn)便且無(wú)創(chuàng)的檢測(cè)手段,廣受患者青睞。在針對(duì)IS后上肢功能障礙的臨床評(píng)估中,sEMG主要通過(guò)頻域分析(涵蓋平均功率頻率和中位頻率)與時(shí)域分析(包括平均肌電值、積分肌電值及均方根值)兩大指標(biāo)提取運(yùn)動(dòng)單位的相關(guān)信息。初步研究結(jié)果顯示中位數(shù)頻率與平均頻率可有效評(píng)估外周及中樞因素引發(fā)的神經(jīng)肌肉變化[40-42]。為客觀、精確地測(cè)量IS后上肢功能,部分學(xué)者提出使用多傳感器融合技術(shù),如Tang等[43]將sEMG聯(lián)合穿戴式傳感器進(jìn)行工具創(chuàng)新,準(zhǔn)確了解上肢關(guān)節(jié)的運(yùn)動(dòng)功能。
sEMG作為電生理檢查的關(guān)鍵工具之一,在IS后上肢功能評(píng)估中扮演舉足輕重的作用。相較于侵入式肌電圖檢查,sEMG以無(wú)創(chuàng)性著稱,其分析指標(biāo)蘊(yùn)含豐富臨床意義。在臨床護(hù)理人員掌握相應(yīng)理論知識(shí)的基礎(chǔ)上,可較為便捷地對(duì)sEMG數(shù)據(jù)進(jìn)行分析,從而精確評(píng)估IS后的神經(jīng)肌肉狀況。需要注意的是,當(dāng)sEMG電極片與淺表肌肉距離過(guò)近時(shí),對(duì)深層肌肉的測(cè)量或針對(duì)皮下脂肪較厚的人群可能存在記錄偏差的問題。此外,如何將sEMG數(shù)據(jù)與常規(guī)護(hù)理相結(jié)合,制定出更具針對(duì)性、科學(xué)性和有效性的護(hù)理干預(yù)措施以改善患者的臨床結(jié)局是未來(lái)亟待深入探索的研究方向。
4 "討論
上肢功能障礙是腦卒中后常見后遺癥。隨著上肢功能的受限,患者日常生活質(zhì)量隨之受到影響。因此,準(zhǔn)確評(píng)估患者的肢體情況、監(jiān)測(cè)患者功能恢復(fù)在臨床護(hù)理過(guò)程中至關(guān)重要。穿戴式傳感器、sEMG、FMA-UE、ARAT量表是目前臨床常用的評(píng)估工具。sEMG作為臨床測(cè)量的常用工具,結(jié)果準(zhǔn)確,可準(zhǔn)確反映肢體肌肉、關(guān)節(jié)情況,但耗時(shí)長(zhǎng)、成本高、過(guò)程煩瑣。FMA-UE、ARAT量表可作為腦卒中后上肢功能障礙評(píng)估的首選方法。FMA-UE對(duì)肩/肘/前臂等肢體的粗大運(yùn)動(dòng)有較好評(píng)估效果,但對(duì)手指間精細(xì)運(yùn)動(dòng)及靈活度評(píng)估存在不足。研究者在評(píng)估過(guò)程中可將FMA-UE與ARAT量表聯(lián)用。穿戴式傳感器是一種靈活的評(píng)估工具?,F(xiàn)階段,研究者將該技術(shù)與FMA-UE、ARAT量表或sEMG等聯(lián)合應(yīng)用,動(dòng)態(tài)監(jiān)測(cè)肢體信息,更加真實(shí)反映腦卒中患者的上肢狀態(tài)。
近年來(lái),腦卒中后上肢功能障礙的評(píng)估工具逐漸增加,如動(dòng)態(tài)牽張反射閾值、熱成像、機(jī)器人痙攣評(píng)估系統(tǒng)、改良Heckmatt量表等已被應(yīng)用于腦卒中后上肢功能障礙評(píng)估中??衫眠@些工具更加快速、客觀地評(píng)估患者的肢體功能;并聯(lián)合本文提及的工具對(duì)患肢進(jìn)行再評(píng)價(jià)和補(bǔ)充,更準(zhǔn)確地了解患肢情況,制定更有針對(duì)性的護(hù)理方案。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻(xiàn)]
[1]"" WU Q, YUE Z, GE Y, et al. Brain functional networks study of subacute stroke patients with upper limb dysfunction after comprehensive rehabilitation including BCI training[J]. Front Neurol, 2019, 10: 1419.
[2]"" NORRVING B, BARRICK J, DAVALOS A, et al. Action plan for stroke in Europe 2018-2030[J]. Eur Stroke J, 2018, 3(4): 309–336.
[3]"" MICERA S, CALEO M, CHISARI C, et al. Advanced neurotechnologies for the restoration of motor function[J]. Neuron, 2020, 105(4): 604–620.
[4]"" AGRAFIOTIS D K, YANG E, LITTMAN G S, et al. Accurate prediction of clinical stroke scales and improved biomarkers of motor impairment from robotic measurements[J]. PLoS One, 2021, 16(1): e0245874.
[5]"" WANG G B, QIU Y Q, YING Y, et al. Simple grading for motor function in spastic arm paralysis: Hua-Shan grading of upper extremity[J]. J Stroke Cerebrovasc Dis, 2019, 28(8): 2140–2147.
[6]"" HERNáNDEZ E D, GALEANO C P, BARBOSA N E, et al. Intra- and inter-rater reliability of Fugl-Meyer assessment of upper extremity in stroke[J]. J Rehabil Med, 2019, 51(9): 652–659.
[7]"" KWAKKEL G, LANNIN N A, BORSCHMANN K, et al. Standardized measurement of sensorimotor recovery in stroke trials: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable[J]. Int J Stroke, 2017, 12(5): 451–461.
[8]"" VILLEPINTE C, VERMA A, DIMEGLIO C, et al. Responsiveness of kinematic and clinical measures of upper-limb motor function after stroke: A systematic review and Meta-analysis[J]. Ann Phys Rehabil Med, 2021, 64(2): 101366.
[9]"" BRUNNSTROM S. Motor testing procedures in hemiplegia: Based on sequential recovery stages[J]. Phys Ther, 1966, 46(4): 357–375.
[10] HIJIKATA N, KAWAKAMI M, ISHII R, et al. Item difficulty of Fugl-Meyer assessment for upper extremity in persons with chronic stroke with moderate-to-severe upper limb impairment[J]. Front Neurol, 2020, 11: 577855.
[11] TAUCHI Y, KYOUGOKU M, TAKAHASHI K, et al. Dimensionality and item-difficulty hierarchy of the Fugl-Meyer assessment of the upper extremity among Japanese patients who have experienced stroke[J]. Top Stroke Rehabil, 2022, 29(8): 579–587.
[12] TAUCHI Y, KYOUGOKU M, OKITA Y, et al. Structural validity and internal consistency of a hypothesized factor structure of the Fugl-Meyer assessment of the upper extremity[J]. Top Stroke Rehabil, 2023, 30(5): 501–511.
[13] MOKKINK L B, DE VET H C W, PRINSEN C A C, et al. COSMIN risk of bias checklist for systematic reviews of patient-reported outcome measures[J]. Qual Life Res, 2018, 27(5): 1171–1179.
[14] THRANE G, SUNNERHAGEN K S, PERSSON H C, et al. Kinematic upper extremity performance in people with near or fully recovered sensorimotor function after stroke[J]. Physiother Theory Pract, 2019, 35(9): 822–832.
[15] PRANGE-LASONDER G B, ALT MURPHY M, LAMERS I, et al. European evidence-based recommendations for clinical assessment of upper limb in neurorehabilitation (CAULIN): Data synthesis from systematic reviews, clinical practice guidelines and expert consensus[J]. J Neuroeng Rehabil, 2021, 18(1): 162.
[16] BERNHARDT J, BORSCHMANN K N, KWAKKEL G, et al. Setting the scene for the Second Stroke Recovery and Rehabilitation Roundtable[J]. Int J Stroke, 2019, 14(5): 450–456.
[17] NOMIKOS P A, SPENCE N, ALSHEHRI M A. Test- retest reliability of physiotherapists using the action research arm test in chronic stroke[J]. J Phys Ther Sci, 2018, 30(10): 1271–1277.
[18] AMANO S, UMEJI A, UCHITA A, et al. Clinimetric properties of the action research arm test for the assessment of arm activity in hemiparetic patients after stroke[J]. Top Stroke Rehabil, 2020, 27(2): 127–136.
[19] KRISTERSSON T, PERSSON H C, ALT MURPHY M. Evaluation of a short assessment for upper extremity activity capacity early after stroke[J]. J Rehabil Med, 2019, 51(4): 257–263.
[20] PADILLA-MAGA?A J F, PE?A-PITARCH E, SáNCHEZ- SUAREZ I, et al. Hand motion analysis during the execution of the action research arm test using multiple sensors[J]. Sensors (Basel), 2022, 22(9): 3276.
[21] DAGHSEN L, FLEURY L, BOUVIER J, et al. Evaluation of a shortened version of the action research arm test (ARAT) for upper extremity function after stroke: The mini-ARAT[J]. Clin Rehabil, 2022, 36(9): 1257–1266.
[22] ALT MURPHY M, H?GER C K. Kinematic analysis of the upper extremity after stroke-how far have we reached and what have we grasped?[J]. Phys Ther Rev, 2015, 20: 137–155.
[23] CARNEVALE A, LONGO U G, SCHENA E, et al. Wearable systems for shoulder kinematics assessment: A systematic review[J]. BMC Musculoskelet Disord, 2019, 20(1): 546.
[24] OLIVEIRA A, DIAS D, MúRIAS LOPES E, et al. SnapKi-An inertial easy-to-adapt wearable textile device for movement quantification of neurological patients[J]. Sensors (Basel) , 2020, 20(14): 3875.
[25] MACEIRA-ELVIRA P, POPA T, SCHMID A C, et al. Wearable technology in stroke rehabilitation: Towards improved diagnosis and treatment of upper-limb motor impairment[J]. J Neuroeng Rehabil, 2019, 16(1): 142.
[26] ZHENG Y, MAO Y R, YUAN T F, et al. Multimodal treatment for spinal cord injury: A sword of neuroregeneration upon neuromodulation[J]. Neural Regen Res, 2020, 15(8): 1437–1450.
[27] PAUL T, HENSEL L, REHME A K, et al. Early motor network connectivity after stroke: An interplay of general reorganization and state-specific compensation[J]. Hum Brain Mapp, 2021, 42(16): 5230–5243.
[28] ALAVERDASHVILI M, FOROUD A, LIM D H, et al. \"Learned baduse\" limits recovery of skilled reaching for food after forelimb motor cortex stroke in rats: A new analysis of the effect of gestures on success[J]. Behav Brain Res, 2008, 188(2): 281–290.
[29] ALLRED R P, CAPPELLINI C H, JONES T A. The “good” limb makes the \"bad\" limb worse: Experience- dependent interhemispheric disruption of functional outcome after cortical infarcts in rats[J]. Behav Neurosci, 2010, 124(1): 124–132.
[30] WANG X, FU Y, YE B, et al. Technology-based compensation assessment and detection of upper extremity activities of stroke survivors: Systematic review[J]. J Med Internet Res, 2022, 24(6): e34307.
[31] HELD J P O, KLAASSEN B, EENHOORN A, et al. Inertial sensor measurements of upper-limb kinematics in stroke patients in clinic and home environment[J]. Front Bioeng Biotechnol, 2018, 6: 27.
[32] NOWKA D, KOK M, SEEL T. On motions that allow for identification of hinge joint axes from kinematic constraints and 6D IMU data[C]. Naples: European Control Conference, 2019.
[33] LAIDIG D, LEHMANN D, BEGIN M A, et al. Magnetometer-free realtime inertial motion tracking by exploitation of kinematic constraints in 2-DoF joints[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2019, 2019: 1233–1238.
[34] SALCHOW-H?MMEN C, CALLIES L, LAIDIG D, et al. A tangible solution for hand motion tracking in clinical applications[J]. Sensors (Basel), 2019, 19(1): 208.
[35] POITRAS I, CLOU?TRE J, BOUYER L J, et al. Development and validation of open-source activity intensity count and activity intensity classification algorithms from raw acceleration signals of wearable sensors[J]. Sensors (Basel), 2020, 20(23): 6767.
[36] BARTH J, GEED S, MITCHELL A, et al. Characterizing upper extremity motor behavior in the first week after stroke[J]. PLoS One, 2020, 15(8): e0221668.
[37] LIU K, YIN M, CAI Z. Research and application advances in rehabilitation assessment of stroke[J]. J Zhejiang Univ Sci B, 2022, 23(8): 625–641.
[38] FELDNER H A, PAPAZIAN C, PETERS K, et al. “It’s all sort of cool and interesting…but what do I do with it?” A qualitative study of stroke survivors’ perceptions of surface electromyography[J]. Front Neurol, 2020, 11: 1037.
[39] MONTE-SILVA K, PISCITELLI D, NOROUZI-GHEIDARI N, et al. Electromyogram-related neuromuscular electrical stimulation for restoring wrist and hand movement in poststroke hemiplegia: A systematic review and Meta-analysis[J]. Neurorehabil Neural Repair, 2019, 33(2): 96–111.
[40] HOGREL J Y. Clinical applications of surface electromyography in neuromuscular disorders[J]. Neurophysiol Clin, 2005, 35(2-3): 59–71.
[41] KARLSSON S, GERDLE B. Mean frequency and signal amplitude of the surface EMG of the quadriceps muscles increase with increasing torque-A study using the continuous wavelet transform[J]. J Electromyogr Kinesiol, 2001, 11(2): 131–140.
[42] YAO B, ZHANG X, LI S, et al. Analysis of linear electrode array EMG for assessment of hemiparetic biceps brachii muscles[J]. Front Hum Neurosci, 2015, 9: 569.
[43] TANG Z, YU H, YANG H, et al. Effect of velocity and acceleration in joint angle estimation for an EMG-based upper-limb exoskeleton control[J]. Comput Biol Med, 2022, 141: 105156.
(修回日期:2025–06–12)
通信作者:徐莉霞,電子信箱:903397107@qq.com