亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        再生資源基質(zhì)在屋頂綠化中的應(yīng)用研究進(jìn)展

        2025-06-27 00:00:00鄒維娜秦秉鐸袁琳宋麗莉
        山東農(nóng)業(yè)科學(xué) 2025年4期
        關(guān)鍵詞:植物

        Research Progress on Application of Substrate from Recycled and Reused Resources in Roof Greening

        Zou Weina1,Qin Bingduo1,Yuan Lin2,Song Lili1 (1.Schol of Ecological Technology and Engineering,Shanghai Institute of Technology,Shanghai 2O1418,China; 2.State Key Laboratoryfor Estuarine and Coastal Research,East China Normal University,Shanghai 20O241,China)

        AbstractRoof greening substrates could not only support the growth of plants,but also play a key role in the ecological function of rof greening system.Replacing minerals and natural materials (perlite,vermiculite,peat,etc.)with recycled and reused resources as roof greening substrates is a potential solution to reduce overexploitation of natural resources and promote waste recycling.In this study,the domestic and foreign researches on the application of rof greening substrates converted from recycled and reused resources were systematically introduced.The types and characteristics of the main recycled and reused resources used to be substrates were analyzed.The responses of growth and development of roof greening plants to diferent substrates converted from recycled and reused resources were summarized. The ecological effect of rof greening substrates from recycled and reused resources were summarized and analyzed,including rainwater storage and purification,thermal regulation,carbon sequestration capacity, biodiversity and so on. And the future research directions were prospected,such as the ecological effect,the potential risks,the exploitation of raw material types and the most suitable ratio of substrates from recycled and reused resources.This paper could provide some references for further research and practice of substrates converted from recycled and reused resources.

        KeywordsSubstrate;Recycled and reused resources; Roof greening; Performance; Plant adaptability

        屋頂綠化的廣泛實(shí)踐提供了緩解熱島效應(yīng)、降低建筑能源消耗、減少雨水徑流、改善空氣質(zhì)量、增加碳匯和生物多樣性等諸多生態(tài)服務(wù)功能。屋頂綠化基質(zhì)既要滿足保水、保肥、透氣等植物生長(zhǎng)所需條件,又要因荷載、排水等要求而需具備質(zhì)輕、穩(wěn)定等性狀。常規(guī)基質(zhì)成分中的有機(jī)原料主要是泥炭等,無機(jī)材料通常由輕質(zhì)多孔的天然礦物質(zhì)加工、配制而成,常用的有珍珠巖、蛭石、浮石、火山巖顆粒等。礦物和天然材料的過度開采與使用,不僅會(huì)破壞生態(tài)環(huán)境,也會(huì)導(dǎo)致自然資源的迅速消耗[1-4]。在當(dāng)前可持續(xù)發(fā)展的大背景下,由廢棄物轉(zhuǎn)化為基質(zhì)作為一種經(jīng)濟(jì)環(huán)保的資源化處理方式,在國(guó)內(nèi)外均已得到實(shí)踐和探索[4-13]。研究表明,將一種或幾種回收材料經(jīng)合理配制后用于屋頂綠化基質(zhì),性能良好[14],適宜植物生長(zhǎng)[6,15-16],符合屋頂綠化技術(shù)[17]和功能要求[18]。因此,將再生資源替代天然材料用于屋頂綠化基質(zhì)具有可行性,降低了屋頂綠化建設(shè)的環(huán)境影響[19-21],有利于廢棄物減量化和循環(huán)利用。

        本文通過系統(tǒng)梳理國(guó)內(nèi)外對(duì)再生資源利用型基質(zhì)在屋頂綠化中的應(yīng)用研究,分析主要再生資源基質(zhì)的類型、特點(diǎn),歸納屋頂綠化植物對(duì)其的響應(yīng),探索其對(duì)屋頂綠化生態(tài)效益的影響,并據(jù)此提出再生資源基質(zhì)應(yīng)用于屋頂綠化的研究展望,以期為屋頂綠化的資源節(jié)約和綜合生態(tài)效益提升提供借鑒和參考。

        屋頂綠化再生資源基質(zhì)的類型和性能

        屋頂綠化通常由植被層、基質(zhì)層、隔離過濾層、排水層、阻根層和防水層組成[22-23],各層之間相互作用、相互影響。性狀優(yōu)良的屋頂綠化基質(zhì)需要滿足支持植被生長(zhǎng)、質(zhì)量輕、持水能力強(qiáng)、隔熱性能好、污染風(fēng)險(xiǎn)低、價(jià)格低廉且易于管理等要求[7,24-27],通常由幾種無機(jī)和有機(jī)材料混合而成。有機(jī)材料為植物提供生長(zhǎng)所需的營(yíng)養(yǎng)物質(zhì),但其比重和營(yíng)養(yǎng)釋放要保持在適當(dāng)水平,否則可能會(huì)造成雨洪徑流污染[28],甚至可能帶來一些難以預(yù)測(cè)的風(fēng)險(xiǎn)[18]。無機(jī)材料為植物生長(zhǎng)提供支撐和固定作用,并減少風(fēng)、溫差等環(huán)境變化帶來的不良影響。一些國(guó)家(如法國(guó)、德國(guó)和美國(guó))對(duì)屋頂綠化基質(zhì)配比的建議是 70%~95% 為無機(jī)物、 5% \~30%為有機(jī)物[18] O

        1.1 再生資源基質(zhì)類型

        當(dāng)前屋頂綠化基質(zhì)中應(yīng)用較多的再生資源主要包括建筑廢棄物、工業(yè)廢棄物、農(nóng)林廢棄物等(表1)。磚、瓦和混凝土塊等建筑廢棄物經(jīng)粉碎后可成為基質(zhì)中無機(jī)成分替代品的主要來源[5-6,29-30]。這一方面是因?yàn)榻ㄖU棄物供給充足,一般在本地就可獲取,便于運(yùn)輸[14,31-32];另一方面,碎磚顆粒等性能穩(wěn)定、容重較輕且酸堿度適中。一些國(guó)家甚至已有包含碎磚、碎瓦等的成品基質(zhì)出售,如德國(guó)[17,33]、澳大利亞[34]。一些研究評(píng)估了工業(yè)廢棄物用于屋頂綠化基質(zhì)的適用性,包括礦渣[35]、焚燒爐灰[6.36]、粉煤灰[37]等,主要用于替代無機(jī)成分,而污水處理廠產(chǎn)出的穩(wěn)定污泥[37]、醋糟等也可替代有機(jī)成分。農(nóng)林再生資源中的蘑菇栽培廢料、園林廢棄物等的堆肥可作為泥炭的替代物[38],而稻殼、椰殼等制成的生物炭透氣性好、有機(jī)質(zhì)釋放緩慢,還能增加植物根際微生物群落的多樣性[39-40],是調(diào)節(jié)基質(zhì)理化成分的良好選擇[41]。一些研究對(duì)固體廢棄物中占比較大的再生資源進(jìn)行了探索,顯示碎橡膠[1,42]、紙灰[30,37]、塑料瓶[43-44]、發(fā)泡玻璃[8,45]等在屋頂綠化基質(zhì)中都有較好的應(yīng)用。

        表1再生資源基質(zhì)的來源、種類與應(yīng)用效果

        再生資源基質(zhì)的類型和來源與屋頂綠化系統(tǒng)在整個(gè)生命周期內(nèi)對(duì)環(huán)境的影響息息相關(guān)。一方面,基質(zhì)原材料的提取、生產(chǎn)和運(yùn)輸所產(chǎn)生的環(huán)境負(fù)荷很大程度上取決于材料的類型[28,46];另一方面,基質(zhì)性能直接影響屋頂綠化的生態(tài)效益和植物生長(zhǎng)的狀態(tài),耐久性則關(guān)系到更換的成本。因此,對(duì)再生資源基質(zhì)應(yīng)用于屋頂綠化的適宜性,研究者們的共識(shí)可以總結(jié)為4個(gè)方面:(1)在當(dāng)?shù)厝菀撰@得,運(yùn)輸和使用便利,成本低[28,47-48];(2)有利于解決環(huán)境問題[17,19-20];(3)耐久性強(qiáng)[18];(4)能維持植物生長(zhǎng)所需水分養(yǎng)分[6,49] O

        1.2 再生資源基質(zhì)的理化性質(zhì)及性能

        基質(zhì)的特性主要表征為兩組參數(shù),其中物理參數(shù)包括密度、粒徑、透水性、最大持水量、孔隙度等,化學(xué)參數(shù)包括酸堿度、電導(dǎo)率和有機(jī)質(zhì)、營(yíng)養(yǎng)元素含量等[65-66]。再生資源基質(zhì)的理化性質(zhì)要符合相關(guān)的要求范圍和標(biāo)準(zhǔn)才能應(yīng)用于屋頂綠化。據(jù)我國(guó)《種植屋面工程技術(shù)規(guī)程》(JGJ155—2013)可知,改良型種植基質(zhì)飽和水密度為 750~ 1300kg/m3 ,有機(jī)質(zhì)含量為 20%~30% ,總孔隙率為 65%~70% ,持水率為 30%~35% 。德國(guó)景觀研究發(fā)展與建設(shè)協(xié)會(huì)(FLLGuidelinesforthePlan-ning,Execution and Upkeep of Green-Roof Sites)建議屋頂綠化基質(zhì)容重不超過 ,透水性要好,持水率應(yīng)大于 20% ( 35%~65% 最佳)[7]一般來說,高孔隙率的基質(zhì)有效熱導(dǎo)率更低(或熱阻率更高)[4,9,30,67-68],因?yàn)闊崃鬏^難通過孔隙?;|(zhì)中添加農(nóng)林廢棄物能顯著改善總孔隙度和通氣孔隙度,提高氮、鉀等養(yǎng)分含量[69-70],同時(shí),有機(jī)碳成分能有效改善基質(zhì)結(jié)構(gòu),使其透氣性與保水性更佳[71]。作為無機(jī)成分,建筑廢棄物顆粒酸堿度適中[31],可以取得與天然砂石和陶粒類似甚至更優(yōu)的效果[72-73]

        再生資源基質(zhì)需要經(jīng)過配方設(shè)計(jì),也需測(cè)試評(píng)估其是否能夠滿足屋頂綠化系統(tǒng)正常運(yùn)作的條件,并為植物生長(zhǎng)提供適宜的環(huán)境[48]。一方面,基質(zhì)良好的性能需要在各角度取得平衡:例如基質(zhì)的孔隙度影響保水能力,但持水率過強(qiáng)則會(huì)降低其保溫隔熱的性能,因?yàn)樗臒醾鲗?dǎo)比空氣更強(qiáng),因此要從基質(zhì)的顆粒內(nèi)和顆粒間的孔隙情況分別考慮,并在保水、隔熱能力和灌溉頻率之間探索最優(yōu)化的方案;另一方面,再生資源基質(zhì)的應(yīng)用要評(píng)估污染物的析出風(fēng)險(xiǎn):例如,Solano等[42]發(fā)現(xiàn)再生輪胎橡膠屑用于屋頂綠化基質(zhì)時(shí)會(huì)釋放出鋅,但與具有高陽(yáng)離子交換能力的材料搭配使用則能減輕影響。此外,建筑廢棄物骨料用于屋頂綠化可能有重金屬污染風(fēng)險(xiǎn)[74]。有研究認(rèn)為實(shí)驗(yàn)室條件下會(huì)高估建筑廢棄物的潛在污染影響,實(shí)際環(huán)境中的污染水平要低[53] □

        2 屋頂綠化植物對(duì)再生資源基質(zhì)的響應(yīng)狀況

        通過植物的生長(zhǎng)狀態(tài)來評(píng)估再生材料是否適合作為屋頂綠化的基質(zhì)能直觀體現(xiàn)其效能。研究者們比較關(guān)注的植物表現(xiàn)主要有3個(gè)方面。一是生物量對(duì)基質(zhì)成分、配比的響應(yīng):Bates 等[6在一項(xiàng)為期6年的屋頂野花混合栽培試驗(yàn)中使用碎磚、建筑廢棄物骨料和粉煤灰分別作為基質(zhì),發(fā)現(xiàn)植物的生物量增長(zhǎng)變化不大;Molineux等[30]對(duì)比6種再生輕質(zhì)骨料及其組合發(fā)現(xiàn),碎紅磚和黏土顆粒的混合基質(zhì)對(duì)提高植物群落豐度、均勻度和物種多樣性都有很大的作用,而紙灰顆粒在支持植物生長(zhǎng)方面相對(duì)較差,可能是由于其持水能力有限且 pH 值高;一些研究還探索了不同無機(jī)骨料與有機(jī)質(zhì)的配比對(duì)植物生長(zhǎng)的影響,如碎磚和堆肥的混合[75],碎磚和天然壤土的組合[31],碎瓷、發(fā)泡玻璃和園林廢棄物堆肥的配制8;椰殼[41]、污泥生物炭[30,61]、園林廢棄物[76-77]等作為屋頂綠化基質(zhì)的組成部分,均被證明能夠有效促進(jìn)植物生長(zhǎng),提高覆蓋度和葉綠素含量等。二是在干旱脅迫下,植物對(duì)基質(zhì)厚度和粒徑的響應(yīng):有研究表明,在夏季高溫干旱和低維護(hù)的情況下,適宜的基質(zhì)厚度是植物在廢棄物基質(zhì)中存活的關(guān)鍵[78];含有大粒徑碎磚顆粒的基質(zhì)在干旱期間可以讓植物的葉綠素?zé)晒庵岛涂菸笖?shù)值維持在較高水平[79];而添加大粒徑碎磚的基質(zhì)可以抑制植物地上部分的枝條生物量過快增長(zhǎng),提高根冠比,降低蒸騰速率,從而增強(qiáng)植物的抗旱性[75,80]。三是植物對(duì)基質(zhì)中潛在污染成分的反應(yīng):再生資源尤其是工業(yè)廢棄物可能殘留重金屬及其它有害成分,一直是推廣實(shí)踐者們的隱憂,如 Krawczyk等[48]使用二氧化硅廢料、碎磚、蘑菇廢料和椰子纖維等制備了5種基質(zhì),發(fā)現(xiàn)廢棄物基質(zhì)中微量元素 (ΔB,Cu?Fe?Mn?Zn?Cd?Ni?Pb 和Cr)濃度比常規(guī)基質(zhì)高,但不容易被根系吸收,在兩年的觀測(cè)中未見到植物異常生長(zhǎng);劉麗娟等[81]配置6種生污泥與建筑廢棄物混合基質(zhì)播種臭椿,證明植株未受到重金屬污染的明顯影響。

        3 再生資源基質(zhì)對(duì)屋頂綠化生態(tài)效益的影響

        目前,國(guó)內(nèi)外關(guān)于資源利用型基質(zhì)影響屋頂綠化生態(tài)效益的研究主要集中在雨水的滯蓄與凈化、熱調(diào)節(jié)、固碳能力、生物多樣性等方面。

        3.1 雨水滯蓄作用

        削減屋面雨水徑流量、儲(chǔ)存雨水是屋頂綠化系統(tǒng)的主要生態(tài)功能之一[23.82]。部分再生材料(如碎磚、發(fā)泡玻璃等)孔隙度較高,應(yīng)用到屋頂綠化基質(zhì)中能提高其保水能力[4.83-84],但基質(zhì)組分的差異會(huì)形成不同的雨水滯蓄效果[85-87]。例如,碳化稻殼的加入可以提高基質(zhì)的水文性能[88],椰纖維混合基質(zhì)也有優(yōu)越的持水性[89]。同時(shí),基質(zhì)粒徑對(duì)保水能力也有影響,粒徑小于1mm 的細(xì)顆粒碎磚會(huì)顯著影響基質(zhì)的持水量[57]此外,基質(zhì)厚度也是屋頂綠化雨水滯蓄性能的關(guān)鍵因素,因?yàn)楹穸仍黾涌梢蕴岣咝钏萘縖90-95]。Zhang等[%]通過3年的連續(xù)監(jiān)測(cè)研究發(fā)現(xiàn),北京地區(qū)基質(zhì)厚度為 15cm 的屋頂綠化雨水截留率和峰值徑流衰減率明顯高于 10cm 厚度的,但厚度超過一定的臨界值后雨水滯蓄效果差異不明顯

        3.2 雨水凈化作用

        屋頂綠化對(duì)于雨水徑流的影響是一把雙刃劍,一方面通過植被層和基質(zhì)層的截留、過濾、吸附和生物降解等作用去除污染物[97-98],另一方面,屋頂綠化基質(zhì)中的有機(jī)物、速效氮、速效磷等易淋溶成分會(huì)直接影響徑流水質(zhì)[45.9-101]。研究表明,屋頂綠化基質(zhì)中的再生材料成分對(duì)雨水凈化的貢獻(xiàn)包括抑制基質(zhì)本身有機(jī)污染物的析出和直接凈化[18,54] O

        如表2所示,不同再生資源基質(zhì)成分的理化性質(zhì)有差異,同時(shí)也會(huì)產(chǎn)生不同的雨水凈化效果。生物炭對(duì)營(yíng)養(yǎng)物質(zhì)的析出起到緩解作用[102-103]可作為基質(zhì)的改良成分。Qiu等[6]將稻殼和木屑生物炭添加進(jìn)屋頂綠化基質(zhì)中測(cè)試滲濾液成分,發(fā)現(xiàn)其總氮、總磷和COD含量比對(duì)照組低。Zhang等[104]模擬降雨污染負(fù)荷試驗(yàn)(降雨 10~80 mm? )測(cè)試含椰殼生物炭的基質(zhì)和普通成品基質(zhì)的滲濾液,顯示前者的總氮和COD平均濃度僅為后者的一半。Vijayaraghavan等[7]以碎磚和生物吸附劑(馬尾藻纖維)等配制成屋頂綠化基質(zhì)并開展模擬降雨試驗(yàn),發(fā)現(xiàn)基質(zhì)對(duì)金屬離子的去除能力較強(qiáng),還能中和酸雨。與之類似,Kuoppam?ki等[63]也發(fā)現(xiàn)碎磚基質(zhì)對(duì)雨水徑流中銅、鉻、鎳離子的削減作用明顯優(yōu)于無綠化系統(tǒng)的屋頂。Chen等[45]發(fā)現(xiàn)發(fā)泡玻璃基質(zhì)對(duì)酸雨的凈化效果較好,相比普通基質(zhì)降低COD和磷的效果也較為突出。污泥轉(zhuǎn)化基質(zhì)凈化雨水的效果在一些研究中較為明顯:劉洋洋[105]將污水廠的穩(wěn)定污泥和粉煤灰等材料混合制成的基質(zhì),在屋頂綠化中表現(xiàn)出良好的初期雨水凈化能力;韋杰文等[1]模擬中雨和暴雨強(qiáng)度的降雨,發(fā)現(xiàn)含 40% 鋁污泥的改良基質(zhì)對(duì)磷和重金屬具有固定和吸附作用。同時(shí),也有研究認(rèn)為添加污泥的屋頂綠化基質(zhì)的雨水凈化效果并不穩(wěn)定,需持續(xù)監(jiān)測(cè)[10,106] 。

        3.3 屋面調(diào)溫作用

        具備屋頂綠化的建筑相較裸露屋頂?shù)娜諟囟炔▌?dòng)較小,原因主要是其基質(zhì)層、植被層和排水層產(chǎn)生較高的熱慣性[23,65,107-108]。基質(zhì)材料對(duì)屋頂綠化系統(tǒng)的熱阻性能起到關(guān)鍵性作用[0-11],一些再生粗骨料由于孔隙率大、耐熱性好而成為屋頂綠化保溫材料的佳選[12],能減少空調(diào)能耗,緩解城市熱島效應(yīng)。例如,Naranjo等[43]發(fā)現(xiàn),在環(huán)境溫度非常高(大約 50°C )的情況下,以橡膠屑為基質(zhì)的屋頂綠化系統(tǒng)溫度可降低 10.6~ 11.7°C ;還有一些研究以基質(zhì)和植物為關(guān)鍵參數(shù)來預(yù)測(cè)屋頂綠化的節(jié)能效果[22,34,113-114] 。

        再生資源基質(zhì)的調(diào)溫性能研究主要聚焦于孔隙度、持水率、厚度三者和導(dǎo)熱性之間的關(guān)系上?;|(zhì)孔隙度越高,持水性越好,導(dǎo)熱性越低,但在飽和持水情況下導(dǎo)熱系數(shù)會(huì)變高。例如Pianella等[34]分別測(cè)定了以碎瓦、粉煤灰和火山巖顆粒為主的3種基質(zhì)在不同水分條件下的導(dǎo)熱系數(shù),發(fā)現(xiàn)干燥基質(zhì)的導(dǎo)熱系數(shù)低,但會(huì)隨含水率的增加而增加,含水率一致時(shí)碎瓦的導(dǎo)熱系數(shù)最高。基質(zhì)厚度的增加會(huì)提升屋頂綠化的熱容體積[40],有助于增強(qiáng)調(diào)溫效果。有研究者在地中海氣候下評(píng)估了夏季和冬季橡膠屑在屋頂綠化基質(zhì)中應(yīng)用的效果,發(fā)現(xiàn)其隔熱性能在夏季比裸露屋頂好,但在冬季則相反,若增加基質(zhì)厚度則會(huì)改善寒冷季節(jié)的熱性能[19,115]。Kazemi等[64]使用WUFI軟件對(duì)屋頂綠化的橡膠屑基質(zhì)層和火山巖粒排水層的隔熱性能進(jìn)行參數(shù)化分析發(fā)現(xiàn),隨著基質(zhì)和隔熱層厚度的增加,屋頂溫度波動(dòng)減小,當(dāng)基質(zhì)層厚度為10cm 、排水層厚度為 8cm 時(shí),屋頂在冬、夏兩季均有良好的調(diào)溫性能。

        表2不同再生資源基質(zhì)的雨水凈化效益相關(guān)研究的代表性文獻(xiàn)

        3.4 固碳減排作用

        屋頂綠化的生態(tài)系統(tǒng)服務(wù)功能可減少碳足跡、減緩氣候變化,植物的固碳釋氧的規(guī)模也不容小峴?;|(zhì)作為屋頂綠化系統(tǒng)的重要組成部分,直接影響其碳儲(chǔ)存能力和減排效果。Luo 等[59]通過對(duì)比屋頂綠化中穩(wěn)定污泥基質(zhì)和天然土壤種植的鄉(xiāng)土植物,發(fā)現(xiàn)前者的固碳量是后者的1.8倍;Fan等[12]發(fā)現(xiàn)建筑廢棄物基質(zhì)固碳潛力大于天然土壤。同時(shí),循環(huán)利用或用當(dāng)?shù)貋碓吹牟牧峡梢詼p少屋頂綠化對(duì)環(huán)境的影響[37,16],增加再生資源材料的比例可以減少基質(zhì)在生產(chǎn)和運(yùn)輸過程中的碳排放量[117-119]。例如,在澳大利亞東南部碎陶瓦和煤灰渣被用作屋頂綠化基質(zhì)的主要成分[52,120-121],正是由于在當(dāng)?shù)厝菀撰@得。

        3.5 生物多樣性影響

        再生資源基質(zhì)主要通過提升植物、昆蟲、土壤動(dòng)物等的適生環(huán)境質(zhì)量來促進(jìn)屋頂綠化系統(tǒng)的生物多樣性。Bates等[發(fā)現(xiàn)碎磚基質(zhì)屋頂?shù)纳锒鄻有员确勖夯一|(zhì)更優(yōu)越。Jauni等[56]在芬蘭南部用碎混凝土、堆肥混合基質(zhì)進(jìn)行了為期5年的種植試驗(yàn),發(fā)現(xiàn)堆肥含量和基質(zhì)厚度對(duì)線蟲的豐度有影響。Vannucchi等[60]應(yīng)用污泥顆粒作為替代基質(zhì)成分建立了干旱地區(qū)的屋頂耐寒草本群落,發(fā)現(xiàn)中粒徑的污泥基質(zhì)中氮含量和水分含量較低,可以促進(jìn)草本植物群落蓋度和訪花昆蟲的豐度。

        4小結(jié)與展望

        4.1 小結(jié)

        (1)在當(dāng)前國(guó)內(nèi)外研究和實(shí)踐中,屋頂綠化再生資源基質(zhì)的材料來源主要包括建筑廢棄物、工業(yè)廢棄物、農(nóng)林廢棄物和固體廢棄物,其中建筑廢棄物的應(yīng)用更為廣泛。研究者們對(duì)如何選擇再生資源應(yīng)用于屋頂綠化基質(zhì)材料的共識(shí)聚焦于使用便利、成本低、性能好。

        (2)再生資源基質(zhì)需要經(jīng)過配方設(shè)計(jì)與測(cè)試后其理化性質(zhì)才能滿足屋頂綠化系統(tǒng)正常運(yùn)作的需求,既要在各性能間取得良好的平衡,也要避免污染物影響。屋頂綠化植物的生長(zhǎng)狀態(tài)能直觀體現(xiàn)再生資源基質(zhì)的性能,包括生物量對(duì)基質(zhì)成分、配比的響應(yīng),抗旱表現(xiàn)對(duì)基質(zhì)厚度、粒徑的響應(yīng),健康狀態(tài)對(duì)基質(zhì)潛在污染成分的反應(yīng)等

        (3)再生資源基質(zhì)的應(yīng)用有利于提升屋頂綠化系統(tǒng)雨水滯蓄與凈化、熱調(diào)節(jié)以及固碳能力等生態(tài)效益。再生資源基質(zhì)組分、粒徑和厚度都會(huì)影響屋頂綠化的雨水滯蓄效果;凈化雨水的途徑包括抑制基質(zhì)本身有機(jī)污染物的析出和直接凈化;基質(zhì)孔隙度、持水率、厚度影響導(dǎo)熱性并決定調(diào)溫性能;再生資源基質(zhì)有較強(qiáng)的固碳能力,還能減少建筑建設(shè)和運(yùn)輸過程中的碳排放,并能改善生物適生環(huán)境,促進(jìn)屋頂綠化系統(tǒng)的生物多樣性

        4.2 展望

        國(guó)內(nèi)外的研究和實(shí)踐證明了合理配制的再生資源材料用于屋頂綠化基質(zhì)的可行性和優(yōu)越性。我國(guó)每年產(chǎn)生的可回收利用廢棄物數(shù)量巨大,研制開發(fā)成為屋頂綠化基質(zhì)是一個(gè)有潛力的方向。一方面,要加強(qiáng)再生資源基質(zhì)的性能、生態(tài)效益和潛在風(fēng)險(xiǎn)等方面的基礎(chǔ)研究,如經(jīng)濟(jì)成本、附加能源消耗、固碳效益和生態(tài)多樣性影響等方面均有待深入探索。另一方面,資源利用型基質(zhì)的研發(fā)和應(yīng)用有待于進(jìn)一步拓展,例如建筑和工業(yè)廢棄物在基質(zhì)生產(chǎn)上如何大規(guī)模使用,不同地區(qū)和類型屋頂綠化基質(zhì)的最適配比等。

        參考文獻(xiàn):

        [1]Pérez G,Vila A,Rincón L,et al. Use of rubber crumbs as drainage layer in green roofs as potential energy improvement material [J].Applied Energy,2012,97:347-354.

        [2] Nuaklong P,Wongsa A,Boonserm K,et al. Enhancement of mechanical properties of fly ash geopolymer containing fine recycled concrete aggregate with micro carbon fiber[J]. Journal of Building Engineering,2021,41:102403.

        [3] Tayebi M,Nematzadeh M. Post-fire flexural performance and microstructure of steel fiber-reinforced concrete with recycled nylon granules and zeolite substitution[J]. Structures,2021, 33:2301-2316.

        [4] Kazemi M,Courard L,Hubert J. Coarse recycled materials for the drainage and substrate layers of green roof system in dry condition: parametric study and thermal heat transfer[J]. Journal of Building Engineering,2022,45:103487.

        [5]Bisceglie F,Gigante E,Bergonzoni M. Utilization of waste autoclaved aerated concrete as lighting material in the structure of a green roof[J]. Construction and Building Materials,2014,69 : 351-361.

        [6] BatesAJ,Sadler JP,Greswell RB,et al.Effects of recycled aggregate growth substrate on green roof vegetation development:a six year experiment[J].Landscape and Urban Planning,2015,135:22-31.

        [7] Vijayaraghavan K,Joshi U M. Application of seaweed as substrate additive in green roofs:enhancement of water retention and sorption capacity[J]. Landscape and Urban Planning, 2015,143:25-32.

        [8] Eksi M,Rowe D B.Green roof substrates:effect of recycled crushed porcelain and foamed glass on plant growth and water retention[J]. Urban Forestry amp; Urban Greening,2016,20: substrates[J]. Polish Journal of Environmental Studies,2017, 26(2) :643-653.

        [10]彭航宇,李田,齊悅,等.基于污水廠污泥資源化利用的粗 放型綠色屋頂水質(zhì)控制效果[J].環(huán)境科學(xué),2019,40(8): 3612-3617.

        [11]韋杰文,韓柳,趙曉紅,等.給水廠鋁污泥作為屋頂綠化基 質(zhì)應(yīng)用的關(guān)鍵問題分析[J].環(huán)境工程,2019,37(12):34- 40.

        [12]Fan L Q,Wang JT,Liu X L,et al. Whether the carbon emission from green roofs can be effectively mitigated by recycling waste building material as green roof substrate during five-year operation?[J].Environmental Science and Pollution Research,2020,27(32) :40893-40906.

        [13]劉瑜,趙佳穎,周晚來,等.城市園林廢棄物資源化利用研 究進(jìn)展[J].環(huán)境科學(xué)與技術(shù),2020,43(4):32-38.

        [14]Graceson A,Hare M,Hall N,et al. Use of inorganic substrates and composted green waste in growing media for green roofs [J]. Biosystems Engineering,2014,124:1-7.

        [15]Graceson A,Monaghan J,Hall N,et al. Plant growth responses to different growing media for green roofs[J]. Ecological Engineering,2014,69:196-200.

        [16]Dusza Y,Kraepiel Y,Abbadie L,et al.Plant-pollinator interactions on green roofs are mediated by substrate characteristics and plant community composition[J]. Acta Oecologica,2020, 105 : 103559.

        [17]Jusselme M D,Pruvost C,Motard E,et al. Increasing the ability ofagreen roof to provide ecosystem services by adding organic matter and earthworms[J].Applied Soil Ecology,2019,143: 61-69.

        [18]LataJC,Dusza Y,AbbadieL,etal. Role of substrate properties in the provision of multifunctional green roof ecosystem services [J].Applied Soil Ecology,2018,123:464-468.

        [19]Rincón L,Coma J,Pérez G,et al. Environmental performance of recycled rubber as drainage layer in extensive green roofs : a comparative Life Cycle Assessment[ J]. Building and Environment,2014,74:22-30.

        [20]Chenani SB,Lehvavirta S,Hakkinen T. Life cycle assessment of layers of green roofs[J]. Journal of Cleaner Production, 2015,90: 153-162.

        [21]Pushkar S.Modeling the substitution of natural materials with industrial byproducts in green roofs using life cycle assessments [J].Journal of Cleaner Production,2019,227:652-661.

        [22] Tabares-Velasco P C,Zhao M J,Peterson N,et al. Validation of predictive heat and mass transfer green roof model with extensive green roof field data[J]. Ecological Engineering,2012, 47 :165-173.

        [23] Cascone S,Catania F,Gagliano A,et al. A comprehensive study

        [24] Shafique M,Kim R,Rafiq M. Green roof benefits,opportunities and challenges : a review[J]. Renewable and Sustainable Energy Reviews,2018,90:757-773.

        [25]Bollman M A,DeSantis G E,DuChanois R M,et al. A framework for optimizing hydrologic performance of green roof media [J]. Ecological Engineering,2019,140:105589.

        [26]Vandegrift D A,Rowe D B,Cregg B M,et al. Effect of substrate depth on plant community development on a michigan green roof[J]. Ecological Engineering,2019,138:264-273.

        [27]Bollman M A,Desantis G E,Waschmann R S,et al. Effects of shading and composition on green roof media temperature and moisture[J]. Journal of Environmental Management,2021, 281:111882.

        [28] Nagase A. Novel application and reused materials for extensive green roof substrates and drainage layers in Japan : plant growth and moisture uptake implementation-[J]. Ecological Engineering,2020,153:105898.

        [29]Poyamozhi M,Murugesan B,Perumal S,et al. Elevating thermal comfort with eco-friendly concrete roof tiles crafted from municipal solid waste[J]. Journal of Building Engineering, 2024,88:109222.

        [30]Molineux C J,Gange A C,Connop S P,et al. Using recycled aggregates in greenroof substrates forplantdiversityJ].Ecological Engineering,2015,82:596-604.

        [31]Mickovski S B,Buss K,McKenzie B M,et al. Laboratory study on the potential use of recycled inert construction waste material in the substrate mix for extensive green roofs[J]. Ecological Engineering,2013,61:706-714.

        [32] Saberian M,Li J,Perera S TA M,et al. An experimental study on the shear behaviour of recycled concrete aggegate incorporating recycled tyre waste[J]. Construction and Building Materials,2020,264:120266.

        [33]Schroder R,Kiehl K. Testing standard growth substrates for establishing native dry sandy grassand species on extensive green roofs in Northern Germany[J]. Basic and Applied Ecology, 2021,56:181-191.

        [34]Pianella A,Clarke R E,Williams N S G,et al. Steady-state and transient thermal measurements of green roof substrates[J]. Energy and Buildings,2016,131:123-131.

        [35]Williams N S G,Rayner JP,Raynor K J. Green roofs for a wide brown land :opportunities and barriers for rooftop greening in Australia[J]. Urban Forestry amp; Urban Greening,2010,9(3): 245-251.

        [36]Kanechi M,F(xiàn)ujiwara S,Shintani N,et al. Performance of herbaceous evolvulus pilosus on urban green roof in relation to substrate and irrigation[J]. Urban Forestryamp; Urban Greening, 2014,13(1) : 184-191.

        [37]Molineux C J,F(xiàn)entiman C H,Gange A C. Characterising altermcua (10): 1507-1513.

        [38]Jean-Paul G B,Bel N,Marchal N,et al. Recycling urban waste as possible use for rooftop vegetable garden[J]. Future of Food:Journal on Food,Agriculture and Society,2015,3(1): 21-34.

        [39]Kolton M,Graber E R,Tsehansky L,et al.Biochar-stimulated plant performance is strongly linked to microbial diversity and metabolic potential in the rhizosphere[J]. New Phytologist, 2017,213(3) :1393-1404.

        [40] Kuoppam?ki K,Setala H,Hagner M. Nutrient dynamics and development of soil fauna in vegetated roofs with the focus on biochar amendment[J]. Nature-Based Solutions,2O21,1:100001.

        [41] Xue M,F(xiàn)arrell C.Use of organic wastes to create lightweight green roof substrates with increased plant-available water[J]. Urban Forestry amp; Urban Greening,2020,48:126569.

        [42]Solano L,Ristvey A G,Lea-cox J D,et al. Sequestering zinc from recycled crumb rubber in extensive green roof media[J]. Ecological Engineering,2012,47:284-290.

        [43] Naranjo A,Colonia A,Mesa J,et al. Evaluation of semi-intensive green roofs with drainage layers made out of recycled and reused materials[J]. Coatings,2020,10(6) :525.

        [44]Pérez Bueno JJ,Mendoza López M L,Ceja Soto FR,et al. A novel green alternative for a room prototype constructed with entire recycled PET bottles and a green roof composed of waste materials[J]. Applied Sciences,2021,11(17) :7901.

        [45]Chen C F,Kang S F,Lin JH. Effects of recycled glass and different substrate materials on the leachate qualityand plant growth of green roofs[J].Ecological Engineering,2018,112: 10-20.

        [46]Perini K,Roccotiello E. Vertical greening systems for polltants reduction[M]//Nature Based Strategies for Urban and Building Sustainability. Butterworth-Heinemann,2018:131-140.

        [47] Gong Y W,Yin D K,Li J Q,et al. Performance assessment of extensive green roof runoff flow and quality control capacity based on pilot experiments[J]. Science of The Total Environment,2019,687:505-515.

        [48]Krawczyk A,Domagala-Swiatkiewicz I,Lis-Krzyscin A. Timedependent changes in the physicochemical parameters and growth responses of Sedum acre (L.) to waste-based growing substrates in simulation extensive green roof experiment[J]. Agronomy,2021,11(2) :298.

        [49]Nagase A, Yamada Y,Aoki T,et al. Developing biodiverse green roofs for Japan: arthropod and colonizer plant diversity on Harappa and Biotope roofs[J]. Urban Nat.,2018,1:16-38.

        [50]Ondono S,Bastida F,Moreno JL. Microbiological and biochemical properties of artificial substrates : a preliminary study of its application as Technosols or as a basis in Green Roof Systems [J].Ecological Engineering,2014,70:189-199. substrates:are tnese species suitabie Ior tneir Iuture use in green roofs? [J]. Ecological Engineering,2015,81:405-417.

        [52]Farrell C,Ang X Q,Rayner JP. Water-retention additives increase plant available water in green rof substrates[J]. Ecological Engineering,2013,52:112-118.

        [53]Lopez-Uceda A,Galvin A P,Ayuso J,et al. Risk assessment by percolation leaching tests of extensive green roofs with fine fraction of mixed recycled aggregates from construction and demolition waste[J]. Environmental Science and Pollution Research, 2018,25:36024-36034.

        [54]Liberalesso T,Tassi R,Ceconi D E,et al.Effect of rice husk addition on the physicochemical and hydrological properties on green roof substrates under subtropical climate conditions[J]. Journal of Cleaner Production,2021,315:128133.

        [55]Eksi M,Sevgi O,Akburak S,et al. Assessment of recycled or locally available materials as green roof substrates[J]. Ecological Engineering,2020,156:105966.

        [56]Jauni M,Kuoppamaki K,Hagner M,et al. Alkaline habitat for vegetated roofs? Ecosystem dynamics in a vegetated roof with crushed concrete-based substrate[J]. Ecological Engineering, 2020,157:105970.

        [57]Graceson A,Hare M,Monaghan J,et al. The water retention capabilities of growing media for green roofs[J].Ecological Engineering,2013,61:328-334.

        [58] Agra S,Solodar A,Bawab O,et al. Comparing grey water versus tap water and coal ash versus perlite on growth of two plant species on green roofs[J]. Science of The Total Environment, 2018,633:1272-1279.

        [59]Luo H B,Liu X L,Anderson B C,et al. Carbon sequestration potential of green roofs using mixed-sewage-sludge substrate in Chengdu World Modern Garden City[J]. Ecological Indicators, 2015,49:247-259.

        [60]Vannucchi F,Pini R,Scatena M,et al. Deinking sludge in the substrate reduces the fertility and enhances the plant species richness of extensive green rofs[J].Ecological Engieering, 2018,116:87-96.

        [61]Chen H M,Ma JY,Wei JX,et al. Biochar increases plant growth and alters microbial communities via regulating the moisture and temperature of green rof substrates[J]. Science of The Total Environment,2018,635:333-342.

        [62]Qiu D Y,Peng HY,Li T,et al. Application of stabilized sludge to extensive green roofs in Shanghai: feasibility and nitrogen leaching control[J]. Science of The Total Environment,2020, 732:138898.

        [63]Kuoppamaki K,Lehv?virta S. Mitigating nutrient leaching from green roofs with biochar[J]. Landscape and Urban Planning, 2016,152:39-48.

        [64]Kazemi M,Courard L. Modelling thermal and humidity transfers graveil J」. Auvances In DunuIng Lnergy nesearcn, zUzU,10 (3) :296-321.

        [65]Cascone S. Green rof design: state of the art on technology and materials[J]. Sustainability,2019,11(11):3020.

        [66] Conn R,Werdin J,Rayner JP,et al. Green rof substrate physical properties difer between standard laboratory tests due to differences in compaction[J]. Journal of Environmental Management,2020,261:110206.

        [67] Sandoval V,Bonill C A,Gironás J,et al. Porous media characterization to simulate water and heat transport through green roof substrates[J]. Vadose Zone Journal,2017,16(4) :1-14.

        [68]Kazemi M,Courard L,Hubert J. Heat transfer measurement within green rof with incinerated municipal solid waste aggregates[J]. Sustainability,2021,13(13) :7115.

        [69]胡嘉偉,劉勇,馬履一,等.園林廢棄物堆肥替代油松容器 苗基質(zhì)材料的研究[J].南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2015,39(5) :81-86.

        [70]魏樂,李素艷,李燕,等.園林廢棄物堆肥替代泥炭用于天 竺葵和金盞菊栽培[J].浙江農(nóng)林大學(xué)學(xué)報(bào),2016,33(5): 849-854.

        [71]司莉青,陳利民,鄭景明,等.城市污泥與園林廢棄物堆肥 的混合施用對(duì)高羊茅萌發(fā)與生長(zhǎng)的影響[J].生態(tài)學(xué)雜志, 2016,35(10) :2643-2650.

        [72]葉建軍,朱兆華,魏道江,等.碎磚和陶粒配制的拓展型屋 頂綠化基材栽種景天植物對(duì)比試驗(yàn)[J].水土保持通報(bào), 2016,36(5) :151-155.

        [73]朱兆華,葉建軍,魏道江,等.建筑垃圾代替砂石配制屋頂 綠化基材對(duì)比試驗(yàn)研究[J].西北林學(xué)院學(xué)報(bào),2017,32 (4):128-132.

        [74]Karczmarczyk A,Baryla A,F(xiàn)ronczyk J,et al. Phosphorus and metals leaching from green roof substrates and aggregates used in their composition[J].Minerals,2020,10(2):12.

        [75]Nagase A,Dunnett N. The relationship between percentage of organic matter in substrate and plant growth in extensive green roofs[J]. Landscape and Urban Planning,2011,103(2): 230-236.

        [76]Dawson G F,Probert E J. A sustainable product needing a sustainable procurement commitment:the case of green waste in wales[J]. Sustainable Development,2007,15(2) :69-82.

        [77]倪肖衛(wèi),郭建斌,殷慶霏,等.園林廢棄物堆肥用作綠化基 質(zhì)對(duì)佛甲草生長(zhǎng)的影響[J].干旱區(qū)資源與環(huán)境,2019,33 (4) :103-108.

        [78]Krawczyk A, Domagala-S wia_tkiewicz I,Lis-Krzys cin A. The effect of substrate on growth and nutritional status of native xerothermic species grown in extensive green roof technology[J]. Ecological Engineering,2017,108:194-202.

        [79]薛明珂.基質(zhì)成分改變對(duì)綠色屋頂植物抗旱性的影響[J]. 陜西農(nóng)業(yè)科學(xué),2021,67(8):28-34.

        [80]Young T,Cameron D D,Sorrill J,et al. Importance of different

        components of greenroof substrate on plant growth and physio

        logical performance[J]. Urban Forestry amp; Urban Greening, 2014,13(3) :507-516.

        [81]劉麗娟,冷平生,胡增輝,等.城市污泥和建筑垃圾混合基 質(zhì)對(duì)臭椿生長(zhǎng)及重金屬轉(zhuǎn)移的影響[J].應(yīng)用與環(huán)境生物 學(xué)報(bào),2018,24(6):1390-1397.

        [82]鄧陳寧,李家科,李懷恩.城市雨洪管理中綠色屋頂研究與 應(yīng)用進(jìn)展[J].環(huán)境科學(xué)與技術(shù),2018,41(3):141-150.

        [83]Kazemi M,Madandoust R,de Brito J. Compressive strength assessment of recycled aggregate concrete using schmidt rebound hammer and core testing[J]. Construction and Building Materials,2019,224:630-638.

        [84]Mehrabi P,Shariati M,Kabirifar K,etal.Efect of pumice powder and nano-clay on the strength and permeability of fiber-reinforced pervious concrete incorporating recycled concrete aggregate[J]. Construction and Building Materials,2021,287: 122652.

        [85]Akther M,He JX,Chu A G,et al. A review of green roof applications for managing urban stormwater in different climatic zones[J]. Sustainability,2018,10(8):2864.

        [86]何松.簡(jiǎn)單式綠色屋頂基質(zhì)配比對(duì)降雨徑流及水質(zhì)影響研 究[D].北京;北京建筑大學(xué),2021.

        [87]Cao C T N,F(xiàn)arrell C,Kristiansen P E,et al.Biochar makes green rof substrates lighter and improves water supply to plants [J]. Ecological Engineering,2014,71:368-374.

        [88] Ahmadi S H, Ghasemi H,Sepaskhah A R. Rice husk biochar influences runoff features,soil loss,and hydrological behavior of a loamy soil in a series of successive simulated rainfall events [J]. CATENA,2020,192:104587.

        [89]de Almeida M A,Colombo R. Construction of green roofs via using the substrates made from humus and green coconut fiber or sugarcae bagasse[J]. Sustainable Chemistry and Pharmacy, 2021,22(5) 100477.

        [90]Van Woert N D,Rowe D B,Andresen JA,et al. Watering regime and green roof substrate design afect sedum plant growth [J]. HortScience,2005,40(3) :659-664.

        [91]張彥婷.上海市拓展型屋頂綠化基質(zhì)層對(duì)雨水的滯蓄及凈 化作用研究[D].上海:上海交通大學(xué),2015.

        [92]Soulis K X,Valiantzas JD,Ntoulas N,et al. Simulation of green roof runoff under different substrate depths and vegetation covers by coupling a simple conceptual and a physically based hydrological model[J]. Journal of Environmental Management, 2017,200:434-445.

        [93]張華,袁密,劉栓,等.屋頂綠化基質(zhì)雨水滯蓄效果影響因 素研究[J].長(zhǎng)江科學(xué)院院報(bào),2017,34(4):33-37.

        [94] Meng R F,Zhang Q Q,Li D S,et al. Influence of substrate layer thickness and biocharon the green rof capacity to intercept rainfall and reduce pollution in runoff[J]. Polish Journal of Environmental Studies,2021,30(5) :4085-4103.

        [95]Thomaidi V,Petousi I,Kotsia D,etal. Use of green roofs for 151004.

        [96] Zhang S H,Lin Z X,Zhang S X,et al. Stormwater retention and detention performance of green roofswith differentsubstrates: observational data and hydrological simulations[J]. Journal of Environmental Management,2021,291:112682.

        [97]劉芳.土壤滲濾介質(zhì)系統(tǒng)去除雨水徑流污染物的機(jī)理研究 [D].北京:中國(guó)地質(zhì)大學(xué),2012.

        [98]Yang M,Dong W Y,Cheng RR,et al. Effect of highly efficient substrate modifier, super-absorbent polymer,on the performance of the green roof[J]. Science of The Total Environment, 2022,806:150638.

        [99]王書敏,于慧,張彬,等.綠色屋頂技術(shù)控制城市面源污染 應(yīng)用研究進(jìn)展[J].重慶文理學(xué)院學(xué)報(bào)(自然科學(xué)版), 2011,30(4) :59-64.

        [100]席夢(mèng)涵,鄭思俊,張青萍,等.屋頂綠化單體基質(zhì)材料對(duì)降 雨徑流氮磷特征的影響[J].南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué) 版),2019,43(3) :77-84.

        [101]譚其言,李素艷,孫向陽(yáng),等.保水劑和生物表面活性劑配 制屋頂綠化輕型基質(zhì)的探究[J].浙江農(nóng)林大學(xué)學(xué)報(bào), 2021,38(6) :1178-1186.

        [102] Werdin J,Conn R,F(xiàn)letcher TD,et al. Biochar particle size and amendment rate are more important for water retention and weight of green rof substrates than diferences in feedstock type [J]. Ecological Engineering,2021,171: 106391.

        [103]Liao W X,Drake J,Thomas S C. Biochar granulation enhances plant performance on a green roof substrate[J]. Science of The Total Environment,2022,813:152638.

        [104] Zhang Q Q,Miao L P,Wang H W,et al. Analysis of the effect of green roof substrate amended with biochar on water quality and quantityofrainfallrunof[J].EnvironmentalMonitoring and Assessment,2019,191 : 304.

        [105]劉洋洋.廢棄泥在綠色建筑雨水滲蓄系統(tǒng)中的資源化應(yīng)用 [D].南京:南京工業(yè)大學(xué),2015.

        [106]沈慶然,李田,曹熠,等.基于污泥資源化利用的粗放型綠 色屋頂生長(zhǎng)基質(zhì)的組成[J].環(huán)境科學(xué),2017,38(7):2953- 2960.

        [107]Sandoval V,Suárez F.A new method to determine how compaction affects water and heat transport in green roof substrates[J]. Applied Sciences,2019,9(21) :4697.

        [108]Schindler B Y,Blaustein L,Vasl A,et al. Cooling effect of Sedum sediforme and annual plants on green roofs in a Mediterranean climate[J]. Urban Forestryamp; Urban Greening,2019,38: 392-396.

        [109]Sisco L,Monzer S,F(xiàn)arajalla N,et al. Roof top gardens as a means to use recycled waste and A/C condensate and reduce temperature variation in buildings[J]. Building and Environment,2017,117:127-134.

        [110]Shao B H.Valeo C,Mukhopadhvava P.et al. Influence of temperature and moisture content on thermal performance of green roofmedia[J].Energies,2021,14(9):2421.

        [111]Varela A,Sandoval-Albán A,Munoz M,et al.Evaluation of green roof structures and substrates for Lactuca sativa L. in tropical conditions[J].Urban Forestryamp;Urban Greening, 2021,60:127063.

        [112]Nematzadeh M,Baradaran-Nasiri A,HosseiniM.Effectof pozzolans on mechanical behavior of recycled refractory brick concrete in fire[J].Structural Engineering and Mechanics, 2019,72(3) :339-354.

        [113]Kotsiris G,Androutsopoulos A,Polychroni E,et al. Dynamic Uvalueestimation and energy simulation for green roofs[J].EnergyandBuildings,2012,45:240-249.

        [114]OlivieriF,Di Perna C,D'Orazio M,etal.Experimental measurements and numerical model for the summer performance assessment of extensive greenroofs ina Mediterranean coastal climate[J]. Energy and Buildings,2013,63:1-14.

        [115]ComaJ,Pérez G,SoléC,etal.Thermal assessment of extensive green roofs as passive tool for energy savings in buildings[J]. Renewable Energy,2016,85:1106-1115.

        [116]Foudi S,Spadaro JV,Chiabai A,etal. The climatic dependencies of urban ecosystem services from green roofs:threshold effects and non-linearity[J]. Ecosystem Services,2017,24: 223-233.

        [117]Gargari C,Bibbiani C,F(xiàn)antozzi F,et al.Environmental impact of green roofing:the contribute of a green roof to the sustainable use of natural resources in a life cycle approach[J]. Agricultureand Agricultural Science Procedia,2016,8:646-656.

        [118]WangYF,NiZB,Hu MM,etal.Environmental performances and energy efficiencies of various urban green infrastructures:a life-cycle assessment[J]. Journal of CleanerProduction,2020, 248:119244.

        [119]CarreraD,LombilloI,Carpio-GarciaJ,etal.Assessment ofdifferent combinations of substrate-filter membrane in green roofs [J].Journal of Building Engineering,2022,45:103455.

        [120]FarrellC,MitchellRE,SzotaC,etal.Green roofsforhot and dry climates:interacting effects of plant water use,succulence and substrate[J].Ecological Engineering,2012,49:270-276.

        [121]Coutts A M,Daly E,Beringer J,et al.Assessing practical measures to reduce urban heat:green and cool roofs[J]. Building andEnvironment,2013,70:266-276.

        猜你喜歡
        植物
        誰(shuí)是最好的植物?
        為什么植物也要睡覺
        長(zhǎng)得最快的植物
        各種有趣的植物
        植物也會(huì)感到痛苦
        會(huì)喝水的植物
        植物的防身術(shù)
        把植物做成藥
        哦,不怕,不怕
        將植物穿身上
        精品999无码在线观看| 九九久久精品无码专区| 国产又黄又大又粗视频| 欧美高h视频| 国产在线一区二区三区香蕉| 日本边添边摸边做边爱喷水| 中国丰满熟妇av| 亚洲精品成人av一区二区| 亚洲精品中文字幕熟女| 亚洲线精品一区二区三区| 中国丰满熟妇xxxx| 极品诱惑一区二区三区| 精品国产免费一区二区久久 | 少妇性bbb搡bbb爽爽爽| 成人做爰69片免费看网站| 无码高潮少妇毛多水多水免费 | 99热久久只有这里是精品| 熟女肥臀白浆一区二区| 午夜福利啪啪片| 2021国产最新在线视频一区| 久久久99精品国产片| 亚洲色一区二区三区四区| 亚洲熟女综合一区二区三区| 不卡a v无码在线| 国产人妖在线视频网站| 国产特级毛片aaaaaa视频| 91尤物视频在线观看| 日韩精品极品在线观看视频| 国产在线一区二区三区四区| 国产高潮刺激叫喊视频| 手机看片国产日韩| 国产尤物自拍视频在线观看| 午夜裸体性播放| 在线观看免费人成视频| 午夜黄色一区二区不卡| 欧美性生交大片免费看app麻豆| 精品无码中文视频在线观看| 中文字幕人妻丝袜成熟乱| 国产精彩刺激对白视频| 成av人大片免费看的网站| 蜜桃日本免费看mv免费版|