亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        蘋(píng)果砧木富平楸子 ×R3 雜交后代耐鹽性評(píng)價(jià)

        2025-06-26 00:00:00矯彩娣魏江彤賈旭梅李翠英李超馬鋒旺
        果樹(shù)學(xué)報(bào) 2025年5期
        關(guān)鍵詞:植物

        中圖分類號(hào):S661.1 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2025)05-0917-16

        Abstract: 【Objective】 With the influence of global climate change and human production activities, the scope of soil salinization in China is expanding.Soil salinization creates problems in apple growth and fruit yield and quality formation and has become one of the important factors restricting the development of apple industry in China.In the actual production of apples,the salt tolerance of seedlings is weak,and rootstocks can provide salt-tolerant roots for apples.The quality of rootstocks directly affects the absorption of nutrients and the adaptability of fruit trees to adversities.Therefore,rootstocks are the main determinant of salt tolerance in grafted plants. China's apple production model used to be arborization cultivation. With the continuous advancement of technology,arborization cultivation has exposed many problems and has gradually been replaced by dwarfing and dense planting. However, most of the common dwarfing rootstocks commercially available are introduced from abroad.Due to the climatic limitations of the birthplace,there are certain limitations in introducing them into domestic production, such as poor adaptability and weak stress resistance.Therefore,it is urgent to breed excellent dwarfing rootstock varieties in China. In this study,the salt tolerance of the hybrid ofspring ofMalus prunifolia × R3 was evaluated and its salt tolerance was comprehensively analyzed.The study will provide valuable reIerence Ior une reeaing oI dwar rootstocks Wiun strong sait toierance.【Metnoas】 In tnis stuay, ussue cultured seedlings of five asexual reproduced rootstock materials were used.They were k15 and m2 , which were selected from the hybrid offsprings of apple rootstock Malus prunifolia ×R3 by drought resistance,M. prunifolia,M9-T337 and M26.The seedlings were transferred to the rooting medium for growth for 40 days, and transplanted into an 8×8cm2 nutrient pot after hardening seedlings, and poted plants were placed in incubator with a constant temperature and light condition. After the seedlings grew about 7-8 fully expanded true leaves, they were moved to a hydroponic pot containing 6.5L of 1/2 concentration of Hoagland nutrient solution,and the nutrient solution was refreshed every 3 days. After one week of pre-adaptation,the even-sized healthy plants were selected for hydroponic salt treatment. The treatment was divided into two groups: (1) Control (CK), with 1/2 Hoagland nutrient solution; (2) Salt treatment (ST), with 150mmol?L-1 NaCl added in the nutrition solution. Nutrient solution was refreshed every 3 days over a period of 15 days.During the treatment,the photosynthetic rate was measured every 3 days.At the end of the treatment,10 plants of each strain in the control group and the treatment group were taken to determine the plant height,leaf number, dry and fresh weight. Membrane leakage, chlorophyll, chlorophyll fluorescence,of fresh functional leaves were measured and NBT and DAB staining was observed. Fresh roots were taken to determine root activity and analyze root architecture.The fully mature leaf samples were wrapped in tin paper,immediately frozen in liquid nitrogen and stored at -80°C . The contents of MDA, H2O2 O2- , activities of antioxidant enzymes and amino acid content in each strain were determined.The contents of Na+ and K+ in roots, stems and leaves were determined with dry samples after dry weight determination.【Results】In the control group,there was no significant difference between the five rootstocks through the phenotype.In the salt treatment group, the phenotype of M26 appeared earliest, with severe wilting and necrosis of the leaves on the 9th day, follwed by the m2 with brown spots of the leaves on the 10th day. Subsequently,on the 12th day of treatment, salt stress phenotype appeared in Malus prunifolia, k15,and M9-T337. The roots of the salt treatment group were brown, and the root area decreased compared with the control group. Compared with the control group,plant height and leaf number in each strain of the treatment group decreased, and the dry and fresh weights in the treatment group were significantly reduced.Membrane leakage and MDA content in each strain in the salt treatment group increased, while root activity decreased. Results of the NBT and DAB staining and O2 and H2O2 determination suggested that each strain under salt treatment accumulated a certain amount of reactive oxygen species. Activities of SOD, POD and CAT in each strain under salt treatment increased.At day 3 of salt stress treatment, (20 Gs and Ci in each strain were decreased significantly bysalt treatment.Total chlorophyllcontent in all strains in the salt stress group decreased, among which M. prunifolia had the smallest decrease and M26 had the largest decrease. Fv/Fm value in k15, M. prunifolia and M9-T337 decreased less than the other two lines after salt treatment, suggesting smaller degree of photosystem damage in the former two strains. Compared with the control group, the Na+ content in roots,stems and leaves of M26 had the highest increase,and the increase was relatively small in M. prunifolia and k15 ;the K+ content in each part showed different degres of decrease after salt treatment. Among the strains, M26 had the largest decrease, while M. prunifoliaand k15 had the smallest change.Salt stress significantly increased Na+/K+ ratio in each strain,and the increase in M. prunifolia and k15 was relatively small. The contents of Pro, Tyr and Phe increased significantly after salt treatment, while the contents of Gly,Leu and Asp decreased. Bycomprehensive analysis of growth,photosynthetic parameters,antioxidant enzyme activities,mineral element and amino acid contents and other 16 related indicators,the average membership function value of each strain wascalculated.The results showed that the average membership function value of k15 was the highest, indicating that k15 was least affected by salt stress,indicating its salt tolerance was the strongest among the five apple strains.The average membership function value of M26 was the lowest, indicating that its salt tolerance was the weakest.【Conclusion】The results showed that k15 showed strongest salt tolerance among the five strains and M26 had the poorest salt tolerance.Under salt stress,plant growth, root area,root activity and dry and fresh weights decreased.Membrane leakage and MDA content increased, with the accumulation of reactive oxygen species and the increase of antioxidant enzyme activities. Under salt stress,photosynthesis was significantly inhibited with decrease in chlorophylls,while Na+ contentincreased significantly, K+ content decreased, causing Na+/K+ imbalance;the contentsofPro, Tyr andPhe increased significantly,while thecontentsofGly,Leu and Aspdecreased.However,due to the differences in resistance among strains,the range of changes in different indicators difered. Through the comprehensive analysis of membership function, the order of salt tolerance of the 5 strains was: k15gt;M. prunifolia gt;M9-T337gt;m2gt;M26. ,Therefore,thehybrid k15 of M. prunifolia ×R3 has strong salt tolerance and is expected to become a new high-quality rootstock resource.

        Key words: Apple; Apple stock; Salt stress; Salt tolerance evaluation; Membership function

        近年來(lái),受全球氣候變化和人類生產(chǎn)活動(dòng)的影響,我國(guó)土壤鹽漬化范圍不斷擴(kuò)大,而蘋(píng)果適宜的生長(zhǎng)環(huán)境是弱酸性或中性土壤,土壤鹽漬化使蘋(píng)果的生長(zhǎng)和果實(shí)產(chǎn)量及品質(zhì)都面臨著諸多挑戰(zhàn),影響我國(guó)蘋(píng)果產(chǎn)業(yè)的健康發(fā)展,這已成為限制蘋(píng)果產(chǎn)業(yè)發(fā)展的重要因素之一]。鹽脅迫主要通過(guò)引起滲透脅迫、離子毒害和氧化脅迫等方式影響植物的生長(zhǎng)和發(fā)育[2。遭受鹽害的植株生長(zhǎng)減緩,葉綠體結(jié)構(gòu)遭到破壞,葉尖、葉緣或葉脈變黃并逐漸萎蔫脫落,主根變短,須根減少,若植物長(zhǎng)期受到高濃度鹽脅迫,植物的根系結(jié)構(gòu)也會(huì)被破壞,導(dǎo)致根系無(wú)法正常從外界吸收營(yíng)養(yǎng)物質(zhì),造成植株發(fā)黃腐爛、停止生長(zhǎng)甚至死亡。此外,在鹽脅迫下植物體內(nèi)產(chǎn)生的氧化脅迫導(dǎo)致光合速率下降,影響植物蒸騰作用,從而影響植物水分和營(yíng)養(yǎng)物質(zhì)的運(yùn)輸4。同時(shí)鹽脅迫還會(huì)使植株遭受滲透、水分和氧化脅迫,甚至?xí)捎谡{(diào)節(jié)失衡而產(chǎn)生離子毒害,影響植株對(duì)其他營(yíng)養(yǎng)物質(zhì)的吸收,導(dǎo)致?tīng)I(yíng)養(yǎng)失衡[5。受到鹽脅迫的植物細(xì)胞內(nèi)的Na+和CI積累過(guò)量,會(huì)造成活性氧的產(chǎn)生與清除之間的動(dòng)態(tài)平衡失衡,引起脂質(zhì)過(guò)氧化和脫脂作用,傷害膜蛋白和膜脂,從而破壞膜結(jié)構(gòu)。隨著鹽脅迫的加重,植物的生長(zhǎng)量、干鮮質(zhì)量、光合能力、碳水化合物含量和葉綠素含量等都呈現(xiàn)降低趨勢(shì)。已有研究證實(shí),提高植物抗氧化系統(tǒng)酶活性及提升抗氧化代謝水平是提高植物耐鹽能力的途徑之一[。植物受到鹽脅迫時(shí)會(huì)產(chǎn)生和積累滲透調(diào)節(jié)物質(zhì)保證機(jī)體滲透平衡和內(nèi)部穩(wěn)定,包括游離氨基酸、可溶性糖等。其中游離氨基酸脯氨酸是關(guān)鍵滲透調(diào)節(jié)物質(zhì)之一,在植物響應(yīng)逆境脅迫中起重要作用。研究表明,鹽脅迫下植物體內(nèi)脯氨酸含量有所增加,且外源施加脯氨酸能夠改變植物的耐鹽能力[8]。

        蘋(píng)果實(shí)生苗的耐鹽性較弱,而砧木可以為蘋(píng)果提供根系,砧木品質(zhì)直接影響果樹(shù)對(duì)養(yǎng)分的吸收及對(duì)逆境的適應(yīng)能力,因此砧木是不同砧穗組合耐鹽能力的主要決定因素。在同一鹽濃度下,當(dāng)砧木的相對(duì)生長(zhǎng)量與鹽害指數(shù)成反比時(shí),砧木的耐鹽能力就越強(qiáng),并且同一砧木嫁接不同品種后的耐鹽能力基本一致[]。因此在生產(chǎn)實(shí)踐中,通常通過(guò)嫁接耐鹽性較高的砧木來(lái)增強(qiáng)整株的耐鹽性。有研究報(bào)道,柑橘不同砧木間以及嫁接接穗后樹(shù)體養(yǎng)分吸收及抗逆性均存在較大差異。過(guò)去,我國(guó)蘋(píng)果生產(chǎn)常用由原產(chǎn)地自然條件下形成的喬化砧木,其對(duì)氣候和土壤適應(yīng)能力強(qiáng),抗性強(qiáng),壽命長(zhǎng),如山定子、海棠和富平楸子等[12-13]。但由于喬化栽培存在樹(shù)體骨架大,成形慢,整形修剪技術(shù)復(fù)雜,操作難度大等生產(chǎn)局限,逐漸被矮化密植所替代[4]。近年來(lái)利用從國(guó)外引進(jìn)的M9-T337、B9和Pajam2等矮化自根砧栽培模式在各蘋(píng)果主產(chǎn)區(qū)逐步推廣[1s],該模式相較于過(guò)去國(guó)內(nèi)常用的喬化砧、矮化中間砧栽培模式,具有矮化效果顯著、苗木整齊度高、節(jié)省勞動(dòng)力及早果豐產(chǎn)性好等顯著優(yōu)勢(shì)[,然而多數(shù)引進(jìn)的矮化砧木源于氣候相對(duì)較為溫和、土壤肥沃的西歐平原,所以并不具備很強(qiáng)的耐逆境脅迫等特性,從國(guó)外引進(jìn)的砧木在國(guó)內(nèi)的適應(yīng)能力有待考查。有研究表明,國(guó)內(nèi)外常用的矮化砧木M9嫁接親和力高、對(duì)土壤適應(yīng)能力強(qiáng),但抗旱、抗寒性較差,在我國(guó)許多蘋(píng)果栽培地區(qū)容易抽條[1;砧木JM系矮化效果明顯,適應(yīng)性廣,但繁殖速度慢,對(duì)自然災(zāi)害抵抗力弱,且很難通過(guò)捍插繁殖[19-20];生產(chǎn)中常用的G系矮化砧木早實(shí)豐產(chǎn)性好、抗重茬,但根系較淺,抗逆性較差,在再植條件下樹(shù)勢(shì)衰弱明顯[2]。

        筆者所在的蘋(píng)果抗逆與品質(zhì)改良創(chuàng)新團(tuán)隊(duì)前期得到了多株以富平楸子與R3(美國(guó)康奈爾大學(xué)和Geneva試驗(yàn)站選育的矮化砧木,親本為 M27×Ro- busta5,樹(shù)體生長(zhǎng)表現(xiàn)良好,適應(yīng)性較強(qiáng)22)為親本的雜交1年生盆栽幼苗,經(jīng)過(guò)干旱脅迫處理,從中篩選出抗旱和干旱敏感株系k15和 m2[23] ,分別建立外植體,并選擇適宜的繼代及生根培養(yǎng)基,成功擴(kuò)繁出了兩個(gè)砧木株系。為進(jìn)一步探索其綜合抗性,筆者以此砧木株系(k15和 m2 )、生產(chǎn)中應(yīng)用廣泛的砧木(M9-T337和M26)及其親本(富平楸子)5種砧木資源為試驗(yàn)材料,對(duì)其耐鹽性進(jìn)行研究,分別測(cè)定了處理結(jié)束時(shí)的植株生長(zhǎng)指標(biāo)、生理指標(biāo)、光合相關(guān)指標(biāo)、Na+和 K+ 含量、抗氧化酶活性及氨基酸含量,并利用隸屬函數(shù)法對(duì)5種砧木資源耐鹽能力進(jìn)行綜合評(píng)價(jià),以期選育出適合我國(guó)土壤和環(huán)境的綜合抗逆性較強(qiáng)的蘋(píng)果矮化砧木。

        1 材料和方法

        1.1材料

        以蘋(píng)果砧木富平楸子 × R3的雜交后代經(jīng)抗性篩選出的砧木株系 k15.m2 、親本富平楸子及生產(chǎn)上應(yīng)用廣泛的砧木M9-T337和M26,5種無(wú)性繁殖的組培苗為試驗(yàn)材料。

        1.2 方法

        本試驗(yàn)鹽脅迫處理在西北農(nóng)林科技大學(xué)蘋(píng)果抗逆與品質(zhì)改良創(chuàng)新團(tuán)隊(duì)土肥樓水培室內(nèi)進(jìn)行。將上述材料擴(kuò)繁至足夠數(shù)量后,移至生根培養(yǎng)基中生長(zhǎng)40d,經(jīng)開(kāi)蓋煉苗后移栽到 8cm×8cm 的營(yíng)養(yǎng)缽中,缽內(nèi)裝有 (V±β|β:V±|β:V?β±β=4:1:1) 的混合物,置于恒溫光照培養(yǎng)箱中。待幼苗長(zhǎng)出7~8片完全展開(kāi)的真葉后,將其移至裝有 6.5L1/2 濃度Hoagland營(yíng)養(yǎng)液的水培盆中,每3d換一次營(yíng)養(yǎng)液。經(jīng)過(guò)1周的預(yù)適應(yīng),選取大小一致且健康的植株進(jìn)行水培鹽處理。處理分為兩組:(1)對(duì)照(CK),1/2Hoagland營(yíng)養(yǎng)液;(2)鹽處理(ST), NaCl 濃度為 150mmol?L-1 。兩組的pH均用 H3PO4 調(diào)至為 6 . 5" 。每3d更換1次營(yíng)養(yǎng)液,處理時(shí)間為 15d 。處理結(jié)束時(shí),分別取鮮樣、凍樣和干樣,用于指標(biāo)測(cè)定。

        1.3生長(zhǎng)指標(biāo)測(cè)定

        株高的測(cè)定:處理結(jié)束時(shí),對(duì)照組和處理組分別取5株植株,用直尺測(cè)定株高(從根莖連接處到植株頂芽的距離)。

        葉片數(shù)的測(cè)定:準(zhǔn)確查數(shù)并記錄葉片數(shù)。

        干鮮質(zhì)量的測(cè)定:將植株分為根、莖、葉三部分,用清水洗凈并擦干,用萬(wàn)分之一天平測(cè)定各部分鮮質(zhì)量,放入烘箱 105°C 殺青 30min ,然后轉(zhuǎn)至 65°C 下烘干至恒質(zhì)量,再用萬(wàn)分之一天平測(cè)定各部分干質(zhì)量。

        1.4生理指標(biāo)測(cè)定

        根系構(gòu)型:處理結(jié)束時(shí),將植株根部洗凈并擦干,利用WinRHIZO根系掃描儀分析植株根部構(gòu)型。

        相對(duì)電導(dǎo)率測(cè)定:取相同部位新鮮功能葉,用打孔器在葉片上打10個(gè)圓片,注意避開(kāi)葉脈,裝入放有 10mL 純凈水的 15mL 離心管中,浸泡 4h ,其間不斷震蕩混勻,利用電導(dǎo)率儀測(cè)量電導(dǎo)率,記為 S1 而后沸水浴 20min ,冷卻至室溫后震蕩混勻,再次測(cè)量電導(dǎo)率,記為 S2 ,測(cè)量純凈水的電導(dǎo)率,記為S0 ,計(jì)算葉片相對(duì)電導(dǎo)率,公式如下:相對(duì)電導(dǎo)率(REL)/%=(S1-S0)/(S2-S0)×100, 0

        丙二醛(MDA)含量測(cè)定:按照生產(chǎn)廠家說(shuō)明書(shū)(蘇州科銘生物技術(shù)有限公司,江蘇蘇州),利用MDA檢測(cè)試劑盒進(jìn)行測(cè)定。

        根系活力測(cè)定:處理結(jié)束時(shí),取植株新鮮白根,按照生產(chǎn)廠家說(shuō)明書(shū)(蘇州科銘生物技術(shù)有限公司,江蘇蘇州)測(cè)定反映根系活力的脫氫酶(DHA)活性。

        1.5光合相關(guān)指標(biāo)測(cè)定

        光合參數(shù)測(cè)定:分別在處理的第0天、第3天、第6天、第9天和第12天利用CIRAS-3便攜式光合系統(tǒng)儀(CIRAS,amesbury,MA,USA),測(cè)定同一位置功能葉片的凈光合速率 Pn. 蒸騰速率 Tr, 氣孔導(dǎo)度 Gs 和胞間 CO2 濃度 Cio

        葉綠素含量測(cè)定:處理結(jié)束時(shí),取新鮮葉片洗凈擦干后,用剪刀將其剪成細(xì)絲狀(避開(kāi)葉脈),稱取0.1g 置于準(zhǔn)備好的 8mL80% 丙酮中,暗處理 24h 其間不斷震蕩,使樣品充分接觸丙酮。待葉片組織完全脫色變白,吸取 1mL 于比色皿,利用UV-2600分光光度計(jì),測(cè)定 663nm?645nm 和 470nm 波長(zhǎng)下的吸光值[24]。

        葉綠素?zé)晒鈪?shù)測(cè)定:處理結(jié)束時(shí),取新鮮功能葉,暗處理 30min ,利用葉綠素?zé)晒獬上裣到y(tǒng),測(cè)定熒光參數(shù)并拍攝熒光圖片。

        1.6活性氧及抗氧化酶活性測(cè)定

        活性氧積累:處理結(jié)束時(shí),取新鮮葉片進(jìn)行NBT、DAB化學(xué)染色,觀察 H2O2 和 O2? 積累情況,并利用 H2O2 和 O2? 檢測(cè)試劑盒(蘇州格銳思生物科技有限公司,江蘇蘇州)分別測(cè)定葉片組織中 H2O2 和 O2- 含量。

        抗氧化酶活性測(cè)定:將處理結(jié)束時(shí)存好的葉片凍樣研磨,稱取 0.1g ,利用相應(yīng)試劑盒(蘇州格銳思生物科技有限公司,江蘇蘇州)分別測(cè)定超氧化物歧化酶(SOD)、過(guò)氧化物酶(POD)和過(guò)氧化氫酶(CAT)活性。

        1.7 Na+ K+ 含量測(cè)定

        將處理結(jié)束時(shí)存好的根莖葉干樣研磨過(guò)篩,稱取 0.1g 于消解管中,加入硝酸,利用微波消解爐充分消化后,去離子水定容至 50mL ,利用 M410 火焰光度計(jì)測(cè)定 ΔNa+,K+ 含量。

        1.8氨基酸含量測(cè)定

        將處理結(jié)束時(shí)的葉片凍樣研磨,稱取 0.1g ,浸泡于 1mL50% 的乙醇中, 4°C 搖勻,離心機(jī)設(shè)置為12000r?min-1 ,時(shí)間 10min ,過(guò)濾雜質(zhì),取上清液,用甲醇稀釋,并保存在樣品瓶中。使用高效液相色譜(HPLS-MS)系統(tǒng)測(cè)定氨基酸含量,色譜柱為InertsilODS-4C18(4.6mm×250mm,5μm) ,流速設(shè)定為0.3mL?min-1 。洗脫溶劑體系為含有 0.1% 甲酸的超純水(A)和乙睛(B)]。

        1.9 隸屬函數(shù)的綜合分析

        考慮到本試驗(yàn)的試驗(yàn)材料遺傳背景存在差異,各項(xiàng)指標(biāo)存在較大差異,故利用對(duì)照組和鹽脅迫組各項(xiàng)指標(biāo)的相對(duì)變化率進(jìn)行隸屬函數(shù)的計(jì)算,以評(píng)價(jià)其耐鹽能力。

        若該指標(biāo)與耐鹽能力呈正相關(guān),該指標(biāo)的隸屬函數(shù)計(jì)算公式為: U(X)=(X-Xmin)/(Xmax-Xmin) ;若該指標(biāo)與耐鹽能力呈負(fù)相關(guān),該指標(biāo)的隸屬函數(shù)計(jì)算公式為: U(X)=1-(X-Xmin)/(Xmax-Xmin) 。式中, U(X) 為隸屬函數(shù)值, X 指某一指標(biāo)的相對(duì)變化率 [SST-SCK]/ SCK×100 ) Xmax 指某一指標(biāo)相對(duì)變化率的最大值, Xmin 指某一指標(biāo)相對(duì)變化率的最小值。在筆者測(cè)定的指標(biāo)中,與耐鹽能力負(fù)相關(guān)的指標(biāo)有相對(duì)電導(dǎo)率、MDA含量、過(guò)氧化氫含量和 Na+/K+ ,其余指標(biāo)與耐鹽能力均呈正相關(guān)。

        1.10 數(shù)據(jù)分析

        使用SPSS26.0進(jìn)行數(shù)據(jù)的統(tǒng)計(jì)分析,并使用單因素分析和Tukey的多重比較 (plt;0.05 進(jìn)行差異顯著性分析;利用Origin2021繪圖。

        2 結(jié)果與分析

        2.1鹽脅迫下植株表型及生長(zhǎng)指標(biāo)分析

        由圖1可知,處理結(jié)束時(shí),對(duì)照組無(wú)明顯差異;鹽處理組脅迫表型出現(xiàn)的時(shí)間存在一定差異,M26表型出現(xiàn)最早,第9天時(shí)葉片便出現(xiàn)嚴(yán)重的萎蔫和壞死,其次是m2葉片在第10天出現(xiàn)褐斑,而后富平

        圖1鹽脅迫下各株系表型圖 Fig.1Phenotypic of each strain under salt stress

        QZ表示富平楸子。CK-12d表示對(duì)照處理12d,CK-15d表示對(duì)照處理15d,ST-12d表示鹽處理12d,ST-15d表示鹽處理 15d 下同。QZmeasMusoetoodototesatrd,andST-15ddenotesthesalt treatment for 15d The same below.

        楸子、k15和M9-T337在處理的第12天陸續(xù)出現(xiàn)鹽脅迫表型,但處理結(jié)束時(shí)富平楸子和k15只是上部葉片出現(xiàn)明顯褐斑,而M9-T337葉片已出現(xiàn)大面積壞死,植株萎蔫。

        從干鮮質(zhì)量上看,與對(duì)照組相比,處理組各株系均明顯降低,其中k15降幅最小,干鮮質(zhì)量分別下降43.14% 和 22.87% ·M26 降幅最大,分別顯著降低71.11% 和 52.27% (圖2-a~b)。

        從株高、葉片數(shù)上看,與對(duì)照組相比,處理組各株系均有所下降(圖2-c~d)。但值得注意的是, k15 和 m2 相對(duì)來(lái)說(shuō)節(jié)間較短(株高一定的情況下,葉片數(shù)相對(duì)較多),說(shuō)明兩個(gè)砧木株系自身存在一定的矮化現(xiàn)象。

        從根部狀態(tài)看,鹽處理組根系均呈褐色,但k15根系明顯更密,根面積下降幅度最小,僅下降18.6% ,M9-T337根面積減少幅度最大,為 31.6% (圖2-f)。

        2.2鹽脅迫下植株生理指標(biāo)分析

        通過(guò)比較相對(duì)電導(dǎo)率、MDA含量以及根系活力,發(fā)現(xiàn)與對(duì)照組相比,鹽處理組各株系相對(duì)電導(dǎo)率和MDA含量顯著上升,根系活力顯著降低。其中,相比于對(duì)照組,處理組k15的相對(duì)電導(dǎo)率上升幅度

        CK表示對(duì)照組,ST表示鹽處理組。不同字母表示各株系間存在顯著差異 (plt;0.05) 。下同。

        圖2鹽脅迫下各株系生長(zhǎng)量變化Fig.2 Growth changesof each strainunder salt stress

        最小,為 42.6% ,處理組M26上升幅度最大,為55.1% (圖3-a);鹽處理后的MDA含量,富平楸子和k15 顯著低丁其他3個(gè)株系,與對(duì)照組相比,分別顯著增加了 28.7% 和 27.9% ,M9-T337上升幅度最大,為 54.3% (圖3-b)。相比丁對(duì)照組,處理組k15根系活力下降幅度最小,其次為 m2 和M9-T337,下降幅度分別為 30.9%.33.3% 和 40.0% (圖3-c)。

        圖3鹽脅迫對(duì)各株系相對(duì)電導(dǎo)率、MDA含量及根系活力的影響Fig.3EffectsofsaltstressonrelativeelectricalconductivityMDAcontentandrootvitalityofeachstrain

        2.3鹽脅迫下活性氧含量和抗氧化酶活性分析

        為評(píng)價(jià)鹽脅迫下各株系的抗氧化能力,對(duì)NBT和DAB進(jìn)行了染色,并測(cè)定了 和 H2O2 含量。從NBT染色圖上來(lái)看,k15、富平楸子和M9-T337藍(lán)色斑點(diǎn)明顯少丁M26和 m2 (圖4-a);從DAB染色來(lái)看, k15 棕色斑點(diǎn)明顯少于其他株系(圖4-b);從 和 H2O2 含量上看,鹽脅迫導(dǎo)致各株系均積累了一定量的 Oz 和 H2O2 ,其中M26積累量最多,富平楸子積累量最少(圖 4-c~d) 。

        抗氧化相關(guān)酶活性結(jié)果顯示,鹽脅迫處理后各株系SOD、POD和CAT活性均顯著上升。5個(gè)株系的SOD活性分別顯著升高 33.1%.23.0%.27.6% F12.2% 和 11.1% (圖5-a);從POD活性上看,鹽脅迫下, k15 的POD活性最高, m2 的POD活性最低,與對(duì)照組相比,分別顯著提高了 42.9% 和 36.2% (圖5-b);CAT活性分別顯著升高 62.6%.60.5%?48.1% F

        43.2% 和 44.5% (圖5-c)。由此可以推斷,鹽脅迫下各株系抗氧化相關(guān)酶活性均顯著上升,其中k15和富平楸子表現(xiàn)較為突出。

        2.4鹽脅迫下植株光合相關(guān)指標(biāo)分析

        在鹽脅迫處理過(guò)程中,每3d測(cè)定1次光合參數(shù)。結(jié)果表明,鹽脅迫組第3天,各株系 Pn,Tr,Gs 和 Ci 均出現(xiàn)大幅度下降,隨后下降幅度有所減緩(圖6)。

        k15從第6天開(kāi)始,光合參數(shù) Pn 和 Tr 與其他株系出現(xiàn)分化,而 Gs 及 Ci 表現(xiàn)較為突山的是富平楸子,下降幅度相對(duì)較緩。結(jié)合兩者在鹽脅迫中的表現(xiàn),相比丁其他3個(gè)株系,k15和富平楸子表現(xiàn)山較強(qiáng)的光合能力,增強(qiáng)了一定的抗鹽能力。

        從總?cè)~綠素含量上看,與對(duì)照組相比,鹽脅迫組各株系均顯著下降, k15 、富平楸子、M9-T337、M26和 m2 下降幅度分別為 32.4%.25.7%.36.4% /49.1% 和 47.3% ,其中富平楸子降幅最小, M26 降幅最大,這與處理結(jié)束時(shí)M26葉片大面積失綠相符

        圖4鹽脅迫對(duì)各株系活性氧積累的影響Fig.4Effects of salt stress on the accumulation of active oxygen in each strain
        圖5鹽脅迫對(duì)各株系抗氧化酶活性的影響Fig.5Effects of salt stress on antioxidant enzyme activities of each strain

        葉綠素?zé)晒鈭D像清晰顯示了各株系在鹽脅迫后葉片的熒光變化情況(圖7-a);同時(shí)從 Fv/Fm 值來(lái)看,對(duì)照組除M26外,幾乎無(wú)差異,而鹽處理后k15、富平楸子和M9-T337較其他2個(gè)株系下降幅度更小,光系統(tǒng)損傷程度更?。▓D7-c)。

        2.5鹽脅迫下植株離子穩(wěn)態(tài)分析

        水培鹽脅迫會(huì)導(dǎo)致植物根部積累較多的 Na+ .根部被迫吸收過(guò)量 Na+ 并運(yùn)輸?shù)狡渌课?,使得植物?xì)胞內(nèi)Na+過(guò)量積累,產(chǎn)生離子毒害,同時(shí)影響 K+ 及其他營(yíng)養(yǎng)元素的吸收,打破細(xì)胞內(nèi)部的離子穩(wěn)定。本試驗(yàn)在處理結(jié)束時(shí)測(cè)定了各部位 ΔNa+,K+ 含量及 Na+/K+ 。結(jié)果表明,對(duì)照組各株系根、莖、葉的Na+ 含量均較低,鹽處理組均表現(xiàn)出顯著升高,其中M26漲幅最大,富平楸子、k15漲幅相對(duì)較?。▓D8-a~c. \" K+ 則在鹽處理后表現(xiàn)出不同程度的降低,其中M26降幅最大,富平楸子和k15變幅最?。▓D8-d\~f;處理后各株系總 Na+/K+ 顯著升高,其中富平楸子與k15漲幅相對(duì)較小,分別為 95.49% 和 95.94% M26漲幅最大,為 97.78% (圖8-g)。

        2.6鹽脅迫下植株氨基酸含量分析

        在植物響應(yīng)鹽脅迫時(shí),氨基酸能夠起到保護(hù)作用。其中脯氨酸為逆境脅迫的關(guān)鍵游離氨基酸,可參與滲透調(diào)節(jié)來(lái)保持機(jī)體滲透平衡。研究表明,植物遭受逆境脅迫時(shí),脯氨酸含量有所增加,且在抗逆性較強(qiáng)的植株中增加量明顯低于敏感型植株,而其他游離氨基酸濃度變化暫無(wú)明顯固定規(guī)律[25。為分析鹽脅迫下各株系氨基酸變化情況,筆者在處理結(jié)束時(shí)對(duì)氨基酸含量進(jìn)行了測(cè)定。結(jié)果(表1)表明,脯氨酸(Pro)、酪氨酸(Tyr)和苯丙氨酸(Phe)3種氨基酸含量在處理后呈顯著上升趨勢(shì),與對(duì)照組相比,5個(gè)株系(k15、富平楸子、M9-T337、M26和 m2 )脯氨酸含量分別提高了 29.94%.20.27%.27.36%.35.72% 和 31.69% ,其中M26變化幅度最大,富平楸子變化幅度最??;酪氨酸含量分別提高了 27.44%.18.79% 、28.19%.32.39% 和 37.13% ,其中 m2 變化幅度最大,富平楸子變化幅度最??;苯丙氨酸含量分別提高了21.13%?32.53%?38.79%?50.94% 和 45.99% ,其中M26變化幅度最大, k15 變化幅度最??;而甘氨酸(Gly)、亮氨酸(Leu)和天冬氨酸(Asp)含量均顯著下降,與對(duì)照組相比,5個(gè)株系甘氨酸含量分別降低了 16.67%?7.14%?12.19%?19.69% 和 17.90% ,其中富平楸子變化幅度最小,M26降幅最大;亮氨酸含量分別降低了 19.67%?21.40%?17.72%?30.71% 和46.29% ,其中M9-T337變幅最小, m2 降幅最大;天冬氨酸含量分別降低了 23.15%,22.75%,45.33% ,57.05% 和 37.88% ,其中富平楸子降幅最小,M26降幅最大。綜上所述,相比于對(duì)照組,鹽脅迫組各株系氨基酸含量變化幅度最小的是富平楸子,最大的是M26和m2。

        圖7鹽脅迫對(duì)葉綠素含量及葉綠素?zé)晒獾挠绊慒ig.7Effects of salt stress on chlorophyll content and chlorophyll fluorescence

        2.7鹽脅迫下各株系耐鹽性綜合評(píng)價(jià)

        以各株系對(duì)照組與鹽處理組相對(duì)變化率計(jì)算隸屬函數(shù)值,以各株系隸屬函數(shù)值的平均值為依據(jù)進(jìn)行耐鹽性綜合評(píng)價(jià),平均隸屬函數(shù)值越大說(shuō)明植株耐鹽能力越強(qiáng)。通過(guò)分析相對(duì)電導(dǎo)率、MDA含量、過(guò)氧化氫含量、SOD活性、POD活性、CAT活性、凈光合速率、葉綠素含量值、 .Na+/K+ 和氨基酸含量16項(xiàng)指標(biāo),計(jì)算出了各株系的平均隸屬函數(shù)值。結(jié)果(表2)表明, k15 的平均隸屬函數(shù)值最大,表明鹽脅迫下其各指標(biāo)的相對(duì)變化程度最小,與其他種質(zhì)資源相比耐鹽能力最強(qiáng)。平均隸屬函數(shù)值最小的是M26,表明其耐鹽能力最弱。由此得出各株系耐鹽能力依次為 k15gt; 富平楸子 gt;M9-T337gt;m2gt; M26。

        3討論

        鹽脅迫下植株生長(zhǎng)受到抑制,根系發(fā)育遲緩,葉片失水、萎蔫甚至脫落[2。本研究中, 150mmol?L-1 鹽脅迫處理15d導(dǎo)致各個(gè)株系均出現(xiàn)不同程度的鹽害表現(xiàn)。株高受到抑制,葉片出現(xiàn)褐斑并隨著處理時(shí)間加長(zhǎng)逐漸萎蔫脫落,根系生長(zhǎng)遲緩并呈現(xiàn)褐色,新根變少[27]。鹽脅迫下植物通過(guò)提高根系活力來(lái)適應(yīng)環(huán)境變化,確保根系正常吸收水分及礦質(zhì)營(yíng)養(yǎng),植株正常生長(zhǎng)。研究表明,在低鹽濃度下或短期中高

        圖8鹽脅迫對(duì)各株系離子穩(wěn)態(tài)的影響Fig.8Effectsof salt stressonionhomeostasisof eachstrain
        表1鹽脅迫對(duì)各株系氨基酸含量的影響
        表2隸屬函數(shù)值 Table2Membershipfunctionvalue

        鹽濃度下,植物根系活力提高,且提高幅度與耐鹽能力呈正相關(guān),當(dāng)鹽濃度超過(guò)一定承受范圍時(shí),根系活力會(huì)大幅下降[28]。本研究中,由于 150mmol?L-1 鹽濃度超過(guò)蘋(píng)果植株耐受能力,各株系根系活力均呈下降趨勢(shì)。處理結(jié)束時(shí),M26鹽害表現(xiàn)最為嚴(yán)重,其次為M9-T337和 m2 。相比之下,k15和富平楸子鹽害表型出現(xiàn)較晚,且鹽害程度相對(duì)較輕,與前人的研究結(jié)果相近[29]。

        遭受鹽脅迫的植株內(nèi)部生理出現(xiàn)紊亂,抗性較強(qiáng)的株系則可以通過(guò)自身調(diào)節(jié)作用減輕損傷[30-31]。相對(duì)電導(dǎo)率和MDA含量能夠反映生物膜的損傷程度,可作為植物耐逆境脅迫能力的關(guān)鍵生理指標(biāo)[2。MDA作為膜脂過(guò)氧化的產(chǎn)物,其含量反映了植物膜脂過(guò)氧化程度,鹽脅迫下MDA過(guò)量積累,破壞生物膜結(jié)構(gòu)和功能,導(dǎo)致膜通透性增強(qiáng),電解質(zhì)外滲,電導(dǎo)率增大[3-34]。植物耐受性越強(qiáng),相對(duì)電導(dǎo)率和MDA含量越穩(wěn)定。筆者測(cè)定了各株系相對(duì)電導(dǎo)率及MDA含量,結(jié)果表明,鹽脅迫下各株系的相對(duì)電導(dǎo)率及MDA含量均有所上升,但k15和富平楸子的漲幅明顯更小,側(cè)面反映出兩者較強(qiáng)的耐受性。

        植物在鹽脅迫下,細(xì)胞內(nèi)會(huì)產(chǎn)生過(guò)量的活性氧,這些活性氧若沒(méi)有及時(shí)清除便會(huì)引起氧化脅迫[35]。有研究證實(shí),提高植物體內(nèi)抗氧化系統(tǒng)酶活性及增強(qiáng)抗氧化代謝能力是提高植物抗鹽能力的途徑之一[3。耐鹽能力較強(qiáng)的植株可以通過(guò)啟動(dòng)抗氧化系統(tǒng)消除過(guò)量的活性氧,使活性氧與抗氧化酶保持動(dòng)態(tài)平衡,以減輕鹽害[。筆者通過(guò)NBT和DAB染色來(lái)分析活性氧含量,判斷各株系 O2- 和 H2O2 積累情況,結(jié)果表明, k15. 富平楸子和M9-T337的 O2- 含量顯著低于M26和 m2;k15 和富平楸子的 H2O2 含量顯著低于其他株系。k15在鹽脅迫下體內(nèi) O2? 和 H2O2 積累均較少,這可能與k15自身較好的抗氧化調(diào)節(jié)能力有關(guān)。關(guān)于抗氧化酶活性變化與逆境脅迫的關(guān)系,有不同的研究結(jié)果。研究表明,植物抗氧化相關(guān)酶活性會(huì)隨逆境脅迫加重而提高,并存在閾值[38];也有研究報(bào)道,保護(hù)酶活性會(huì)隨脅迫程度增加而下降[]。不同砧木逆境脅迫下的響應(yīng)機(jī)制不同,需要的保護(hù)酶也不同,且變化規(guī)律差異較大[40]。本研究在鹽脅迫處理15d后,5個(gè)株系中POD、SOD和CAT活性上升幅度最大的均為k15,由此可以推斷,150mmol?L-1 鹽脅迫下各植株都啟動(dòng)了保護(hù)酶系統(tǒng),且保護(hù)酶活性與植株抗性呈正相關(guān),k15表現(xiàn)出較強(qiáng)的耐鹽能力。

        光合作用是植物生長(zhǎng)的必要條件,鹽脅迫下光合能力強(qiáng)弱間接體現(xiàn)植株耐鹽能力[4]。本試驗(yàn)的結(jié)果表明,鹽脅迫組從第3天開(kāi)始,各株系 Pn?Tr?Gs 和Ci 均出現(xiàn)大幅度下降,隨著處理時(shí)間延長(zhǎng)下降幅度有所減緩,這可能與植株建立了穩(wěn)態(tài)耐受機(jī)制有關(guān)。研究表明,植物受到鹽害時(shí),短期內(nèi)光合作用受氣孔因素限制而降低;隨著鹽害時(shí)間變長(zhǎng),植物光合器官受到破壞,限制因素逐漸轉(zhuǎn)為非氣孔因素[42]。當(dāng)植物凈光合速率下降、胞間二氧化碳濃度升高時(shí),光合作用受到非氣孔因素的限制而下降[43]。由此可以推測(cè),本研究第6天開(kāi)始光合能力下降可能是受到非氣孔因素的影響,光合器官受到破壞。株系k15從第6天開(kāi)始,凈光合速率和蒸騰速率與其他株系出現(xiàn)分化,而從氣孔導(dǎo)度和胞間 CO2 濃度上看,富平楸子較其他4個(gè)株系表現(xiàn)最突出,下降幅度相對(duì)較緩。結(jié)合兩者在鹽脅迫中的表現(xiàn),相比于其他3個(gè)株系,k15和富平楸子表現(xiàn)出較強(qiáng)的光合能力,增強(qiáng)了其抗鹽能力。研究表明,鹽脅迫下,小麥由于吸收不到充足的水分和礦質(zhì)元素,葉綠素降解酶活性增強(qiáng),葉綠素含量大幅降低,葉片失綠[44]。本研究在處理結(jié)束時(shí)測(cè)定了葉綠素含量及熒光參數(shù)。從總?cè)~綠素含量上看,M26下降幅度最大,這與處理結(jié)束時(shí)M26葉片大面積失綠萎蔫的表型相符。葉綠素?zé)晒鈪?shù)可以作為分析植物受光抑制程度的重要指標(biāo)[45]。通過(guò)分析 Fv/Fm 值,鹽處理后k15、富平楸子、M9-T337較M26和 m2 兩個(gè)株系下降幅度小,表明其受光抑制程度較低。

        植物根系處于高鹽環(huán)境下,會(huì)引起細(xì)胞內(nèi)離子濃度發(fā)生改變,植物會(huì)順著電化學(xué)梯度從外界吸收大量的 Na+ ,從而產(chǎn)生離子毒害[46]。當(dāng)細(xì)胞內(nèi)Na+濃度過(guò)高時(shí)會(huì)置換結(jié)合內(nèi)膜上的 Ca2+ ,導(dǎo)致細(xì)胞膜功能遭到破壞,同時(shí)細(xì)胞內(nèi) K+ 等有機(jī)溶質(zhì)外滲,導(dǎo)致植物生長(zhǎng)代謝受到影響[47-49]。研究表明,堿蓬之所以具有較好的耐鹽能力,是因?yàn)楦低ㄟ^(guò)滲透調(diào)節(jié)將體內(nèi)的鹽分轉(zhuǎn)運(yùn)、區(qū)域化,降低細(xì)胞內(nèi)鹽濃度,同時(shí)增加液泡內(nèi)Na+濃度,保持細(xì)胞正常吸水,調(diào)節(jié)離子平衡[50-51]??梢?jiàn),耐鹽能力強(qiáng)的植株根系能夠通過(guò)類似排鹽、拒鹽機(jī)制維持內(nèi)部 Na+/K+ 穩(wěn)定。由此推斷,鹽脅迫下,Na/K+越穩(wěn)定,植株耐鹽能力越強(qiáng)。筆者通過(guò)分析各部位 Na+,K+ 含量及 Na+/K+ ,結(jié)果表明,富平楸子和k15的 Na+ 和 K+ 含量以及 Na+/K+ 變化幅度較小,側(cè)面反映出其較強(qiáng)的耐鹽能力。

        植物體內(nèi)氨基酸在逆境脅迫中發(fā)揮重要作用,如植物遭受逆境脅迫時(shí)會(huì)通過(guò)脯氨酸的積累來(lái)提高自身耐受性[52。研究表明,不同物種間脯氨酸含量與植物抗逆性強(qiáng)弱的關(guān)系存在差異,如耐熱性強(qiáng)的不結(jié)球白菜高溫脅迫下積累更多的脯氨酸],番茄幼苗耐鹽能力則與脯氨酸含量呈負(fù)相關(guān)[54。本研究5個(gè)株系中M26的脯氨酸含量漲幅最大,富平楸子漲幅最小,可見(jiàn)脯氨酸含量與植株抗鹽能力呈負(fù)相關(guān),這與前人在蘋(píng)果抗鹽性評(píng)價(jià)中的結(jié)果存在差異[55],該研究認(rèn)為抗鹽性較強(qiáng)的砧木優(yōu)系鹽脅迫后脯氨酸含量增加幅度大,這可能與不同砧木自身的脯氨酸代謝方式有關(guān),具體機(jī)制還有待研究。此外,本研究中酪氨酸(Tyr)和苯丙氨酸(Phe)含量在鹽處理后呈現(xiàn)顯著上升趨勢(shì),而甘氨酸(Gly)、亮氨酸(Leu)和天冬氨酸(Asp)含量均顯著下降。植物響應(yīng)逆境脅迫時(shí)氨基酸代謝機(jī)制較為復(fù)雜,單一組分變化無(wú)法作為抗鹽性評(píng)價(jià)的絕對(duì)依據(jù)[5,需綜合分析。

        4結(jié)論

        150mmol?L-1 的水培鹽處理下5個(gè)株系中k15表現(xiàn)出較強(qiáng)的耐鹽能力,M26耐鹽性較差。鹽脅迫下,各植株生長(zhǎng)量下降,生長(zhǎng)受到抑制,根面積減小,干鮮質(zhì)量下降;相對(duì)電導(dǎo)率和MDA含量顯著升高,根系活力顯著降低;植物體內(nèi)活性氧積累,抗氧化酶活性升高;葉綠素含量降低,光合作用明顯受到抑制; ΔNa+ 含量顯著升高, K+ 含量下降, Na+/K+ 失衡;脯氨酸(Pro)、酪氨酸(Tyr)和苯丙氨酸(Phe)3種氨基酸含量顯著升高,甘氨酸(Gly)亮氨酸(Leu)和天冬氨酸(Asp)含量顯著降低。但由于各株系抗性存在差異,不同指標(biāo)變化率有所不同。通過(guò)隸屬函數(shù)綜合分析,最終得出各株系耐鹽能力順序?yàn)椋?k15gt; 富平楸子 gt;M9-T337gt;m2gt;M26 。因此,蘋(píng)果砧木富平楸子 ×R3 雜交后代k15的耐鹽能力較強(qiáng),有望成為新的優(yōu)質(zhì)砧木資源。

        參考文獻(xiàn)References:

        [1] 郭全恩.干旱地區(qū)果樹(shù)對(duì)土壤鹽漬化脅迫的響應(yīng)機(jī)制[D].楊 凌:西北農(nóng)林科技大學(xué),2006. GUOQuan'en.Theresponse mechanism of stressof soil salinization onapple treeinarid region[D].Yangling:NorthwestAamp; FUniversity,2006.

        [2] MUNNSR,TESTER M.Mechanisms of salinity tolerance[J]. AnnualReviewofPlantBiology,2008,59:651-681.

        [3] 靳娟,魯曉燕,王依.果樹(shù)耐鹽性研究進(jìn)展[J].園藝學(xué)報(bào), 2014,41(9):1761-1776. JIN Juan,LU Xiaoyan,WANG Yi.Advancesin the studies on salt tolerance of fruit trees[J].Acta Horticulturae Sinica,2014, 41(9):1761-1776.

        [4] HAMAMOTO S,HORIE T,HAUSER F,DEINLEIN U, SCHROEDER JI, UOZUMI N. HKT transporters mediate salt stress resistance in plants: From structure and function to the field[J]. Current Opinion in Biotechnology,2015,32:113-120.

        [5]SHAHID M A,BALAL R M,KHAN N,SIMON-GRAO S,ALFOSEA-SIMONM,CAMARA-ZAPATAJM,MATTSONNS, GARCIA-SANCHEZ F. Rootstocks influence the salt tolerance ofKinnow mandarin trees by altering the antioxidant defense system,osmolyte concentration,and toxic ion accumulation[J]. Scientia Horticulturae,2019,250:1-11.

        [6] 霍柳青.自噬基因MdATG8i、MdATG10和MdATG18a在蘋(píng)果 響應(yīng)鹽和高溫脅迫中的功能分析[D].楊凌:西北農(nóng)林科技大 學(xué),2020. HUO Liuqing.Functional analysis of MdATG8i,MdATG10, MdATG18a in response to salt and heat stress in apple[D]. Yangling:Northwest Aamp;F University,2020.

        [7] NISA Z U,MALLANO A I, YU Y,CHEN C,DUAN X B, AMANULLAHS,KOUSAR A,BALOCH AW,SUN XL, TABYS D, ZHU Y M. GsSNAP33,a novel Glycine soja SNAP25-type protein gene:Improvement of plant salt and droughttolerancesintransgenicArabidopsisthaliana[J].Plant Physiology and Biochemistry,2017,119:9-20.

        [8]SIDDIQUE AB, ISLAM MR,HOQUE MA,HASAN M M, RAHMANMT,UDDINMM.Mitigationof salt stressbyfoliar application of proline in rice[J]. Universal Journal ofAgricultural Research,2015,3(3):81-88.

        [9] 杜中軍,翟衡,羅新書(shū),潘志勇,程述漢.蘋(píng)果砧木耐鹽性鑒定 及其指標(biāo)判定[J].果樹(shù)學(xué)報(bào),2002,19(1):4-7. DU Zhongjun, ZHAI Heng,LUO Xinshu,PAN Zhiyong, CHENG Shuhan.Salt- tolerance identification on apple rootstocks[J]. Journal ofFruit Science,20o2,19(1):4-7.

        [10]朱國(guó)芳.蘋(píng)果不同砧穗組合在洛川地區(qū)的栽培適應(yīng)性研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2018. ZHU Guofang.Adaptation of different apple scion-stock combination inLuochuan,Shaanxi[D].Yangling:NorthwestAamp;F University,2018.

        [11]韓佳,周高峰,李嶠虹,劉永忠,彭抒昂.缺鎂、鐵、硼脅迫對(duì)4 個(gè)柑橘砧木生長(zhǎng)及養(yǎng)分吸收的影響[J].園藝學(xué)報(bào),2012,39 (11):2105-2112. HAN Jia,ZHOU Gaofeng,LI Qiaohong,LIU Yongzhong, PENG Shu'ang. Effects of magnesium,iron,boron deficiency on the growth and nutrition absorption of four major citrus rootstocks[J].ActaHorticulturae Sinica,2012,39(11):2105-2112.

        [12]王米云.蘋(píng)果砧木的作用、特點(diǎn)、類型與選用[J].河北果樹(shù), 2020(2):19-20. WANG Miyun.Functions,characteristics,types and selectionof apple rootstock[J]. Hebei Fruits,2020(2):19-20.

        [13] 楊鋒,王冬梅,閆忠業(yè),黃金鳳,劉志.M9 在蘋(píng)果矮化砧木育 種實(shí)踐中的應(yīng)用價(jià)值[J].北方果樹(shù),2024(1):1-6. YANG Feng,WANG Dongmei,YAN Zhongye,HUANG Jinfeng,LIU Zhi.Practiced value of M9 in breeding of apple dwarfing rootstocks[J].Northern Fruits,2024(1):1-6.

        [14]韓明玉.蘋(píng)果矮砧集約高效栽培模式[J].果農(nóng)之友,2009(9): 12. HAN Mingyu. Intensive and eficient cultivation model of apple dwarf anvil[J].Fruit Growers'Friend,20o9(9):12.

        [15]王小丫,張仲興,高彥龍,董永娟,馬小蘭,王延秀.鹽堿脅迫下 蘋(píng)果矮化砧木M9-T337對(duì)外源檸檬酸(CA)的響應(yīng)[J].果樹(shù) 學(xué)報(bào),2024,41(2):252-265. WANG Xiaoya,ZHANG Zhongxing,GAO Yanlong,DONG Yongjuan,MA Xiaolan,WANG Yanxiu.Response of apple dwarfing rootstocks M9-T337 to exogenous citric acid (CA) under saline and alkaline stresses[J].Journal of Fruit Science, 2024,41(2):252-265.

        [16]SIBOZA XI,KOTZE W P,COOK N C,STEYN W J. Evaluating more yield efficient dwarfing,semi-dwarfing and semi-vigorous rootstocks for the South African apple industry[J].Acta Horticulturae,2018(1228):161-166.

        [17]MUSHTAQ R,PANDITA,RAJARHS,MIR MA,SHARMA MK,BHATR,BABAJA. Performance of exotic apple varieties grafted on M9T337 clonal rootstock under high density plantation[J]. Indian Journal of Horticulture,2019,76(3):530.

        [18]郝玉金,沙廣利.蘋(píng)果營(yíng)養(yǎng)系砧木選育進(jìn)展[J].落葉果樹(shù), 2018,50(1):3-7. HAOYujin,SHA Guangli.Progress in selectionand breeding of apple vegetative stock[J]. Deciduous Fruits,2018,50(1):3-7.

        [19]張瑩瑩,李泓,趙文平,陳運(yùn)娣.蘋(píng)果矮化密植栽培現(xiàn)狀及問(wèn)題 與建議[J].河北林業(yè)科技,2023(1):51-54. ZHANG Yingying,LI Hong,ZHAO Wenping,CHEN Yundi. Present situation,problems and suggestions of apple dwarfing and close planting cultivation[J]. Journal of Hebei Forestry Science and Technology,2023(1):51-54.

        [20]田利靜,徐嶺勇.蘋(píng)果矮化砧木篩選試驗(yàn)研究[J].新農(nóng)業(yè), 2019(10):35-37. TIAN Lijing,XU Lingyong. Research on screening test of dwarfing rootstock for apple[J]. New Agriculture,2019,(10):35- 37.

        [21]王大江,BUSVINCENTGM,王昆,高源,趙繼榮,劉立軍,李 連文,樸繼成.美國(guó)蘋(píng)果砧木育種歷史、現(xiàn)狀及其商業(yè)化砧木 特性[J].中國(guó)果樹(shù),2018(6):107-110. WANG Dajiang,BUS VINCENT G M, WANG Kun,GAO Yuan, ZHAO Jirong,LIU Lijun,LI Lianwen,PIAO Jicheng. The history and present situation of apple rootstock breeding in America andits commercial rootstock characteristics[J].China Fruits, 2018(6):107-110.

        [22]趙德英.國(guó)內(nèi)外常用蘋(píng)果矮化砧木:G系[J].果樹(shù)實(shí)用技術(shù)與 信息,2024(7):21-22. ZHAO Deying. Apple dwarfing rootstock commonly used at home and abroad:Gseries[J].Fruit Tree Practical Technology and Information,2024(7):21-22.

        [23]徐碩.蘋(píng)果砧木富平楸子與R3雜交后代的抗旱性評(píng)價(jià)及抗 旱機(jī)制初步分析[D].楊凌:西北農(nóng)林科技大學(xué),2024. XU Shuo. Evaluation and preliminary mechanism analysis on droughtresistanceofapplerootstockMalusprunifolia andR3 hybrid[D].Yangling:NorthwestAamp;FUniversity,2024.

        [24]SUNX,WANG P,JIAX,HUO LQ,CHE RM,MAFW. Improvement of drought tolerance by overexpressing MdATG18a ismediated bymodifiedantioxidant systemandactivatedautophagyin transgenic apple[J].Plant Biotechnology Journal, 2018,16(2):545-557.

        [25]徐宇,肖化云,鄭能建,張忠義,瞿玲露.植物組織中游離氨基 酸在鹽脅迫下響應(yīng)的研究進(jìn)展[J].環(huán)境科學(xué)與技術(shù),2016,39 (7):40-47. XU Yu,XIAO Huayun,ZHENG Nengjian,ZHANG Zhongyi, QU Linglu. Progress on responding of free amino acid in plants to salt stress[J]. Environmental Science amp; Technology,2016,39 (7):40-47.

        [26]CHENKQ,SONG MR,GUO YN,LIULF,XUE H,DAI H Y,ZHANG ZH.MdMYB46 could enhance salt and osmotic stress tolerance in apple by directly activating stress-responsive signals[J]. Plant Biotechnology Journal,2019,17(12):2341- 2355.

        [27]YIN R,BAITH,MAFW,WANG XJ,LIYH,YUE ZY. Physiological responses and relative tolerance by Chinese apple rootstocks to NaCl stress[J]. Scientia Horticulturae,2010,126(2): 247-252.

        [28]BRANQUINHO C,BROWND H,CATARINO F. The cellular location ofCu in lichens and its effects on membrane integrity and chlorophyll fluorescence[J]. Environmental and Experimental Botany,1997,38(2):165-179.

        [29]李春容.七種蘋(píng)果砧木抗鹽性和氮素利用效率的評(píng)價(jià)[D].楊 凌:西北農(nóng)林科技大學(xué),2023. LI Chunrong. Evaluation of salt resistance and nitrogen use efficiency of seven apple rootstocks[D]. Yangling:Northwest Aamp;F University,2023.

        [30]ANJP,ZHANG XW,XU RR,YOU CX,WANGXF,HAO YJ.AppleMdERF4 negatively regulates salt tolerance by inhibiting MdERF3 transcription[J].Plant Science,2018,276:181- 188.

        [31]李增裕,孫建設(shè),孫寧.蘋(píng)果耐鹽性研究進(jìn)展[J].河北農(nóng)業(yè)大 學(xué)學(xué)報(bào),,2003,26(增刊1):45-48. LIZengyu,SUNJianshe,SUNNing.Progressof studiesonsalt tolerance of apple[J]. JJournal of Agricultural University of Hebei,2003,26(Suppl. 1):45-48.

        [32]FU MY,LIC,MAFW.Physiological responses and tolerance toNaCl stress in different biotypes of Malusprunifolia[J]. Euphytica,2013,189(1):101-109.

        [33]朱潤(rùn)潔,聞蒙蒙,郎紅珊,段好鑫,李玥,湯曉麗.紅陽(yáng)獼猴桃 鹽脅迫下生理生化響應(yīng)及相關(guān)基因表達(dá)分析[J].果樹(shù)學(xué)報(bào), 2024,41(11):2224-2234. ZHU Runjie,WENMengmeng,LANG Hongshan,DUAN Haoxin,LI Yue,TANG Xiaoli.Physiological and biochemical response and related gene expression of Hongyang kiwiftuit seedlings under salt stress[J]. Journal of Fruit Science,2024,41(11): 2224-2234.

        [34] WOO S K,NAHM O, KWON H M. How salt regulates genes: Function ofa Rel-like transcription factor TonEBP[J].Biochemical and Biophysical Research Communications,20oo,278(2): 269-271.

        [35]JIANG YW,HUANG B R.Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolismand lipid peroxidation[J].Crop Science,2001,41(2):436- 442.

        [36]HUDG,MAQJ,SUNCH,SUN MH,YOUCX,HAO Y J. Overexpression of MdsOS2L1,a CIPK protein kinase,increases the antioxidant metabolites to enhance salt tolerance in apple and tomato[J].Physiologia Plantarum,2016,156(2):201-214.

        [37]MILLER G,SUZUKI N,CIFTCI-YILMAZ S,MITTLER R. Reactive oxygen species homeostasis and signalling during drought andsalinity stresses[J].Plant,Cell amp; Environment, 2010,33(4):453-467.

        [38]夏更壽,王加真.高鹽脅迫對(duì)溝葉結(jié)縷草葉片抗氧化酶活性的 影響[J].河北農(nóng)業(yè)大學(xué)學(xué)報(bào),2009,32(1):30-33. XIA Gengshou,WANG Jiazhen. Effects of NaCl on Zoysia matrella[J]. Journal of Agricultural University of Hebei,2009,32 (1):30-33.

        [39]潘偉彬,鄧恢.4種草本水土保持植物的耐旱生理特性[J].華 僑大學(xué)學(xué)報(bào)(自然科學(xué)版),2009,30(3):305-308. PAN Weibin,DENG Hui. Studies on drought-tolerant physiology of 4 herbage plants for soil and water conservation[J]. Journal of Huaqiao University (Natural Science Edition),2009,30 (3):305-308.

        [40]焦灰敏.不同蘋(píng)果砧木實(shí)生后代耐鹽特性研究[D].阿拉爾:塔 里木大學(xué),2019. JIAO Huimin. Study on salt tolerance of different apple rootstocks in their ofspring[D].Ala'er:Tarim University,2019.

        [41]HUO LQ,GUO ZJ,WANGP,ZHANGZJ,JIAX,SUNYM, SUN X,GONG XQ,MAFW. MdATG8i functions positively in apple salt tolerance by maintaining photosynthetic ability and increasing theaccumulationofarginineand polyamines[J].Environmental and Experimental Botany,2020,172:103989.

        [42]PARIHARP,SINGH S,SINGHR,SINGHVP,PRASAD S M. Effect of salinity stress on plants and its tolerance strategies: A review[J]. Environmental Science and Pollution Research International,2015,22(6):4056-4075.

        [43]朱新廣,張其德.NaCl對(duì)光合作用影響的研究進(jìn)展[J].植物學(xué) 通報(bào),1999,34(4):332-338. ZHU Xinguang, ZHANG Qide. Advances in the research on the effects of NaCl on photosynthesis[J].Chinese Bulletin of Botany,1999,34(4):332-338.

        [44]王嬋,侯格平,朱妍鈺,馬君君,王萬(wàn)鵬,李元昊,吳海燕,惠永 芳,劉鵬偉,張文宇,馬小樂(lè).NaCl脅迫對(duì)春小麥苗期葉綠素 及保護(hù)性酶活性的影響[J].寒旱農(nóng)業(yè)科學(xué),2024(6):555-559. WANGChan,HOUGeping,ZHUYanyu,MAJunjun,WANG Wanpeng,LI Yuanhao,WU Haiyan,HUI Yongfang,LIU Pengwei,ZHANG Wenyu,MA Xiaole. Efects of NaCl stress on chlorophyll contents and protective enzyme activities of spring wheat at seedling stage[J]. Journal of Cold-Arid Agricultural Sciences,2024(6):555-559.

        [45] STEFANOV M A,RASHKOV G D,APOSTOLOVA E L. Assessment of the photosynthetic apparatus functions by chlorophyll fluorescence and P700 absorbance in C3 and C4 plants under physiological conditions and under salt stress[J].International Journal ofMolecular Sciences,2022,23(7):3768.

        [46]ACOSTA-MOTOS JR,ORTUNO MF,BERNAL-VICENTE A,DIAZ-VIVANCOS P,SANCHEZ-BLANCO M J,HERNANDEZ JA.Plant responses to salt stress:Adaptive mechanisms[J].Agronomy,2017,7(1):18.

        [47]BATISTA-SILVAW,HEINEMANNB,RUGENN,NUNES-NESI A,ARAUJO WL,BRAUN HP,HILDEBRANDTTM. The role of amino acid metabolism during abiotic stress release[J]. Plant,Cellamp; Environment,2019,42(5):1630-1644.

        [48] HULY,ZHOUK,LIUY,YANG SL,ZHANGJY,GONG X Q,MAFW.Overexpression ofMdMIPS1 enhances salt tolerance by improving osmosis,ion balance,and antioxidant activityin transgenic apple[J].Plant Science,202o,301:110654.

        [49]HUANG YH,CUI X,CEN HF,WANG KH,ZHANG YW. Transcriptomic analysis reveals vacuolar antiporter gene contributing to growth,development,and defense in switchgrass (Panicumvirgatum L.)[J].BMC Plant Biology, 2018,18(1):57.

        [50]YUWC,WUWW,ZHANGN,WANGLP,WANGYH, WANGB,LANQK,WANGY.Researchadvancesonmolecularmechanism of salt tolerance in Suaeda[J].Biology,2022,11 (9):1273.

        [51]朱紫檀,洪曉松,張曉寧,申祺.鹽地堿蓬耐鹽堿響應(yīng)機(jī)制研究 進(jìn)展[J].現(xiàn)代農(nóng)業(yè)科技,2024(6):94-97. ZHU Zitan,HONG Xiaosong,ZHANG Xiaoning,SHEN Qi. Research progress on salt-alkali tolerance response mechanism of salt-alkali salt-alkali ponderum[J]. Modern Agricultural Science and Technology,2024(6):94-97.

        [52]OLIVA M,GUY A,GALILI G,DOR E,SCHWEITZER R, AMIR R,HACHAM Y. Enhanced production of aromatic amino acidsin tobacco plants leads to increased phenylpropanoid metabolites and tolerance to stresses[J].Frontiers in Plant Science, 2021,11:604349.

        [53]常開(kāi)振.高溫對(duì)不結(jié)球白菜幼苗脯氨酸代謝的影響[D].福州: 福建農(nóng)林大學(xué),2023. CHANG Kaizhen. High temperature on non- heading Chinese cabbage seedlings effects of proline metabolism[D].Fuzhou: FujianAgriculture and Forestry University,2023.

        [54]付珊,雷婷,金葦,李影,陳秀君,陳夢(mèng)麗,陳亮.鹽脅迫對(duì)番茄 幼苗生長(zhǎng)及生理指標(biāo)的影響[J].湖北師范大學(xué)學(xué)報(bào)(自然科學(xué) 版),2023,43(3):9-15. FUShan,LEI Ting,JINWei,LIYing,CHENXiujun,CHEN Mengli,CHEN Liang.Effects of salt stress on growth and physiological indexes of tomato seedlings[J]. Journal of Hubei Normal University (Natural Science),2023,43(3):9-15.

        [55]孫楠.蘋(píng)果砧木優(yōu)系31的抗逆性研究[D].泰安:山東農(nóng)業(yè)大 學(xué),2022. SUN Nan. Study on stress resistance of superior line 31 of apple rootstock[D].Tai'an:Shandong Agricultural University,2022.

        [56]潘凱,吳鳳芝.枯萎病不同抗性黃瓜(CucumissativusL.)根系 分泌物氨基酸組分與抗病的相關(guān)性[J].生態(tài)學(xué)報(bào),2007,27 (5):1945-1950. PAN Kai,WU Fengzhi.Correlation analysisof amino acids components in cucumber root exudates and Fusarium wilt resistance[J].Acta Ecologica Sinica,2007,27(5):1945-1950.

        猜你喜歡
        植物
        誰(shuí)是最好的植物?
        為什么植物也要睡覺(jué)
        長(zhǎng)得最快的植物
        各種有趣的植物
        植物也會(huì)感到痛苦
        會(huì)喝水的植物
        植物的防身術(shù)
        把植物做成藥
        哦,不怕,不怕
        將植物穿身上
        在线视频中文字幕一区二区三区| 亚洲色偷拍一区二区三区| 蜜桃一区二区免费视频观看| 国产一级黄色片在线播放| 在线观看老湿视频福利| 国产精品成年片在线观看| 亚洲国产成人精品91久久久| 白白色青青草视频免费观看| 大陆啪啪福利视频| 国产一区二区三区小向美奈子| 亚洲 日韩 激情 无码 中出| 国产精品久久久久久久免费看| 猫咪www免费人成网最新网站| 成人国产乱对白在线观看| 一级老熟女免费黄色片| 乱中年女人伦av三区| 久久久久久久无码高潮| 性无码国产一区在线观看| 国产视频激情视频在线观看| 亚洲中文字幕久久精品无码a | 国产精品白浆视频免费观看| 91国产超碰在线观看| 亚洲av无一区二区三区| 亚洲国产精品综合久久网各 | 与最丰满美女老师爱爱视频 | 午夜精品久久久久久中宇| 91精品国产91热久久p| 国产美女高潮流白浆视频| 亚洲中文字幕久久精品无码a | 国产亚洲精品久久久久久久久动漫| 无码丰满熟妇浪潮一区二区av| 久久一区二区三区少妇人妻| 白丝兔女郎m开腿sm调教室| 成人免费xxxxx在线视频| 美女草逼视频免费播放| 国产自国产自愉自愉免费24区| 亚洲av无码第一区二区三区| 亚洲中文字幕日产喷水| 手机久草视频福利在线观看 | 国产午夜福利精品久久2021| 97国产精品麻豆性色|