亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        蘋果多主干平面樹形光合特性及生產(chǎn)潛力評(píng)價(jià)

        2025-06-26 00:00:00石彩云劉麗魏志峰董聰穎宋春暉高登濤
        果樹學(xué)報(bào) 2025年5期
        關(guān)鍵詞:產(chǎn)量

        中圖分類號(hào):S661.1 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2025)05-1087-10

        Abstract: 【Objective】 Using the tal-spindle system, which is commonly employed in apple production,as acontrol, we evaluated the production eficiency,fruit yield and qualityof the multi-leader-planar-trained apple trees. This study provides valuable insights for future selection of tree systems in apple orchards and contributes to advancing the mechanization and intelligence of orchard management. 【Methods】 The longitudinal and transverse diameters of the fruits were determined using electronic vernier calipers (16FN,MAHR, Germany). The mass of individual fruits was assessed with an electronic balance (E55ooS, Sartorius, Germany). Fruit firmness was evaluated utilizing a digital fruit hardness tester (GY-4-J,Tuopu Instrument). The soluble solids content was quantified using a digital display sugar meter (PAL-1,ATAGO,Japan), while the titratable acidity was measured using an acidometer (GMK835N,G-WON,Korea).The leaf area was quantified with a Li-3oooC portable leaf area meter. Chlorophyll content was assessed using a SPAD-502 meter, while photosynthetic indexes were recorded with a CIRAS-3 device from PP Systems, USA,between 9:00 and 11:00 AM on a sunny day.Light intensity and interception rate were measured with a TSE-1332 meter.Canopy light transmittance is the ratio of py light transmittance) × 100% .Before harvesting, the composition of tree branches and spurs was investigated, which were categorized by length: long branches are greater than 30.0cm in length; medium branches range from 15.0cm to 30.0cm ; spurs are less than 15.0cm . The height and length were measured using a tape measure,and the thickness was determined using a vernier caliper.【Results】 The average hardness of the tall-spindle trees’fruits in two years was 9.30kg?cm2 and 9.00kg?cm2 ,respectively, exceeding the 7.10kg?cm2 and 8.10kg?cm2 of the multi-leader trees’ fruits. The average fruit shape indexes of the tall-spindle trees’fruits in two years were O.78 and 0.79,respectively,lower than those (0.85 and O.86) of multi-leader trees’fruits.The average soluble solids contents of tall-spindle trees in the two years were 12.21% and 12.41% ,respectively,lower than that of multi-leader trees 0 13.45% and 13.86% ).Regarding titratable acid, the average values for tall-spindle trees in the two years were 0.31% and 0.30% ,respectively,higher than the 0.27% and 0.26% recorded for multi-leader trees.However,the above indicators did not reach significant differences.Although the soluble solids content of multi-leader trees’fruits was higher than those of tall-spindle trees’fruits,the titratable acid content was lower,and no significant diferences were detected.This suggested that there was not much diference in fruit flavor between the two types of fruits with high-efficiency-shaped tree systems.By comparing the photosynthetic parameters between the two tree systems, it was found that the net photosynthetic rate (Pn) , intercellular carbon dioxide concentration , and stomatal conductance ( of the multi-leader trees were higher than that of the tall-spindle trees at the same time.The difference was significant only in May,but it was not significant in June and July. The transpiration rate (Tr) of both tree shapes gradually increased from May to July, but there were no significant differences between them in each month. There was no significant difference in water use efficiency (WUE) between the two tree systems at the same time,and the WUE of the multi-leader trees gradually decreased from May to July. However, the total leaf area of tall-spindle trees was significantly higher than that of multi-leader trees. The leaf area index (LAI) with tall-spindle trees was 1.74 in May,1.86 in June,and 2.02 in July. In contrast,the LAI for multi-leader trees was 1.15 inMay,1.29 in June,and1.57 in July.This suggested that the tall-spindle leaves had a higher densityand photosynthetic potential,which also implied a higher likelihood of severe shading. The SPAD values of the two tree systems gradually increased from May to July, indicating that the chlorophyll content of leaves gradually increased,and there was no significant difference in SPAD values between the two tree systems in the same month.The light interception rate for both tree systems generally exhibited a decreasing trend with increasing height away from the ground.The light interception rate of the tall-spindle trees was higher when the ground height was less than1 meter,and this rate decreased significantlyat a ground height of3 meters.The difference in light interception rate between the bottom and top of the trees was not as pronounced as that observed in the tall-spindle trees.We also measured the light interception rates of the two tree systems at various distances (0,20,50,and 100cm ) from the leader at a height of 1.5 meters.Based on the average values from four time points at each distance, both tree systems displayed a trend where the light interception rate decreased with increasing distance from the leader. Overall, the presence of initial bearing trees resulted in a lower light interception rate for both systems, with multi-leader trees showing an even lower rate compared to tal-spindle trees.For the two tree systems,the leader diameter showed an increase from 2023 to 2O24.However,there was no significant difference in tree height.In the case of the talspindle trees, the number of main branches was approximately 21 in both years. Although the average length of main branches decreased,the data for the two years did not show a significant difference.For the multi-leader trees,there were only five upright leaders,and there was no significant difference in leader height between the two years.In 2O23,the number of branches with different lengths of the two tree systems was relatively similar. By 2024,the number of long branches and spurs of both tree systems increased,while the number of middle branches decreased. Over the course of two years,multileader trees received approximately 6-7 ton per hectare higher yield than tall-spindle trees.【Conclusion】Although it is diffcult to train multi-leader tree systems,the fruit quality has not decreased,and its photosynthetic performance is beter than that of tall-spindle trees,and its yield has been improved. The multi-leader trees are more suitable for the future development oforchards in terms of yield,mechanization and labor saving.

        Key words: Apple;Multi-leader tree system; Planar-trained shape; High-density planting; Production efficiency; Light interception rate

        中國(guó)是世界第一蘋果生產(chǎn)大國(guó),蘋果是我國(guó)具有明顯國(guó)際競(jìng)爭(zhēng)力的農(nóng)產(chǎn)品之一。實(shí)現(xiàn)蘋果產(chǎn)業(yè)高質(zhì)量發(fā)展,對(duì)增加果農(nóng)收入、促進(jìn)脫貧致富、實(shí)現(xiàn)鄉(xiāng)村振興具有重要意義[2-3]。近年來(lái),蘋果矮砧密植集約栽培成為新植果園主要發(fā)展模式。高光效樹形,尤其是高紡錘形得到了大面積的推廣,與傳統(tǒng)大冠稀植模式相比,其具有易管理、結(jié)果早、產(chǎn)量高、優(yōu)果率高等優(yōu)點(diǎn)4。近年來(lái),該種植模式遇到系列技術(shù)瓶頸,主要是樹冠為三維立體(3D)結(jié)構(gòu),冠層較厚,果實(shí)隨機(jī)分布,修剪及果實(shí)采摘難以實(shí)現(xiàn)機(jī)械化;同時(shí),由于行間需要留有機(jī)器作業(yè)道,種植密度無(wú)法加大。隨著社會(huì)經(jīng)濟(jì)的發(fā)展,勞動(dòng)力緊缺已成為常態(tài),未來(lái)果園管理全面實(shí)現(xiàn)機(jī)械化,減少人力投入是必由之路。二維(2D)平面樹形可實(shí)現(xiàn)機(jī)械化作業(yè),充分利用空間及光能,進(jìn)一步提高產(chǎn)量,減少人工,是未來(lái)果園管理的發(fā)展趨勢(shì),有助于實(shí)現(xiàn)果業(yè)的現(xiàn)代化和可持續(xù)發(fā)展。

        我國(guó)在近30年里先后建立了喬砧稀植栽培、喬砧密植栽培以及矮砧集約栽培技術(shù)體系。如何使蘋果樹冠結(jié)構(gòu)更簡(jiǎn)化,為全面機(jī)械化、智能化管理打好基礎(chǔ),科學(xué)家開始研究以2D平面結(jié)果為核心的未來(lái)果園生產(chǎn)系統(tǒng),多主干形是2D平面樹形中的一種,與Dorigoni等提到的SimpleGuyot樹形類似,主干彎曲向一側(cè)延伸,主干上每隔 30cm 留直立向上結(jié)果枝條(主干)5\~6個(gè)。枝條及果實(shí)平面分布,行距由 3.5~4m 減小至 2~2.5m ,整體冠層光利用率提高,可突破現(xiàn)有果園產(chǎn)量瓶頸,實(shí)現(xiàn)果園管理及果實(shí)采收的智能機(jī)械化。Tustin等指出雙邊多主干平面樹形在種植后的第2年和第3年就表現(xiàn)出了顯著的早期生產(chǎn)力,除了光攔截率,調(diào)節(jié)年度生長(zhǎng)資源分配到果實(shí)生長(zhǎng)的過(guò)程也是決定蘋果園生產(chǎn)潛力的重要因素。Dorigoni等深入討論了Guyot樹形的二維結(jié)構(gòu)及沒(méi)有二級(jí)分枝的特點(diǎn),可以選擇單行和雙行兩種種植模式,強(qiáng)調(diào)了該樹形適應(yīng)機(jī)械化方面的潛力,包括修剪、疏果和除草等。Bortolotti等的研究表明Guyot樹形的直立生長(zhǎng)枝即主干不應(yīng)被視為彼此獨(dú)立的單元,需要對(duì)每個(gè)主干進(jìn)行精確的負(fù)載控制,以實(shí)現(xiàn)精準(zhǔn)果園管理。Tustin等[的研究表明,通過(guò)優(yōu)化行間距和樹形結(jié)構(gòu),可以顯著提高蘋果園的光能利用率和生產(chǎn)力,而且現(xiàn)有蘋果的生產(chǎn)潛力可能被低估。Robinson的研究表明蘋果園的產(chǎn)量與光攔截相關(guān),還指出可以通過(guò)增加樹冠中的葉片密度、改變樹形、增加樹高與行距的比例或使用反光膜在地面上增加光攔截。曾艷鑫等[在2024年利用多主干樹形的蘋果研究了不同砧木對(duì)樹形生長(zhǎng)和果實(shí)品質(zhì)的影響。史繼東[13-14]介紹了這種單邊多主干形的栽培方法。

        這種新樹形的研究工作雖然開始時(shí)間不長(zhǎng),但是已經(jīng)展現(xiàn)了良好的前景和巨大的生產(chǎn)潛力。目前我國(guó)在這方面的研究只開展了部分零星的工作。本研究著眼于未來(lái)果園發(fā)展趨勢(shì),圍繞宜機(jī)化種植、簡(jiǎn)約化管理的蘋果2D樹形管理模式,以高紡錘形為對(duì)照,開展蘋果多主干形產(chǎn)量和品質(zhì)研究及生產(chǎn)潛力與應(yīng)用評(píng)價(jià),將為未來(lái)蘋果園建設(shè)打好基礎(chǔ),為蘋果產(chǎn)業(yè)高質(zhì)量發(fā)展做出貢獻(xiàn)。

        1 材料和方法

        1.1 試驗(yàn)材料

        試驗(yàn)在中國(guó)農(nóng)業(yè)科學(xué)院鄭州果樹研究所果樹栽培課題組試驗(yàn)園 113°4244\" E、 34°4245\"N 中進(jìn)行,試材為優(yōu)良早熟品種華碩/M9T337。嫁接苗于2021年春定植,定植后通過(guò)拉枝使新生主枝沿著行向生長(zhǎng),在其上每隔 30cm 留一個(gè)直立向上的枝條(主干),再經(jīng)過(guò)2022年的生長(zhǎng),共留5\~6個(gè)主干,樹形基本形成,2022年零星掛果,2023年完全成形,初步豐產(chǎn)。高紡錘形和多主干形的株行距分別為 1.5m× 3.5m,1.5m×2.5m 。試驗(yàn)園常規(guī)管理。

        1.2試驗(yàn)設(shè)計(jì)

        選取長(zhǎng)勢(shì)一致、有代表性的兩種樹形植株各3株,單株重復(fù),從果實(shí)生長(zhǎng)發(fā)育開始(4月初開花,4月10日左右落花,果實(shí)發(fā)育期110d左右,花后10d開始第一次測(cè)定),在果實(shí)生長(zhǎng)期,分別在5、6、7月測(cè)定葉片光合參數(shù)、葉片面積、SPAD值及光截獲率等。成熟期每棵樹隨機(jī)采摘15個(gè)果實(shí)進(jìn)行單果質(zhì)量、縱橫徑、硬度、可溶性固形物含量、可滴定酸含量等品質(zhì)指標(biāo)的測(cè)定。采果后,調(diào)查樹體生長(zhǎng)、枝(梢)類組成,測(cè)算生長(zhǎng)量。根據(jù)單株產(chǎn)量及栽植密度,計(jì)算 666.7m2 產(chǎn)量。2023年和2024年對(duì)果實(shí)品質(zhì)及樹體結(jié)構(gòu)參數(shù)進(jìn)行重復(fù)測(cè)定。

        1.3 測(cè)定項(xiàng)目及方法

        1.3.1果實(shí)品質(zhì)測(cè)定用電子游標(biāo)卡尺(16FN,MAHR,德國(guó))測(cè)量果實(shí)縱、橫徑,果形指數(shù) 果實(shí)縱徑/果實(shí)橫徑。用電子天平(E5500S,Sartorius,德國(guó))測(cè)量單個(gè)果實(shí)質(zhì)量。果實(shí)硬度采用數(shù)顯水果硬度計(jì)(GY-4-J,托普儀器)測(cè)定,硬度計(jì)探頭直徑為 0.8cm 每果測(cè)3次,取平均值。采用數(shù)顯式糖度計(jì)(PAL-1,ATAGO,日本)測(cè)量可溶性固形物含量,可滴定酸含量用酸度計(jì)(GMK-835N,G-WON,韓國(guó))測(cè)定。

        1.3.2葉片相關(guān)指標(biāo)測(cè)定在各試驗(yàn)樹樹冠外圍中部隨機(jī)選取長(zhǎng)中短稍各10條,用LI-3000C便攜式葉面積儀(美國(guó)LI-COR公司生產(chǎn),分辨率為 1mm2) 測(cè)量新梢上的單葉片面積,并累加得到單梢葉面積,以每類新梢平均單梢葉面積乘以該類新稍數(shù)再相加得到試驗(yàn)樹的總?cè)~面積,據(jù)此求得葉面積指數(shù)等相關(guān)指標(biāo)。于5、6、7月中上旬取枝條中部健康成熟完整葉片進(jìn)行光合指標(biāo)、葉綠素指標(biāo)測(cè)定,每個(gè)重復(fù)取10枚葉片。葉綠素含量采用SPAD-502葉綠素儀測(cè)定。光合指標(biāo)在晴天上午09:00一11:00,用美國(guó)PPSystem公司的CIRAS-3便攜式光合儀測(cè)定。

        1.3.3冠層不同位置光截獲率用TSE-1332型數(shù)字式照度計(jì),于5、6、7月選擇晴天,每天測(cè)量時(shí)間為092.00,11.00,13:00,15:00 ,每月測(cè)定3d。每次在距樹干 0.20,50,100m 處的固定位置( (1.5m 高度)測(cè)定光照度,在主干處距地面 0.20,50,100,150cm 高度測(cè)定光照度。以3d的測(cè)量數(shù)據(jù)平均值為葉幕形成期不同層次的光照度值。冠內(nèi)及冠下的光照度值與冠層上方的光照度值的比值即為冠層的透光率,以百分比計(jì),冠層的光截獲率 %=(1) 一冠層透光率) ×100 [15]。

        1.3.4 樹體結(jié)構(gòu)調(diào)查 采摘前(每年8月上旬)調(diào)查樹體枝梢類組成情況,按長(zhǎng)度劃分:長(zhǎng)枝, gt;30.0cm 中枝, 15~30.0cm ;短枝, lt;15.0cm 。干高:主干高度,用卷尺測(cè)量從地表到主枝基部的距離。干徑:樹干距地面 10cm 處,用游標(biāo)卡尺測(cè)量樹干的粗度。樹高:用標(biāo)桿、卷尺測(cè)量從地表到樹冠最高點(diǎn)的距離。主枝粗度:用游標(biāo)卡尺測(cè)量主枝基部 5cm 的粗度。采果后統(tǒng)計(jì)枝量,調(diào)查各樹形整株果樹的干高、干徑、主枝數(shù)、主枝粗、枝類(長(zhǎng)枝、中枝、短枝)的數(shù)量。

        1.4 數(shù)據(jù)分析

        使用Excel整理試驗(yàn)數(shù)據(jù)和作圖,利用SPASS19.0進(jìn)行方差分析。

        2 結(jié)果與分析

        2.1 兩種樹形果實(shí)品質(zhì)分析

        測(cè)定了2023年和2024年兩種不同樹形果實(shí)相關(guān)品質(zhì)指標(biāo),兩年結(jié)果相似度較高(表1)。兩種樹形的單果質(zhì)量接近,多主干形的果形指數(shù)低于高紡錘形,但未達(dá)到顯著差異水平,說(shuō)明兩種樹形的果實(shí)生長(zhǎng)比較接近。2023年高紡錘樹形的果實(shí)硬度平均值是 9.30kg?cm-2 ,而多主干形只有 7.10kg?cm-2 2024年依然是高紡錘形果實(shí)硬度高,但未達(dá)到顯著性差異,標(biāo)準(zhǔn)差可以看出高紡錘形果實(shí)硬度差異較大。兩年的數(shù)據(jù)顯示,多主干形果實(shí)的可溶性固形物含量高于高紡錘形,可滴定酸含量低于高紡錘形果實(shí),但都未達(dá)到顯著差異水平,說(shuō)明兩種高光效樹形的果實(shí)風(fēng)味差異不大。

        表12023和2024年兩種樹形果實(shí)品質(zhì)比較Table1 Comparison of fruit qualityof twotree formsin2o23and 2024

        2.2兩種樹形葉片光合性能分析

        通過(guò)兩種樹形光合參數(shù)的比較,發(fā)現(xiàn)相同時(shí)間多主干形的凈光合速率 (Pn) 、胞間二氧化碳濃度(Ci) 、氣孔導(dǎo)度 (Gs) 都高于高紡錘形,但只在5月份時(shí)差異顯著,在6月和7月時(shí)差異不顯著(圖1)。兩種樹形的蒸騰速率 (Tτ) 從5月到7月都是逐漸升高,但每個(gè)月份兩者之間沒(méi)有顯著差異。相同時(shí)間兩種樹形水分利用率沒(méi)有顯著差異,多主干形水分利用率從5月到7月逐漸降低。

        2.3 兩種樹形葉面積及SPAD值

        測(cè)定了兩種樹形在果實(shí)生長(zhǎng)期的葉片面積變化及相對(duì)葉綠素含量(表2)。高紡錘形的葉片總面積顯著高于多主干形,最大的是7月份達(dá)到了91 120.12cm2 ,而多主干形最大的也是7月份只有 ;高紡錘形的葉面積指數(shù)5月份為1.74,6月份為1.86,7月份為2.02,多主干形5、6、7月分別為1.15、1.29和1.57,顯著低于高紡錘形。說(shuō)明高紡錘形葉片密度大、光合潛力大,也說(shuō)明可能遮擋嚴(yán)重。兩種樹形的SPAD值從5月到7月逐漸升高,說(shuō)明葉片葉綠素含量逐漸增加,相同月份兩種樹形之間SPAD值沒(méi)有顯著差異。

        圖1兩種樹形5一7月的氣體交換參數(shù)比較Fig.1Comparison of gas exchange parameters between two tree forms from May to July

        2.4兩種樹形光截獲率比較

        研究發(fā)現(xiàn),兩種樹形的光截獲率基本上呈隨地面高度增大而減小的趨勢(shì),高紡錘形于地面高度 1m 以下時(shí)的光截獲率較高, 3m 時(shí)的光截獲率顯著降低(表3)。多主干形基本也呈現(xiàn)出類似的趨勢(shì),但是樹底部和上部的光截獲率差別沒(méi)有高紡錘形差別大。多主干形 1m 以上光截獲率基本達(dá)到了 50% 以下,說(shuō)明透光率較高。整體上看,多主干形的光截獲率要低于高紡錘形,說(shuō)明多主干形透光率較高,內(nèi)部遮擋較輕。從09:00—11:00,兩種樹形的光截獲率沒(méi)有表現(xiàn)出明顯的規(guī)律性,到13:00時(shí),高紡錘形光截獲率數(shù)值整體偏高,說(shuō)明此時(shí)上部葉片對(duì)下部造成了遮擋。15:00時(shí),兩種樹形的透光率都較高,尤其是6、7月份。

        表2兩種樹形葉面積及SPAD值Table2Leaf areaand SPADvalueof twotypesof tree forms
        表3兩種樹形不同冠層高度光截獲率比較Table3Comparison of light interception rate of two tree shapes with different canopy heights
        注:同一列中不同小寫字母表示在0.05水平差異顯著。下同。 Note:Different small letters in the same column indicate significant differences at plt;0.05 .The same below.

        兩種樹形離主干 1.5m 高度、不同遠(yuǎn)處(0、20、50,100cm 的光截獲率的測(cè)定結(jié)果表明(表4),距離主干越遠(yuǎn)光截獲率越低。不同月份間的光截獲率沒(méi)有表現(xiàn)明顯規(guī)律。5月份時(shí),高紡錘形在距離主干0和 20cm 的光截獲率低于多主干形,在50和100cm 處高于多主干形;6月份時(shí),高紡錘形在距離主干20和 100cm 的光截獲率低于多主干形,在0和50cm 處高于多主干形;7月份時(shí),除了 50cm 處高于多主干形外,其他距離都低于多主干形??傮w來(lái)看,距離主干不同距離兩種樹形的平均光截獲率都較低,說(shuō)明主干 1.5m 高度不同冠幅距離的光照較為充足,葉片遮擋較輕。

        2.5兩種樹形樹體結(jié)構(gòu)參數(shù)比較

        兩種樹形,從2023到2024年主干粗度都有所增加,樹高無(wú)顯著差異(表5)。高紡錘形兩年的主枝數(shù)量都是21個(gè)左右,主枝長(zhǎng)度平均值有所降低,但兩年數(shù)據(jù)未達(dá)到顯著差異水平。多主干形只有5個(gè)直立主干,兩年主干高無(wú)顯著差異。2023年兩種樹形不同長(zhǎng)度枝條的數(shù)量較為接近,到2024年兩種樹形都是長(zhǎng)枝和短枝變多,中枝減少。高紡錘形和多主干形長(zhǎng)枝的數(shù)量分別由30和27個(gè)增長(zhǎng)到了51和57個(gè),中枝數(shù)量由22和23個(gè)減少到了13和9個(gè),短枝由32和37個(gè)增加到了79和59個(gè)。高紡錘形的株行距按 1.5m×3.5m 計(jì)算,每公頃定植株數(shù)為1904株;多主干形按 1.5m×2.5m 計(jì)算,每公頃定植株數(shù)為2666株。2024年單株平均掛果數(shù)和產(chǎn)量均高于2023年。多主干形每公頃產(chǎn)量為26.76t和 27.79t 比高紡錘形多6\~7t。

        表4兩種樹形果實(shí)生長(zhǎng)期樹干 1.5m 高度不同遠(yuǎn)度的光截獲率Table4Lightinterceptionrateofdifferentdistancesat 1.5m heightoftrunkduringfruitgrowthperiodof twotreeforms %

        3討論

        3.1蘋果冠層光分布與產(chǎn)量品質(zhì)的關(guān)系

        冠層光截獲率與果實(shí)產(chǎn)量密切相關(guān),研究表明60%~70% 的季節(jié)性有效光攔截率是成熟蘋果園的實(shí)際上限,而對(duì)于目前大面積推廣的種植系統(tǒng)冠層而言光截獲率并不是越高越好,超過(guò)一定比例,就意味著枝葉產(chǎn)生了重疊遮擋,透光率太低,果實(shí)品質(zhì)會(huì)受到較大影響[]。Palmer等通過(guò)對(duì)新西蘭蘋果種植系統(tǒng)的研究,推斷其晚熟品種產(chǎn)量對(duì)光攔截的響應(yīng),如果光攔截率能達(dá)到 90% ,理論上能達(dá)到較高的產(chǎn)量。這就需要對(duì)種植系統(tǒng)進(jìn)行革命性的重新設(shè)計(jì),包括簡(jiǎn)化樹形結(jié)構(gòu)和管理方式,以及提高光攔截效率。

        對(duì)于傳統(tǒng)大冠樹形,葉片遮擋嚴(yán)重,內(nèi)膛無(wú)效區(qū)域較大,樹冠外圍光照好,果實(shí)品質(zhì)好,內(nèi)膛果實(shí)品質(zhì)差;高紡錘形樹形樹冠變小,幾乎沒(méi)有內(nèi)膛無(wú)效區(qū),但枝葉上下遮擋情況仍存在,行間也存在互相遮擋的問(wèn)題;平面樹形應(yīng)運(yùn)而生,其所有的枝條果實(shí)都分布在平面上,光照分布均勻,由于冠層較薄,光線甚至可以透過(guò)行間,因此,平面樹形理論上光分布和果實(shí)品質(zhì)最均勻。本試驗(yàn)結(jié)果也證明了這一點(diǎn),相比于高紡錘形,多主干平面樹形與地面不同高度的光截獲率變化幅度較為接近,同一高度不同遠(yuǎn)處的光截獲率變化幅度也較小。至于部分光截獲率出現(xiàn)了上部高于下部的情況,這是由于果園樹體的遮擋及不同時(shí)間太陽(yáng)照射方位不一導(dǎo)致,但并不影響對(duì)整體光截獲率的分析。生產(chǎn)力的限制因素包括生長(zhǎng)環(huán)境中光能的季節(jié)性可用性,以及種植系統(tǒng)對(duì)該能量的最大捕獲效率。研究表明,傳統(tǒng)的大冠樹形果園系統(tǒng)設(shè)計(jì)在捕獲更高比例光能的能力上受到限制,無(wú)法將光能有效地轉(zhuǎn)化為作物產(chǎn)量[]。最高效的現(xiàn)代果園種植系統(tǒng)未能利用 30%~40% 的可用光能[。這就需要對(duì)現(xiàn)有的樹形結(jié)構(gòu)進(jìn)行改革,以捕獲和利用更多的光能。多主干平面樹形冠層薄、行距窄,能更好地利用單位面積的光能;同時(shí),由于冠層薄,底部互相遮光輕,樹高可以進(jìn)一步增加,充分利用上層空間,將會(huì)進(jìn)一步提高生產(chǎn)力。

        3.2平面樹形增產(chǎn)潛力分析

        蘋果產(chǎn)量不僅與冠層的光截獲關(guān)系密切[1,還與近果實(shí)中短果枝的光截獲相關(guān)。相較于高紡錘形等立體結(jié)果樹形,平面樹形極大地簡(jiǎn)化了樹體結(jié)構(gòu),用于枝干建造的營(yíng)養(yǎng)物質(zhì)明顯減少,光合產(chǎn)物分配到果實(shí)上的比例更高。雖然平面樹形的株行距小于高紡錘形,但是每公頃株數(shù)大大提高,產(chǎn)量大幅度提升,對(duì)于平面樹形,應(yīng)更注重其每公頃的結(jié)果枝數(shù),而不是每公頃的株數(shù),前者與產(chǎn)量關(guān)系更密切。平面樹形的主枝數(shù)量少,生長(zhǎng)更為均一,長(zhǎng)枝數(shù)量少,短枝數(shù)量多,有更大的潛力用于果實(shí)生長(zhǎng)。本研究中,2024年多主干形長(zhǎng)枝數(shù)量較2023年顯著增多,中枝增長(zhǎng)成為了長(zhǎng)枝,但短枝數(shù)量也有所增加,這可能與修剪有關(guān)。然而,兩種樹形2024年的產(chǎn)量并沒(méi)有比2023年大幅度提升,有兩方面原因,一是疏花疏果較為嚴(yán)格,二是病蟲害防治出現(xiàn)問(wèn)題,特別是橘小實(shí)蠅未能有效防治,加上鳥啄、日灼等導(dǎo)致落果較多,影響了最終產(chǎn)量。

        影響 Pn 因素有氣孔限制和非氣孔限制兩方面,5月份時(shí),多主干形的 Pn 顯著高于高紡錘形,而 Gs 也是多主干形顯著高于高紡錘形,可見(jiàn)是氣孔限制的原因,多主干形可以更好地進(jìn)行光合作用。這可能是由于5月份時(shí)太陽(yáng)高度角低、多主干形的葉片都可以接受光照,可以較好地進(jìn)行光合作用??傮w來(lái)說(shuō),多主干形的光合性能要強(qiáng)于高紡錘形,這也可能是多主干形產(chǎn)量高的原因之一。

        3.3平面樹形生產(chǎn)應(yīng)用前景

        與高紡錘形等傳統(tǒng)樹形相比,平面樹形冠層更薄,單位結(jié)果枝更多,產(chǎn)量更高,果實(shí)分布更均勻,品質(zhì)更均一,利于機(jī)械化修剪和采摘。投入方面,苗木、支架等設(shè)施投入與高紡錘形基本相同。樹形的塑造上,多主干形第一年樹形的塑造大約每公頃需要花費(fèi) 250h 的人工,第一年的樹木培養(yǎng)必須逐步進(jìn)行,在春季和夏季進(jìn)行5\~10次干預(yù),但是一旦成形,進(jìn)行機(jī)械化管理就會(huì)省時(shí)省力[9]。相比于高紡錘形的“生產(chǎn)重心\"趨向于向上和向外移動(dòng)問(wèn)題,多主干平面形有多個(gè)垂直生長(zhǎng)的主干,有效分散了生長(zhǎng)勢(shì),樹體整體生長(zhǎng)更加平衡。本研究中的多主干形有5\~6個(gè)結(jié)果主干,且由于是單邊多主干形,株距縮減為 1.5m ,每公頃種植株數(shù)遠(yuǎn)遠(yuǎn)多于高紡錘形,在果實(shí)大小和品質(zhì)沒(méi)有顯著差異的情況下,產(chǎn)量有所提升。因此,整體上來(lái)看,其是適于未來(lái)果園應(yīng)用的良好樹形。但是,在不同地區(qū)、不同砧木品種上的應(yīng)用效果如何,還需要進(jìn)行持續(xù)試驗(yàn)驗(yàn)證。

        4結(jié)論

        多主干形雖然前期在樹形塑造上較高紡錘形有難度,但是果實(shí)品質(zhì)較好,光合性能優(yōu)于高紡錘形,且產(chǎn)量有所提升,多主干形易管理是實(shí)現(xiàn)機(jī)械化、精準(zhǔn)化、數(shù)字化的理想樹形。

        參考文獻(xiàn)References:

        [1] 趙德英.國(guó)內(nèi)外蘋果栽培模式的變革[J].果樹實(shí)用技術(shù)與信 息,2023(1):45-46. ZHAODeying.The transformationof applecultivation models bothdomestically and internationally[J].Practical Techniques andInformationforFruitTrees,2023(1):45-46.

        [2] 鄧秀新,束懷瑞,郝玉金,徐強(qiáng),韓明玉,張紹鈴,段常青,姜全, 易干軍,陳厚彬.果樹學(xué)科百年發(fā)展回顧[J].農(nóng)學(xué)學(xué)報(bào),2018, 8(1):24-34. DENGXiuxin,SHUHuairui,HAOYujin,XUQiang,HAN Mingyu,ZHANGShaoling,DUANChangqing,JIANGQuan, YI Ganjun,CHEN Houbin.Review on the centennial developmentof pomology in China[J]. Journal of Agriculture,2018,8 (1):24-34.

        [3] 束懷瑞,張世忠.我國(guó)蘋果產(chǎn)業(yè)70年發(fā)展歷程與展望[J].落 葉果樹,2021,53(1):1-3. SHU Huairui,ZHANG Shizhong.The 7O years’development and prospect of apple industry in China[J].Deciduous Fruits, 2021,53(1):1-3.

        [4] 杜海平.蘋果現(xiàn)代栽培模式與關(guān)鍵配套技術(shù)[J].農(nóng)機(jī)市場(chǎng), 2024(7):61-63. DUHaiping.Modern cultivation mode and key supporting technology ofapple[J].AgriculturalMachineryMarket,2024(7):61- 63.

        [5] 王田利.蘋果栽培模式和樹形[J].北方果樹,2020(4):31-32. WANG Tianli. Apple cultivation mode and tree shape[J]. Northern Fruits,2020(4):31-32.

        [6] DORIGONI A,MICHELI F. Guyot training: A new system for producing apples and pears[J]. European Fruit Magazine,2018, 2:18-23.

        [7] TUSTINDS,VANHOOIJDONKBM,BREENKC.ThePlanar Cordon-New planting systems concepts to improve light utilisation and physiological function to increase apple orchard yield potential[J].Acta Horticulturae,2018(1228):1-12.

        [8] DORIGONI A,MICHELI F. Development of a cultivation system formulti-leader trees[J].EuropeanFruit Magazine,2019,5: 8-13.

        [9] BORTOLOTTIG,PERULLI G,BOINI A,BRESILLA K, BONORAA,VENTURIM,MANFRINIL. Individual upright physiological traits inan apple“Guyot”training system[J].Acta Horticulturae,2022(1346):353-358.

        [10]TUSTIND S,BREENKC,VAN HOOIJDONKB M.Light utilisation,leafcanopypropertiesand fruitingresponsesof narrow-row,planar cordon apple orchard plantingsystems:A study of the productivity of apple[J]. Scientia Horticulturae,2022, 294:110778.

        [11]ROBINSON TL. The physiological basis of orchard system performancewith respect to light interceptionand light conversion efficiency[J].Acta Horticulturae,2022(1346):207-218.

        [12]曾艷鑫,宮昊楠,由春香,盧景生,高文勝,王小非.不同砧木對(duì) 多主干樹形‘瑞香紅'蘋果幼樹樹體生長(zhǎng)及果實(shí)品質(zhì)的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2024,57(14):2847-2861. ZENG Yanxin,GONG Haonan ?? YOU Chunxiang,LU Jingsheng,GAO Wensheng,WANG Xiaofei.Effectsofdifferent rootstocks on growth and fruit quality of young Ruixianghong apple trees with multi-stem shape[J]. Scientia Agricultura Sinica, 2024,57(14):2847-2861.

        [13]史繼東.蘋果古優(yōu)特(Guyot)栽培法(上)[J].西北園藝,2023 (12):1-4. SHI Jidong. Cultivation method of apple Guyot(I)[J]. Northwest Horticulture,2023(12):1-4.

        [14]史繼東.蘋果古優(yōu)特(Guyot)栽培法(下)[J].西北園藝,2024 (2):1-4. SHIJidong.Cultivationmethod of apple Guyot(I)[J].NorthwestHorticulture,2024(2):1-4.

        [15]高登濤,郭景南,魏志峰,范慶錦,楊朝選.中部地區(qū)兩類矮砧 密植蘋果園生產(chǎn)效率及光照質(zhì)量評(píng)價(jià)[J].中國(guó)農(nóng)業(yè)科學(xué), 2012,45(5):909-916. GAO Dengtao,GUO Jingnan,WEI Zhifeng,F(xiàn)AN Qingjin, YANG Chaoxuan.Evaluation ofproductivityand light quality in two high density dwarf rootstock apple orchards in Central China[J]. ScientiaAgricultura Sinica,2012,45(5):909-916.

        [16]TUSTIN D S.Future orchard planting systems - Do we need anotherrevolution?[J].ActaHorticulturae,2014,1058:27-36.

        [17]PALMERJW,WUNSCHEJN,MELANDM,HANNA.Annualdry-matterproductionbythreeapplecultivarsatfourwithinrowspacings in New Zealand[J].The Journal of Horticultural Science and Biotechnology,2002,77(6):712-717.

        [18]趙先飛,張馨予,于國(guó)康,梁潔,趙紫嫣,劉宇,張林森.短枝富 士蘋果不同負(fù)載和灌水量對(duì)新梢生長(zhǎng)、產(chǎn)量和灌水利用效率 的影響[J].果樹學(xué)報(bào),2023,40(9):1860-1870. ZHAO Xianfei,ZHANGXinyu,YU Guokang,LIANG Jie, ZHAO Ziyan,LIUYu,ZHANGLinsen.Effectof different fruit loads and irrigation amounts on new shoot growth,yield and irrigationwateruse efficiency in spur-type Fuji apples[J]. Journal ofFruit Science,2023,40(9):1860-1870.

        [19]ZHANG Qin.Automation in tree fruit production:Principles and practice[M].Watlington:CABI,2018:85-88.

        猜你喜歡
        產(chǎn)量
        2022年11月份我國(guó)鋅產(chǎn)量同比增長(zhǎng)2.9% 鉛產(chǎn)量同比增長(zhǎng)5.6%
        今年前7個(gè)月北海道魚糜產(chǎn)量同比減少37%
        提高玉米產(chǎn)量 膜下滴灌有效
        夏糧再獲豐收 產(chǎn)量再創(chuàng)新高
        世界致密油產(chǎn)量發(fā)展趨勢(shì)
        海水稻產(chǎn)量測(cè)評(píng)平均產(chǎn)量逐年遞增
        2018年我國(guó)主要水果產(chǎn)量按?。▍^(qū)、市)分布
        2018年11月肥料產(chǎn)量統(tǒng)計(jì)
        2018年10月肥料產(chǎn)量統(tǒng)計(jì)
        2018年12月肥料產(chǎn)量統(tǒng)計(jì)
        国产在线a免费观看不卡| 天堂网www在线资源| 亚洲日韩精品欧美一区二区三区不卡 | 波多野结衣乳巨码无在线| 无码人妻少妇久久中文字幕蜜桃| 日本在线一区二区三区观看| 国产乱码精品一区二区三区久久| 中文天堂国产最新| 99久久久无码国产aaa精品| 丰满人妻一区二区乱码中文电影网 | 伊人久久综在合线亚洲不卡| 大香蕉久久精品一区二区字幕| 色综合悠悠88久久久亚洲| 久久精品www人人爽人人| 国产精品偷窥熟女精品视频| 亚洲av中文无码乱人伦在线播放| 色爱区综合激情五月综合小说| 少妇特殊按摩高潮惨叫无码| 四季极品偷拍一区二区三区视频| 天堂中文官网在线| 18无码粉嫩小泬无套在线观看 | 国产精品二区一区二区aⅴ污介绍| 亚洲精品国产成人| 久久亚洲av成人无码软件| 日日高潮夜夜爽高清视频| 精品一区二区三区免费视频| 特级毛片a级毛片在线播放www | 国产成人av乱码在线观看| 天天躁日日躁狠狠躁av中文| 九月色婷婷免费| 国内自拍偷国视频系列| 国产男女免费完整视频| 色综合一本| 邻居少妇张开腿让我爽视频| 欧美性生交大片免费看app麻豆 | 久久精品国产亚洲av蜜臀久久| 亚洲码欧美码一区二区三区| 国产精品免费久久久久影院仙踪林 | 亚洲成av人片乱码色午夜| 亚洲av无码一区二区三区在线| 国产午夜av一区二区三区|