亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        馬家柚粗皮品系授粉親和性鑒定及授粉樹配置距離探究

        2025-06-26 00:00:00徐宸宇徐宸宇何溢張力程瀚遠(yuǎn)朱婉婉趙珍梅吳昊吳巨勛伊華林
        果樹學(xué)報(bào) 2025年5期

        中圖分類號:S666.3 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-9980(2025)05-1023-12

        Abstract:【Objective】The studyidentified the S -genotypeof the rough-skinned strainsofCitrusmaxima‘Majiayou’(Cupi Majiayou), clarified polination compatibility among the main varieties of Majiayou,and explored the comprehensive quality Majiayou under diffrent distances from the pollinizer trees so as to provide references for the quality improvement with better arrangement of pollinizer trees for Majiayou. 【Methods】21 pomelo S gene-specific primers used for the amplification and identification of the S. -genotype rough-skinned strains ofMajiayou.Before cross-pollination,pollen viability and in vitro germination rate of both rough-skinned and smooth-skinned Majiayou were determined to ensure pollen fertility.The growth of pollen tubes in the styles from self-polination and cross-pollination betwen the two strains was observed using the aniline blue staining method. Quality indexes including soluble sugar,and contents of various organic acid components of fruit from different trees at different distances from the pollinizer trees were measured. 【Results】21 pomelo S gene-specific primers were used for the specific amplification and identification of S. -genotypes of the rough-skinned variety of Majiay vu auu aisu IUI Iunyvunnpanun vaiivues repuiicu pitviuusiy to verify the accuracy of the method.The amplification results for the smooth-skinned Majiayou were consistent with previous studies, being SIOSI6 .The S. -genotype of the Cupi Majiayou variety was found to be SloSl2 ,sharing one identical S gene with the smooth-skinned variety. Based on the S. genotype, it was predicted that cros-pollination between the two varieties might exhibit semi-compatibility.To further verify cross-pollination compatibility between the rough-skinned and smooth-skinned strains of Majiayou,pollen viability and in vitro germination experiments were conducted to confirm the fertility of the pollen.The results showed that the pollen activity of the smooth-skinned and rough-skinned varieties of Majiayou were 98.17% and 97.04% ,respectively. The in vitro germination rates of the pollen of the smooth-skinned and rough-skinned varieties were 45.96% and 42.67% ,respectively. Therefore the pollens were fertile and suitable for subsequent cross-polination.The styles of the rough-skinned and smooth-skinned varieties after self-pollination and cross-pollination were used for aniline blue staining to observe the growth status of the pollen tubes.The staining results showed that after self-pollination, the pollen tubes of both the smooth-skinned and the rough-skinned varieties stopped elongating at the upper part of the style,indicating complete incompatibility during self-pollination.However, after crosspollination between the rough-skinned and smooth-skinned varieties,some pollen tubes grew normally to the middle and lower parts of the style,while others stopped growing at the top,indicating semi-compatibility between the rough-skinned and smooth-skinned varieties during cross-pollination. To explore the seed set and fruit quality of Majiayou under natural pollination at diferent distances under semicompatible pollination father configuration, the seed set of Majiayou under pollinizer arrangements was investigated. The results showed that under the row-column pollination tree pattrn, the seed set of each row from P1 to P8 was above 80.0% , while the seed set of rows P9 to P13 decreased,ranging from (20號 66.7% to 73.3% . Under the central radiation pollination tree patern, the seed set of rows P1 to P2 was above 87.5% , while the seed set of row P3 decreased to 59.7% .With the increase of pollinizer distance, the peel thickness of the main cultivated Majiayou under the row-column pattern showed a trend of decreasing first and then increasing,with the peel thickness of rows P1 and P9 being 23.5 and 27.3mm respectively, which were 27.7% and 16% lower than CK1 ( 32.5mm ), and the peel thickness of row P13 was not significantly different from the control. In addition,the number of seeds showed a continuous decrease with the increase of the distance from the pollinizer. Soluble sugar (TSS) content of the fruit from row P13 was 16.3% , significantly higher than CK1’ s 11.8% . The titratable acid (TA) content of the fruit from row P1 (0.97%) )was significantly higher than CK1,while that of row P9 (0.3%) was the lowest among all rows. The TSS/TA ratio was the lowest in row P1,at 14.9,which was 32.0% lower than that of CK1,while that in rows P9 and P13 increased by 57.1% and 34.7% compared to CK1, respectively. Vitamin C content also showed a continuous increasing trend with the increase of polinizer distance.Under the central radiation pollination pattern,the peel thickness of the pollnated pummelo were significantly lower than CK2' s 33.7mm , with an average reduction of 18.7% to 35.0% . The TA content of the fruit in the upper part of rows P1 and P2 was significantly lower than that of CK2,while there was no significant difference between the fruit from row P3 and CK2.The solid acid ratio of Majiayou; at different fruiting positions showed a clear trend of increasing first and then decreasing with the increase in the distance from pollen donor trees,with the TSS/TA of the fruit in the upper part of rows P1andP2increased by 29.2% and 49.5% compared to CK2,respectively; the middle fruit increased by 21.0% and 27.4% ,respectively,while there was no significant difference between the fruit in different positions of row P3 and CK2. 【Conclusion】 The scientific arrangement of pollinizer trees using the semi-compatible rough-skinned variety ofMajiayou is important for the production ofhigh-quality commercial fruit of Majiayou. Key words: Majiayou; S. -genotype; Compatibility; Pollination tree configuration; Fruit quality

        柑橘是世界第一大果樹,以柚為代表的寬皮柑橘、橙和檸檬等均屬于真正柑橘。馬家柚[Citrusmaxima(L.)Osbeck‘Majiayou']是江西省上饒市廣豐區(qū)地方特色農(nóng)產(chǎn)品,因具有果肉細(xì)嫩多汁、脆爽可口、藥食兼用等特點(diǎn)而逐漸受到大眾追捧,享有“江西省酸柚類第一名\"的美譽(yù)2,又由于其果肉色澤淡紅似胭脂,汁胞飽滿脆嫩,因此隨著市場反饋和效益的穩(wěn)步提升,馬家柚種植規(guī)模和范圍持續(xù)擴(kuò)大,2023年僅廣豐區(qū)種植面積可達(dá)1.33萬 hm2 ,綜合產(chǎn)值30億元。柚類多為實(shí)生繁殖,受環(huán)境氣候影響易產(chǎn)生大量遺傳變異,形成新種質(zhì)。目前生產(chǎn)中存在兩大類型的馬家柚品系,即果皮光滑平整、低酸型的細(xì)皮馬家柚和果皮粗糙坑洼、高酸型的粗皮馬家柚4。粗皮馬家柚因其果實(shí)特點(diǎn)通常不用于商品果栽植。由于生長初期細(xì)皮和粗皮馬家柚品系在形態(tài)學(xué)上相似度極高,加之早期馬家柚苗木市場管理混亂,大量粗皮品系和地方柚類資源與細(xì)皮馬家柚苗木混賣現(xiàn)象頻發(fā),對果農(nóng)造成了巨大的經(jīng)濟(jì)損失,作為“無商品屬性\"的粗皮品系也因此在馬家柚產(chǎn)業(yè)中長期處于邊緣地位。筆者通過實(shí)地調(diào)查并結(jié)合粗皮和細(xì)皮馬家柚品系已有的研究進(jìn)展,發(fā)現(xiàn)細(xì)皮和粗皮品系馬家柚樹姿均較為開張,樹勢中等,自然生長樹高為 5.11~5.39m[4] ;兩者每年均抽梢3次,梢長和粗度均差異不顯著;葉片形態(tài)均為卵圓形,翼葉寬大,粗皮品系成熟葉片葉脈相較于細(xì)皮品系更為突出,葉緣向葉背面翻轉(zhuǎn)程度更高,粗皮品系部分嫩梢呈紫紅色,細(xì)皮馬家柚則為淡綠色;兩者均為單生或總狀花序,花蕾大,完全開放時(shí)花藥低于柱頭,粗皮品系花后7\~10d部分花子房積累花青素,呈深紫色,細(xì)皮品系子房為深綠色,辨別花后子房色澤可作為早期分辨品系間差異的方法之一[5]。粗皮和細(xì)皮品系果實(shí)完熟均需210d左右,細(xì)皮品系果實(shí)近卵圓形,油胞凹陷,果面光滑,套袋果實(shí)成熟時(shí)外皮金黃色,粗皮品系成熟果實(shí)為倒卵圓形,外果皮油胞突出,果面粗糙,金黃色和紫紅色相間;粗皮品系可滴定酸含量為 1.2%~1.4% ,細(xì)皮品系可滴定酸含量為 0.4%~ 0.8%[5,7] 。對粗皮和細(xì)皮品系馬家柚進(jìn)行重測序比對,發(fā)現(xiàn)兩者基因組差異較大,排除了兩者是因無性芽變繁殖產(chǎn)生的變異。此外,已開發(fā)了用于區(qū)分和鑒定粗皮和細(xì)皮品系馬家柚的InDel分子標(biāo)記,可實(shí)現(xiàn)種苗早期篩選,有助于馬家柚產(chǎn)業(yè)健康發(fā)展[8-9]。

        馬家柚品種選育工作進(jìn)展較為緩慢,除粗皮和細(xì)皮品系外,目前還有報(bào)道稱發(fā)現(xiàn)不穩(wěn)定的無核類型,但無核表型還有待進(jìn)一步觀察確定[-8。事實(shí)上,筆者經(jīng)過長期產(chǎn)區(qū)實(shí)踐觀察發(fā)現(xiàn),馬家柚具備一定的單性結(jié)實(shí)能力,8\~10a(年)樹齡的成年馬家柚樹單株可掛果25\~30個(gè)。單一馬家柚細(xì)皮品系栽植園區(qū)果實(shí)完全無籽,而混栽粗皮品系或留有地方土柚周邊的細(xì)皮品系有籽,同一園區(qū)距離較遠(yuǎn)的細(xì)皮品系卻無籽。此外,早期馬家柚苗木市場中地方柚和粗皮品系泛濫是造成品系不純的主要因素,往往果農(nóng)種植至成年結(jié)果期后,苗木品系不純的現(xiàn)象才開始顯露,然而出于經(jīng)濟(jì)成本考量,差異品系苗木則是更多地被保留,上述情況共同促成了生產(chǎn)中馬家柚有籽無籽性狀不穩(wěn)定的表象。此外,對于單一品系種植園而言,無籽馬家柚個(gè)體品質(zhì)穩(wěn)定性差,不同年份間果實(shí)風(fēng)味差異明顯,較低的自然坐果率以及果皮過厚始終制約著馬家柚產(chǎn)業(yè)規(guī)模和效益的進(jìn)一步提升。大量研究表明,雜交授粉可使馬家柚整體風(fēng)味更為濃郁,降低皮厚的同時(shí)有助于果實(shí)可食率和產(chǎn)量的提升[7,10-14],粗皮品系也在長期生產(chǎn)實(shí)踐中被農(nóng)戶習(xí)慣性地用于與細(xì)皮品系進(jìn)行混栽,使果實(shí)產(chǎn)生一定數(shù)量的種籽。

        柚類普遍具有自交不親和性狀(self-incompati-bility,SI),該性狀是植物用于抑制自交衰退、促進(jìn)異交提升物種多樣性和環(huán)境適應(yīng)性的有效機(jī)制[15]。梁梅通過細(xì)胞學(xué)、遺傳學(xué)等試驗(yàn)首次鑒定并克隆了控制柑橘自交不親和性狀的雌雄蕊決定因子,證實(shí)了柑橘是由S-RNase介導(dǎo)的配子體型SI。韋壯敏等在已鑒定出的9個(gè)S-RNase基礎(chǔ)上進(jìn)一步利用63份柚類資源為材料,鑒定出全新的12個(gè)S-RNase基因,對63份柚類的鑒定覆蓋度可達(dá) 93.7% 。配子體型SI具體表現(xiàn)為當(dāng)父本花粉授到相同S單倍型的母本花柱時(shí),花粉管無法正常萌發(fā)或伸長至子房完成雙受精,這一過程是由于花柱特異表達(dá)的單一位點(diǎn)復(fù)等位基因能夠特異性地抑制相同S基因型花粉管生長[8]。

        具體而言,相同S基因型的SI親本柚品種相互授粉表現(xiàn)為不親和,雜交后果實(shí)無籽;不同的S基因型表現(xiàn)為授粉親和,果實(shí)有籽。當(dāng)親本間僅有單個(gè)S基因時(shí),相互授粉表現(xiàn)為半親和,即一部分花粉管停正生長,另一部分可正常生長延伸至花柱底部完成受精作用[。生產(chǎn)中在配置雜交組合時(shí)提前對親本S基因型進(jìn)行鑒定,篩選與待改良品種S基因型不同的優(yōu)良父本可指導(dǎo)雜交授粉工作的順利實(shí)施。此外,多年的雜交授粉試驗(yàn)結(jié)果表明,在花粉群體效應(yīng)作用下,利用完全親和性的父本進(jìn)行人工授粉時(shí)會產(chǎn)生150\~200粒種籽,大量的種籽會造成消費(fèi)者食用便捷性下降,不利于商品果銷售[10.19]。因此,篩選與待改良品種的半親和性父本結(jié)合人工稀釋授粉或授粉樹配置下的花粉傳粉過程中的自然稀釋,理論上可在顯著降低雜交果實(shí)種籽數(shù)的同時(shí)實(shí)現(xiàn)對風(fēng)味品質(zhì)的提升[20]。

        筆者通過粗皮品系S基因型鑒定和花粉原位萌發(fā)等試驗(yàn),旨在厘清馬家柚主要品系間授粉親和性特征,解析生產(chǎn)中馬家柚果實(shí)有籽無籽現(xiàn)象不穩(wěn)定現(xiàn)象,排除種質(zhì)重復(fù)性開發(fā)造成的人力及經(jīng)濟(jì)損失。同時(shí),通過比較分析粗皮品系作授粉父本(授粉樹)時(shí)不同配置模式和距離情況下待改良細(xì)皮馬家柚品質(zhì)的差異,為馬家柚品質(zhì)改良、生產(chǎn)少籽風(fēng)味濃郁的高品質(zhì)商品果以及馬家柚標(biāo)準(zhǔn)化建園下的授粉樹配置模式提供可行性技術(shù)方案。

        1材料和方法

        1.1材料

        不同授粉樹配置模式和距離下細(xì)皮馬家柚果實(shí)品質(zhì)對比試驗(yàn)分別開展于江西省撫州市黎川縣天意農(nóng)莊(中心輻射式)和田圣浣生態(tài)農(nóng)場(行列式),粗皮和細(xì)皮品系相互人工授粉試驗(yàn)在天意農(nóng)莊完成。行列式種植園株行距為 3m×4m ,坡地種植,授粉樹(粗皮品系)位于最高處的起始行,單行種植18\~20株細(xì)皮馬家柚成年樹,坡度 22°~25° ,樹高 2.5~2.8m 自然開心形,中下部掛果;中心輻射式種植園株行距為 3.0m×3.5m ,平地種植,樹高 4.5~5.0m ,自然圓頭形,上中層掛果。園區(qū)樹體均無明顯病蟲害,樹勢基本一致。樣品收集后統(tǒng)一運(yùn)送至華中農(nóng)業(yè)大學(xué)園藝林學(xué)學(xué)院實(shí)驗(yàn)室進(jìn)行常規(guī)品質(zhì)測定,部分果肉組織用液氮冷凍,并置于 -80°C 冰箱保存,待后續(xù)可溶性糖和有機(jī)酸含量測定。粗皮和細(xì)皮品系S基因型鑒定所用葉片材料均采集于天意農(nóng)莊。

        1.2 方法

        1.2.1 S 基因型鑒定參考韋壯敏等的 S 基因鑒定方法,采用改良后的CTAB法提取葉片DNA,采用NanoDrop1000超微量分光光度計(jì)檢測DNA的質(zhì)量及濃度,鑒于韋壯敏等報(bào)道的21對 (SI~S2I) 引物對64份柚資源鑒定覆蓋率可達(dá) 93.7% ,將21對 s 基因引物序列發(fā)送至武漢天一輝遠(yuǎn)生物科技有限公司合成。PCR反應(yīng)體系為 25μL ,各組分分別為 2× PCR Mix 15μL ,正、反向引物各 2μL(10μmol?L-1) ,DNA 2μL(50μg?μL-1) ,超純水 4μL 。PCR反應(yīng)程序?yàn)?94°C 預(yù)變性 5min,94°C 變性 30s ,退火(詳細(xì)溫度參考韋壯敏等的報(bào)道 30s,72°C 延伸50s,35次循環(huán); 72°C 終延伸 5min;12°C 保存。粗皮品系退火溫度由 57°C 依次梯度上升至 61°C ,對最終候選的明亮條帶進(jìn)行重復(fù),確保試驗(yàn)結(jié)果的準(zhǔn)確性,取 10μL 擴(kuò)增產(chǎn)物進(jìn)行 1% 瓊脂糖凝膠電泳,采用凝膠成像系統(tǒng)進(jìn)行檢測,明亮清晰條帶即確定含有該引物對應(yīng)的S基因。

        1.2.2人工雜交授粉及花粉原位萌發(fā)試驗(yàn)粗皮品系盛花期較細(xì)皮品系提前3\~5d,提前采集一部分粗皮和細(xì)皮品系成熟花藥置于 28°C 烘箱至完全散粉,裝入離心管中進(jìn)行標(biāo)注并干燥避光保存。選擇粗皮和細(xì)皮品系待授粉樹體中下部外圍的健壯結(jié)果枝,疏除枝上已經(jīng)開放、未成熟的花朵以及畸形花。用鑷子小心將花瓣及花藥剝離,只留下柱頭,再用小號毛筆蘸取離心管內(nèi)的干燥花粉點(diǎn)在各自柱頭上,分別配置細(xì)皮和粗皮品系自交和雜交授粉組合,完成授粉后立即套袋并于授粉枝末端掛牌寫明授粉組合配置情況及總花數(shù)。套袋5d后選擇晴朗天氣對授粉組合花柱進(jìn)行收集,如遇陰雨氣候則延長至7\~10d進(jìn)行采集。將收集的不同授粉組合花柱立即分別放入FAA固定液內(nèi)避光保存。

        利用苯胺藍(lán)染色方法觀察花粉管狀態(tài),F(xiàn)AA固定液浸泡 24h 后取出花柱,使用 95% 乙醇溶液洗滌花柱2\~3次, 70% 乙醇溶液繼續(xù)洗滌2\~3次,然后清水洗滌,加入 4mol?L-1NaOH 溶液,密封,置于 65°C 水浴鍋中水浴 60min ,待花柱顏色由黃白色轉(zhuǎn)為橙紅色且透明時(shí),取出花柱,倒掉離心管中的NaOH溶液,灌入清水浸泡,每 30min 換1次清水,換水步驟重復(fù)3\~4次,至花柱顏色轉(zhuǎn)為黃色?;ㄖ逑赐戤吅螅x心管中加入 1mol?L?1K3PO3 配制而成的苯胺藍(lán)染色液浸泡染色 20min 左右,染色過程注意避光。甘油壓片,在UV濾片下觀察花粉管的生長狀況。

        1.2.3花粉活力檢測和花粉體外萌發(fā)試驗(yàn)使用I-KI染色法檢測花粉活力。取適量花粉于離心管中,將離心管用錫箔紙包裹避光,再向管中在開裂前收集完整的花藥,在 28°C 下干燥 24h 以釋放花粉。向成熟花粉加入 200μL 的染液,輕輕振蕩混勻,在黑暗條件下染色 3~5min 。滴2\~3滴于載玻片上,并在顯微鏡下觀察。

        參考梁梅的方法計(jì)算花粉體外萌發(fā)率,花粉粒培養(yǎng)在液體萌發(fā)培養(yǎng)基的表面上,培養(yǎng)基成分包括: 0.02%MgSO4 , 0.01% (20 KNO3 , 0.03%Ca(NO32 0.01% (204號 H3BO3 , 20% PEG-4000以及 20% 蔗糖, pH= 6.0。室溫培養(yǎng) 8h ,鏡檢觀察花粉萌發(fā)情況并統(tǒng)計(jì)萌發(fā)率,將花粉管長度超過花粉直徑作為萌發(fā)標(biāo)準(zhǔn)。1.2.4有籽果率調(diào)查及果實(shí)品質(zhì)測定對兩種授粉樹配置模式的自然傳粉狀態(tài)下細(xì)皮品系有籽率進(jìn)行調(diào)查,行列式園區(qū)縱向共13行,每行采集10個(gè)果;輻射式以授粉樹(粗皮品系)為中心,外圍每圈分別取9\~12個(gè)果,分別統(tǒng)計(jì)兩種配置模式下各行有籽果率。用于果實(shí)品質(zhì)測定的果實(shí)采集方案如下:行列式園區(qū)分別選取第1、9、13行兩端及中間處共9株樹(圈中數(shù)字編號為對應(yīng)樣本樹),行列式對照組(CK1)為相同樹上的無籽果實(shí);輻射式園區(qū)選取授粉樹為中心不同距離的第1、2、3行各方位共12株樹(圈中數(shù)字編號為對應(yīng)樣本樹),每單株中下部的不同方位隨機(jī)選取3個(gè)大小均一的果實(shí),每行共采集9個(gè)果實(shí),輻射式對照組(CK2)為相同樹上的無籽果實(shí),參考徐宸宇和Zhang2的方法測定可溶性糖和可滴定酸含量及常規(guī)品質(zhì)。

        1.3 數(shù)據(jù)統(tǒng)計(jì)與分析

        采用Exce12016軟件對試驗(yàn)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)與作圖,采用SPSS26軟件進(jìn)行差異顯著性分析。

        2 結(jié)果與分析

        2.1粗皮品系馬家柚 s 基因型鑒定

        根據(jù)韋壯敏等的研究結(jié)果,馬家柚(主栽細(xì)皮品系)S基因型為 SIOSI6 ,為驗(yàn)證該方法的可靠性,筆者分別采集了主栽細(xì)皮及粗皮品系馬家柚葉片進(jìn)行S基因型鑒定與驗(yàn)證。與前人報(bào)道一致,細(xì)皮馬家柚?jǐn)U增結(jié)果為 SIOSI6 ,粗皮馬家柚品系 S 基因型為 SIOSI2 與細(xì)皮品系具有一個(gè)相同S基因(圖1)。根據(jù)S基因型預(yù)測兩者相互授粉,結(jié)果可能表現(xiàn)為半親和性。

        圖1S-RNase基因特異擴(kuò)增Fig.1Specific amplification of S-RNase gene

        2.2 粗皮和細(xì)皮品系馬家柚花粉活力測定

        為進(jìn)一步驗(yàn)證粗皮和細(xì)皮馬家柚品系間授粉親和性,首先通過花粉活力和體外萌發(fā)試驗(yàn)驗(yàn)證兩者花粉育性。結(jié)果顯示,細(xì)皮和粗皮馬家柚品系花粉活性分別為 98.17% 和 97.04% ,細(xì)皮和粗皮品系的花粉體外萌發(fā)率分別為 45.96% 和 42.67% ,差異不顯著,滿足后續(xù)相互授粉的條件(圖2,表1)。

        2.3粗皮和細(xì)皮品系馬家柚授粉親和性鑒定

        粗皮和細(xì)皮品系自交和相互授粉后的花柱用于苯胺藍(lán)染色觀察花粉管生長狀態(tài)。染色結(jié)果顯示,細(xì)皮和粗皮品系自交授粉后花粉管均表現(xiàn)為停留在花柱頂部和上部(圖3左上和右下)便停止伸長,即自交時(shí)完全不親和;然而粗皮和細(xì)皮品系相互授粉后花粉管則表現(xiàn)一部分正常生長至花柱中下部,一部分則于花柱頂部停止生長(圖3右上和左下),即粗皮和細(xì)皮品系相互授粉呈半親和性。

        2.4兩種授粉樹配置模式下主栽馬家柚有籽果率及品質(zhì)分析

        為探究半親和性授粉父本配置下不同距離的自然傳粉馬家柚有籽率及果實(shí)品質(zhì),兩種授粉樹配置模式園區(qū)示意圖如圖4-A\~B所示。分別對不同配置模式下的馬家柚有籽果率進(jìn)行調(diào)查,結(jié)果顯示,行列式授粉樹模式下,P1\~P8各行有籽果率均高于 80.0% ,P9\~P13各行果實(shí)有籽率降低,介于 66.7%~73.3% 。中心輻射式授粉樹模式下,P1\~P2行有籽果率高于87.5% ,P3行有籽果率降低為 59.7% (圖4-D\~E)。進(jìn)一步對不同授粉樹配置模式下的細(xì)皮馬家柚果實(shí)品質(zhì)進(jìn)行比較分析,結(jié)果顯示,隨著自然傳粉距離的增加,行列式模式下的主栽馬家柚果皮厚度呈現(xiàn)出先降后增的趨勢(圖4-C),其中P1和P9行果皮厚度分別為23.5和 27.3mm ,相較于CK1的 32.5mm 分別降低了 27.7% 和 16.0% ,P13行果皮厚度和CK1無顯著差異。此外,種籽數(shù)表現(xiàn)為隨自然傳粉距離增加不斷降低。果實(shí)內(nèi)在風(fēng)味品質(zhì)方面,P13行馬家柚果實(shí)可溶性固形物含量為 16.3% ,顯著高于CK14.5個(gè)百分點(diǎn);P1行果實(shí)可滴定酸含量相較于CK1顯著提高0.4個(gè)百分點(diǎn),P9行可滴定酸含量為各行間最低,為 0.39% ;固酸比(TSS/TA)以P1行最低,為14.9,相較于CK1降低了 32.0% ,P9和P13行相較于CK1分別增加了 57.1% 和 34.7% 。維生素C含量呈現(xiàn)出隨自然傳粉距離的增加而不斷升高的趨勢(表2)。綜合果實(shí)內(nèi)在及外觀品質(zhì),P9行果實(shí)品質(zhì)最優(yōu),即行列式坡地栽植模式下每間隔 36~40m 配置授粉樹。

        圖2細(xì)皮(A、B)和粗皮(C、D)品系馬家柚花粉 I2-KI 染色花粉及離體萌發(fā)Fig. 2 I2 -KI stainedpollenand invitro germination of Xipi (A,B) and Cupi(C,D) strainsofMajiayou
        表1細(xì)皮和粗皮馬家柚品系花粉活力和花粉離體萌發(fā)率統(tǒng)計(jì)Table1Pollenstaining activityand in vitro germination rate of Xipi and Cupi strains ofMajiayou

        注:同列數(shù)據(jù)后不同小寫字母表示在0.05水平差異顯著。

        Note:Different smalletters in the same column indicate significant difference at O.05level.

        在中心輻射式授粉樹配置模式下,分別對不同距離及不同結(jié)果部位有籽和無籽細(xì)皮馬家柚果實(shí)品質(zhì)指標(biāo)進(jìn)行比較。結(jié)果顯示,處理組果皮厚度均顯著低于CK2的 33.7mm ,果皮厚度平均降低 18.7%~ 35.0% 。此外,有籽果可食率相較于CK2均有顯著

        圖3細(xì)皮和粗皮品系馬家柚自交和相互授粉花柱苯胺藍(lán)染色Fig.3Selfandcros-pollination styles ofCupiandXipistrains ofMajiayou dyedwithaniline blue
        圖4不同授粉樹配置模式圖及不同距離自然傳粉的主栽馬家柚有籽果率

        提升。在內(nèi)在風(fēng)味品質(zhì)方面,P1和P2行上中部有籽果相較于CK2均顯著降低了可滴定酸含量,P3行各部位與CK2無顯著差異。各結(jié)果部位馬家柚固酸比隨傳粉距離的增加表現(xiàn)出明顯的先增后降趨勢,P1和P2行上部有籽果固酸比相較于CK2分別增加了 29.2% 和 49.5% ;中部果實(shí)則分別增加了21.0% 和 27.4% ,P3行各部位有籽果與CK2無顯著差異(表2)。中心輻射式栽植模式下以P2行果實(shí)綜合品質(zhì)最優(yōu),即12\~20株細(xì)皮主栽品系于中心處適宜配置1株粗皮品系。

        2.5行列式授粉樹配置模式下不同距離主栽馬家柚風(fēng)味品質(zhì)分析

        行列式授粉樹配置模式下隨傳粉距離的增加其果實(shí)外觀品質(zhì)表現(xiàn)出一定趨勢,同時(shí)標(biāo)準(zhǔn)化建園中多以行列式排布,進(jìn)一步對可溶性糖及有機(jī)酸含量進(jìn)行測定分析,結(jié)果如圖5所示。P13行主栽馬家柚可溶性總糖及蔗糖、葡萄糖含量相較于CK1分別顯著升高 36.6%,24.6%,47.5% ,果糖含量相較于CK1升高了 25.1% ;P1行可溶性糖各組分含量相較于CK1均有一定降低。在有機(jī)酸含量方面,P9行總酸和檸檬酸含量相較于CK1分別顯著降低了 20.5% 和 33.3% ;P1行總酸和檸檬酸含量較CK1顯著升高。綜合而言,主流行列式授粉樹配置模式下以P9行馬家柚果實(shí)糖酸風(fēng)味品質(zhì)最優(yōu)。

        圖5行列式授粉樹配置模式下不同自然傳粉距離的細(xì)皮馬家柚可溶性糖(A)和有機(jī)酸(B)含量Fig.5The content of soluble sugars (A) and organic acids(B)inthemaincultivatedXipiMajiayouwithdifferentnaturalpollinationdistancesinadeterminantpattern

        3討論

        馬家柚是原產(chǎn)于中國江西省廣豐縣大南鎮(zhèn)的地方特色柚類品種,自20世紀(jì)80年代初至今已有近45a(年)的品種發(fā)展歷史,作為地方支柱型產(chǎn)業(yè),馬家柚在地區(qū)脫貧致富道路上發(fā)揮著關(guān)鍵性作用。馬家柚屬于典型的內(nèi)陸性柚,不同于海洋性柚類的地理隔離,內(nèi)陸各地域間自然與人為因素以及柚的單胚特性共同促進(jìn)了柚的遺傳多樣性[22]。曹立新[23]系統(tǒng)性地調(diào)查了廣豐縣及其周邊地區(qū)46份柚資源并對馬家柚起源和親緣關(guān)系進(jìn)行分析,發(fā)現(xiàn)馬家柚已產(chǎn)生部分變異。目前地方及研究人員普遍認(rèn)為馬家柚主要分為主栽品種和粗皮、無核馬家柚兩個(gè)變異品系,其中粗皮馬家柚在樹勢、嫩梢、葉片和果實(shí)特征等方面與主栽品種差異明顯。Lu等研究表明, CgANI?CgRubyI 和 CgPH4 分別在粗皮馬家柚不同組織中的差異表達(dá)促進(jìn)了花青素和酸度的高積累。此外,粗皮和細(xì)皮馬家柚全基因組SNP信息為兩者遺傳關(guān)系提供了更為直接的證據(jù),結(jié)果表明粗皮和細(xì)皮馬家柚每條染色體上均存在一個(gè)以上的非相似區(qū)域,即粗皮和細(xì)皮馬家柚并非其中一方的芽變。值得一提的是,無核品系與主栽馬家柚植物學(xué)特征高度一致,在果實(shí)內(nèi)在品質(zhì)、礦質(zhì)元素、抗氧化物質(zhì)及活性氧和內(nèi)源激素等方面兩者也基本保持一致。柚類除普遍具有自交不親和特性外,還具有不同程度的單性結(jié)實(shí)能力[,因此,柚類無核品系的真實(shí)性往往需要通過嚴(yán)謹(jǐn)?shù)淖越缓彤惤辉囼?yàn)進(jìn)行驗(yàn)證。事實(shí)上,筆者通過多年產(chǎn)區(qū)實(shí)踐發(fā)現(xiàn),單一主栽細(xì)皮品系栽植的成年果園馬家柚逐年間均為無籽,而同一園區(qū)土柚或粗皮馬家柚周邊的細(xì)皮品系果實(shí)有籽性狀不穩(wěn)定。此外,粗皮馬家柚均表現(xiàn)為有籽。以上現(xiàn)象促使筆者進(jìn)一步驗(yàn)證馬家柚無核品系的真實(shí)性,避免品種重復(fù)性開發(fā)帶來的資金和人力損失。筆者利用韋壯敏等設(shè)計(jì)的21對S-RNase基因引物,特異性地?cái)U(kuò)增鑒定粗皮馬家柚 S 基因型,同時(shí)擴(kuò)增已知S基因型的主栽馬家柚驗(yàn)證引物可行性。結(jié)果顯示粗皮馬家柚S基因型為 SIOSI2 ,與主栽馬家柚 (SIOSI6) 為半親和?;ǚ墼幻劝l(fā)試驗(yàn)結(jié)果進(jìn)一步驗(yàn)證了基于兩者S基因型下相互自交和異交的預(yù)測表型,即當(dāng)園區(qū)同時(shí)存在粗皮和細(xì)皮馬家柚時(shí),兩者相互傳粉會導(dǎo)致果實(shí)有籽,而單一純系的主栽馬家柚(細(xì)皮)種植園則果實(shí)無籽。早期因馬家柚產(chǎn)業(yè)發(fā)展迅猛導(dǎo)致苗木混賣而造成的種植園品系不純進(jìn)一步支持了本研究結(jié)論的可靠性。然而,粗皮馬家柚并非毫無商品性價(jià)值,馬家柚作為酸柚類型品種,高糖高酸賦予馬家柚果實(shí)特有風(fēng)味,粗皮馬家柚往往因管理不當(dāng)加劇了高酸口感,走訪注意到目前已有少部分果園針對粗皮馬家柚進(jìn)行的肥水統(tǒng)一管理以生產(chǎn)出風(fēng)味更為濃郁的馬家柚,從而滿足不同喜好的消費(fèi)者需求。

        果實(shí)發(fā)育完整性尤其受到授粉受精后激素水平的影響,生長素和赤霉素被認(rèn)為是果實(shí)受精后啟動發(fā)育的關(guān)鍵[2427]。單性結(jié)實(shí)產(chǎn)生無籽果實(shí),是園藝作物中高度偏好的農(nóng)藝性狀[28-29],單性結(jié)實(shí)能力強(qiáng)弱直接影響果實(shí)產(chǎn)量及內(nèi)在品質(zhì),利用外源激素誘導(dǎo)單性結(jié)實(shí)果實(shí)生產(chǎn)已在多種園藝作物中得到了很好的應(yīng)用[30-31]。柚類果實(shí)個(gè)體較大,僅依賴單性結(jié)實(shí)形成完整果實(shí)要求品種自身更為充足的激素供給,同時(shí)受限于柚果實(shí)特殊構(gòu)造,即果肉(汁胞)的增大慢于外果皮的膨大和增厚以及油胞層與白皮層的隔離作用,直接阻礙了發(fā)育過程中外源激素的有效補(bǔ)充。沙田柚單性結(jié)實(shí)能力弱,較低的坐果率和未授粉果實(shí)中心柱中空時(shí)產(chǎn)生的內(nèi)裂流膠要求完全的授粉受精;馬家柚等酸柚類型品種無籽果易出現(xiàn)部分汁囊不發(fā)育或發(fā)育不均的現(xiàn)象,此外,無籽馬家柚個(gè)體差異大、產(chǎn)量低、果皮厚(可食率低)、風(fēng)味寡淡(低糖、降酸慢)等品質(zhì)問題尤為突出[1,13]。多年多點(diǎn)多組合的馬家柚授粉試驗(yàn)結(jié)果表明,通過配置合適的授粉父本可顯著改善包括馬家柚單果質(zhì)量、果皮厚度、可食率和風(fēng)味,是馬家柚提質(zhì)增產(chǎn)的有效技術(shù)措施[],本研究結(jié)果同樣表明,兩種半親和性授粉樹配置模式下不同范圍內(nèi)的自然傳粉主栽馬家柚果實(shí)品質(zhì)得到了顯著改善,為馬家柚標(biāo)準(zhǔn)化建園提供了數(shù)據(jù)支撐。授粉果實(shí)產(chǎn)生大量種籽以及食用便捷性的下降與無籽化育種目標(biāo)存在沖突,因此進(jìn)一步降低因授粉產(chǎn)生的種籽數(shù),生產(chǎn)少籽或癟籽果實(shí)是目前授粉技術(shù)推廣的難點(diǎn)?;ǚ勖芏戎苯佑绊懯诜酆蟮姆N籽形態(tài)數(shù)量和果實(shí)外觀品質(zhì),高花粉密度在體內(nèi)和體外兩種環(huán)境下均促進(jìn)了花粉管內(nèi)赤霉素1 GA3 和 GA4 含量的增加,而兩種生長活性GA的濃度與果實(shí)大小、中果皮細(xì)胞數(shù)量和花粉管生長速率呈正相關(guān)[2]。本研究同樣獲得了類似結(jié)論,隨著粗皮授粉樹與主栽馬家柚傳粉距離的增加,果實(shí)種籽數(shù)量不斷下降,而果皮厚度則不斷增加并逐漸接近無籽果實(shí)水平。這實(shí)際上是配子體間相互競爭的結(jié)果:當(dāng)柱頭上的親和性花粉數(shù)量遠(yuǎn)遠(yuǎn)超過全部胚珠受精所需數(shù)量時(shí),交配結(jié)果則表現(xiàn)為非隨機(jī)事件,即含有更高水平刺激生長類物質(zhì)(如赤霉素等)的高活力花粉往往作為旺盛的配子體并最終在競爭中優(yōu)先進(jìn)入子房完成受精[2,進(jìn)而影響果實(shí)性狀和發(fā)育水平。因此,研究不同花粉密度對果實(shí)綜合品質(zhì)的影響,找到種籽數(shù)量和品質(zhì)的“平衡點(diǎn)”,對指導(dǎo)生產(chǎn)中授粉品種選擇及合理配置授粉樹和主栽樹之間的數(shù)量關(guān)系具有實(shí)際指導(dǎo)意義。

        篩選利用優(yōu)良性狀的父本品種花粉與待改良品種授粉后生產(chǎn)出影響熟期、果形、風(fēng)味和色澤等的雜交當(dāng)代果實(shí)或種子是花粉直感的具體應(yīng)用,花粉直感效應(yīng)對提高籽??剐浴a(chǎn)量和果實(shí)品質(zhì)潛力巨大,在作物育種和品種改良中具有重大意義[32]。近年來研究人員發(fā)現(xiàn),一方面父本花粉與母本受精后形成種子,發(fā)育中的種子向維管系統(tǒng)輸送激素信號與周圍組織建立連接,協(xié)調(diào)果實(shí)內(nèi)部的早期分裂膨大和成熟轉(zhuǎn)變[33-35;另一方面,通過韌皮部/胞間連絲特異性地由種子轉(zhuǎn)移至果肉組織中的mRNA已被證實(shí)。筆者篩選鑒定半親和性的粗皮品系對主栽馬家柚進(jìn)行品質(zhì)改良已得到有效驗(yàn)證,未來將進(jìn)一步鑒定柚果實(shí)異源授粉中影響果實(shí)發(fā)育完整性和風(fēng)味品質(zhì)的移動mRNA,并加以改造生產(chǎn)出品質(zhì)優(yōu)異的高品質(zhì)柚果實(shí)。

        4結(jié)論

        通過 S 基因型鑒定和花柱苯胺藍(lán)染色實(shí)驗(yàn)證實(shí)了馬家柚粗皮和細(xì)皮品系間授粉的半親和特性,解析了生產(chǎn)中馬家柚果實(shí)有籽無籽的不穩(wěn)定現(xiàn)象。同時(shí),通過比較分析不同授粉樹配置模式下不同自然傳粉距離的主栽馬家柚品質(zhì)差異,為馬家柚品質(zhì)改良、生產(chǎn)少籽且風(fēng)味濃郁的高品質(zhì)商品果以及馬家柚標(biāo)準(zhǔn)化建園下的授粉樹配置方案提供數(shù)

        據(jù)支撐。

        參考文獻(xiàn)References:

        [1]郭文武,葉俊麗,鄧秀新.新中國果樹科學(xué)研究70年:柑橘[J]. 果樹學(xué)報(bào),2019,36(10):1264-1272. GUOWenwu,YE Junli,DENG Xiuxin.Fruit scientific research in new China in the past 70 years: Citrus[J]. Journal of Fruit Science,2019,36(10):1264-1272.

        [2] 高華清,韓蒙蒙,胡子君.上饒市‘廣豐馬家柚'發(fā)展現(xiàn)狀、問題 及對策[J].現(xiàn)代園藝,2019(1):40-41. GAO Huaqing,HAN Mengmeng,HU Zijun. Development status,problems and countermeasures of‘Guangfeng Majiayou’in Shangrao city[J]. Xiandai Horticulture,2019(1):40-41.

        [3] 林國衛(wèi),曾芷儀,袁昕,劉佳凝,木也賽爾·吐魯洪,吉莉莉.馬 家柚的研究進(jìn)展[J].上饒師范學(xué)院學(xué)報(bào),2024,44(3):67-75. LIN Guowei,ZENG Zhiyi,YUAN Xin,LIU Jianing,Muyesai·Turuhong,JI Lili.Research progress of Citrus maxima (L.) Osbeck‘Majiayou’[J]. Journal of Shangrao Normal University, 2024,44(3):67-75.

        [4] 楊莉,張涓涓,劉德春,劉山蓓,徐炳星,周施清,毛衛(wèi)平,劉勇. 馬家柚及其變異品系植物學(xué)特性觀察[J].中國果菜,2017,37 (1):28-30. YANGLi,ZHANGJuanjuan,LIUDechun,LIUShanbei,XU Bingxing,ZHOU Shiqing,MAO Weiping,LIU Yong.Observationon botany characteristics ofMajia pommole and its variety[J]. China Fruit Vegetable,2017,37(1):28-30.

        [5]LU Z H,HUANG Y,MAO SY,WU F F,LIU Y,MAO X Q, ADHIKARIPB,XUY T,WANGL,ZUO H,RAO MJ,XUQ. The high-quality genome of pummelo provides insights into the tissue-specific regulation of citric acid and anthocyanin during domestication[J].Horticulture Research,2022,9:uhac175.

        [6]JIANGQH,YE JL,ZHU KJ,WU F F,CHAI L J, XU Q, DENG X X. Transcriptome and co-expression network analyses provide insights into fruit shading that enhances carotenoid accumulation inpomelo (Citrus grandis)[J].Horticultural Plant Journal,2022,8(4):423-434.

        [7] 徐宸宇.馬家柚優(yōu)系遺傳鑒定及提高品質(zhì)技術(shù)研究[D].武漢: 華中農(nóng)業(yè)大學(xué),2021. XU Chenyu. Genetic identification of superiority and quality improvement technology research of Majia pomelo[D]. Wuhan: Huazhong Agricultural University,2021.

        [8]吳方方,徐強(qiáng).圖說廣豐馬家柚優(yōu)質(zhì)高效栽培技術(shù)[M].北京: 中國農(nóng)業(yè)出版社,2019. WUFangfang,XU Qiang.Picture shows high-quality and efficient cultivation techniques for Guangfeng Majia pomelo[M]. Beijing:China Agriculture Press,2019.

        [9] 徐強(qiáng),萬鵬飛,王淪,羅鑫,路志浩,蔣小林,方秋瑩,鄧秀新.一 組馬家柚InDel分子標(biāo)記及其在柑橘品種種苗早期區(qū)分粗皮 馬家柚中的應(yīng)用:CN108660246B[P].2021-01-22. XU Qiang,WAN Pengfei, WANG Lun,LUO Xin,LU Zhihao, JIANGXiaolin,F(xiàn)ANG Qiuying,DENGXiuxin.Ma pomelo InDel (insertion-deletion) molecular marker,and application of molecular marker in diferentiating rough bark Ma pomelo at early stage of citrus seed seedling:CN108660246B[P].2021-01-22.

        [10]徐宸宇,曹立新,唐啟正,吳巨勛,伊華林.馬家柚遺傳來源鑒 定與適宜授粉品種篩選[J].華中農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2022,41(2):124-135. XU Chenyu,CAO Lixin,TANG Qizheng,WU Juxun,YI Hualin.Identification of Majia pomelo germplasm and screening of varieties with suitable pollination[J]. Journal of Huazhong Agricultural University (Natural Science Edition),2022,41(2):124- 135.

        [11] 徐宸宇,唐啟正,劉慧宇,吳巨勛,伊華林.基于主成分分析綜 合評價(jià)6個(gè)雜交授粉組合的馬家柚果實(shí)品質(zhì)[J].果樹學(xué)報(bào), 2024,41(2):282-293. XU Chenyu,TANG Qizheng,LIU Huiyu,WU Juxun,YI Hualin.Comprehensive evaluation on fruit quality of six hybrid pollination combinations ofMajiayou based ontheprincipal component analysis[J]. Journal of Fruit Science,2024,41(2): 282- 293.

        [12]靳瑞霞.馬家柚不同授粉組合果實(shí)品質(zhì)研究[D].武漢:華中農(nóng) 業(yè)大學(xué),2013. JIN Ruixia. Study effect of different pollination combination on fruit quality of Majia pummelo[D]. Wuhan: Huazhong Agricultural University,2013.

        [13]毛桑隱,路志浩,張祥,葉俊麗,伊華林,柴利軍,鄧秀新,吳方 方,徐強(qiáng).花粉直感對馬家柚果實(shí)品質(zhì)的影響[J].果樹學(xué)報(bào), 2023,40(11):2391-2402. MAO Sangyin,LU Zhihao,ZHANG Xiang,YE Junli,YI Hualin,CHAI Lijun,DENG Xiuxin,WU Fangfang,XU Qiang. Effect of xenia on fruit quality ofMajiayou[J]. Journal ofFruit Science,2023,40(11):2391-2402.

        [14]楊海健.柑橘有性雜交創(chuàng)造新種質(zhì)及授粉對馬家柚和HB 柚 果實(shí)品質(zhì)的影響研究[D].武漢:華中農(nóng)業(yè)大學(xué),2012. YANG Haijian.The study of creating citrus new germplasm by sexual hybridization and the hybridization influence on the fruit quality of Majiayou and HB pomelo[D]. Wuhan: Huazhong Agricultural University,2012.

        [15]ZHAO H, ZHANG Y,ZHANG H, SONG Y Z,ZHAO F, ZHANG Y E,ZHU S H,ZHANG H K,ZHOU ZD,GUO H,LI M M,LI JH,GAO Q,HANQQ,HUANG HQ,COPSEY L, LI Q,CHEN H,COEN E,ZHANG Y J,XUE YB. Origin,loss , andregain of self-incompatibilityinangiosperms[J].TePlant Cell,2022,34(1):579-596.

        [16]梁梅.柑橘自交不親和相關(guān)基因鑒定及其演化[D].武漢:華中 農(nóng)業(yè)大學(xué),2019. LIANG Mei. Gene identification and evolution of self-incompatibilityof citrus[D]. Wuhan:Huazhong Agricultural University, 2019.

        [17]韋壯敏,魏斯佳,陳鵬,胡健兵,湯雨晴,葉俊麗,李先信,鄧秀 新,柴利軍.63份柚類資源 s 基因型鑒定[J].園藝學(xué)報(bào),2022, 49(5):1111-1120. WEI Zhuangmin,WEI Sijia,CHEN Peng,HU Jianbing,TANG Yuqing,YE Junli,LI Xianxin,DENG Xiuxin,CHAI Lijun. Identification of S- genotypes of 63 pummelo germplasm resources[J].Acta Horticulturae Sinica,2022,49(5):1111-1120.

        [18]LIANGM,CAO ZH,ZHUAD,LIUYL,TAO MQ,YANG H Y,XUQJr,WANG SH,LIUJJ,LIYP,CHENCW,XIE ZZ, DENGCL,YEJL,GUOWW,XUQ,XIAR,LARKINRM, DENG XX,BOSCH M,F(xiàn)RANKLIN- TONG V E,CHAI L J. Evolution of self-compatibilityby amutant Sm RNase in citrus[J]. Nature Plants,2020,6(2):131-142.

        [19]洪俊彥,黃仁,黃春穎,王建華,徐一帆,李佩佩,胡淵淵,黃堅(jiān) 欽,李巖.植物花粉直感的研究進(jìn)展及展望[J].植物生理學(xué) 報(bào),2020,56(2):151-162. HONG Junyan,HUANGRen,HUANGChunying,WANG Jianhua,XUYifan,LIPeipei,HUYuanyuan,HUANGJianqin,LI Yan.Research progressand prospects of xenia[J].Plant Physiology Journal,2020,56(2):151-162.

        [20]ZHANG C X,TATEISHI N,TANABE K.Pollen density on the stigma affects endogenous gibberellin metabolism,seed and fruit set,andfruitqualityinPyrus pyrifolia[J].Journal ofExperimental Botany,2010,61(15):4291-4302.

        [21]ZHANG L T. The sweetness of sugars[J]. Journal of South China University of Technology,2002,30(1):89-91.

        [22]劉勇.柚類資源分子系統(tǒng)學(xué)及其核心種質(zhì)構(gòu)建研究[D].武漢: 華中農(nóng)業(yè)大學(xué),2005. LIU Yong.Molecular phylogenetic analysis and core collection construction using SSR and AFLP markers in pummelo[D].Wuhan:Huazhong Agricultural University,2005.

        [23]曹立新.江西省廣豐縣柚資源調(diào)查與馬家柚起源分析[D].武 漢:華中農(nóng)業(yè)大學(xué),2012. CAOLixin. The investigation of pummelo germplasms and the origin analysis of Majiayou in Guangfeng Jiangxi province[D]. Wuhan:Huazhong Agricultural University,2012.

        [24]LIAO X,LIMS,LIUB,YAN ML,YUXM,ZIHL,LIURY, YAMAMURO C. Interlinked regulatory loops of ABA catabolism and biosynthesis coordinate fruit growth and ripening in woodland strawberry[J].Proceedings of the National Academy ofSciences of the United States of America,2018,115(49): E11542-E11550.

        [25]DE JONG M,WOLTERS-ARTS M,GARCIA-MARTINEZ JL, MARIANI C,VRIEZENWH. The Solanum lycopersicum auxin response factor 7 (SlARF7) mediates cross-talk between auxinand gibberellin signalling during tomato fruit setand development[J].Journal of Experimental Botany,2011,62(2):617-626..

        [26]KANGCY,DARWISHO,GERETZA,SHAHANR,ALKHAROUFN,LIU Z C. Genome-scale transcriptomic insights into early-stage fruitdevelopmentinwoodlandstrawberryFragaria vesca[J]. ThePlant Cell,2013,25(6):1960-1978.

        [27]CHENG ZH,SONGWY,ZHANG XL.Genic male and female sterility in vegetable crops[J].Horticulture Research, 2023,10(1):uhac232.

        [28]SHARIFR,SUL,CHENXH,QIXH.Hormonal interactions underlyingparthenocarpic fruit formationin horticultural crops[J]. HorticultureResearch,2022,9:uhab024.

        [29]GALIMBAKD,BULLOCKDG,DARDICKC,LIUZC, CALLAHANA M.Gibberellic acid induced parthenocarpic ‘Honeycrisp’apples (Malus domestica) exhibit reduced ovary widthand loweracidity[J].Horticulture Research,2019,6:41.

        [30]KLAPC,YESHAYAHOUE,BOLGERAM,ARAZIT,GUPTASK,SHABTAIS,USADELB,SALTSY,BARGR.Tomato facultative parthenocarpy results from SlAGAMOUS-LIKE 6 loss of function[J].Plant Biotechnology Journal,2017,15(5): 634-647.

        [31]LIJ,WUZ,CUIL,ZHANGTL,GUOQW,XUJ,JIAL, LOUQF,HUANG SW,LIZG,CHENJF.Transcriptome comparison of global distinctive features between pollination andparthenocarpic fruit set reveals transcriptional phytohormone cross-talk in cucumber(CucumissativusL.)[J].Plantamp; Cell Physiology,2014,55(7):1325-1342.

        [32]MCATEEP,KARIMS,SCHAFFERR,DAVIDK.Adynamic interplaybetweenphytohormonesisrequired forfruit development,maturation,and ripening[J].Frontiers in Plant Science, 2013,4:79.

        [33]MARTIN-ORTIGOSAS,PETERSONDJ,VALENSTEINJS, LINVSY,TREWYNBG,LYZNIKLA,WANGK.Mesoporoussilicananoparticle-mediated intracellularcreprotein deliveryformaize genome editingvia loxP site excision[J].Plant Physiology,2014,164(2):537-547.

        [34]WANG ZP,ZHANGZB,ZHENGDY,ZHANGTT,LIXL, ZHANGC,YUR,WEIJH,WUZY.Efficient and genotype independent maize transformation using pollen transfected by DNA-coated magnetic nanoparticles[J]. Journal of Integrative PlantBiology,2022,64(6):1145-1156.

        [35]PARKCW,CHOIJY,SONYJ,KIMDH,LIHJ,LIANGW Q,LEECH,JUNGKH,KIMYJ.Magnetofected pollen gene delivery system could generate genetically modified Cucumis sativus[J].HorticultureResearch,2024,11(8):uhae179.

        [36]WANGT,ZHENGY,XUC,DENGYL,HAOXY,CHU Z C,TIANJ,WANGY,ZHANGXZ,HANZH,WUT.MovementofACCoxidase3mRNA fromseedstofleshpromotes fruit ripening in apple[J].Molecular Plant,2024,17(8): 1221- 1235.

        91精品全国免费观看青青| 精品国产一区二区三区av性色| 五十路丰满中年熟女中出| 91久久久久无码精品露脸| av二区三区在线观看| 亚洲伦理第一页中文字幕| 私人毛片免费高清影视院| 欧美成人激情在线| 人妻少妇精品视频中文字幕国语| 91视色国内揄拍国内精品人妻| 亚洲av日韩综合一区二区三区| 乱子真实露脸刺激对白| 色人阁第四色视频合集网| 国产一区白浆在线观看| 在线成人爽a毛片免费软件| 91日韩高清在线观看播放| 在线视频一区二区观看| 日本二一三区免费在线| 日产无人区一线二线三线乱码蘑菇| 二区在线视频| 亚洲一区二区三区高清视频| 欧美成人家庭影院| 中文字幕亚洲情99在线| 久久99久久99精品免观看不卡| 天堂一区二区三区精品| 99久久免费只有精品国产| 日产精品久久久久久久| 网红极品女神精品视频在线| 一区二区三区人妻av| 亚洲毛片αv无线播放一区| av无码av在线a∨天堂app| 麻豆国产精品伦理视频| 无码中文字幕日韩专区| 女人被做到高潮免费视频| 久久精品中文字幕亚洲| 日本人妻免费在线播放| 亚洲丁香五月天缴情综合| 2020亚洲国产| 久久综合精品国产丝袜长腿| 女人被弄到高潮的免费视频| 精品少妇大屁股白浆无码|