亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        嫁接嵌合體紅肉胡柚實(shí)生后代四倍體 發(fā)掘與形態(tài)特征評價(jià)

        2025-06-26 00:00:00姜楠王剛張小琴陳翔張敏張遲
        果樹學(xué)報(bào) 2025年5期

        中圖分類號:S666.3 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-9980(2025)05-0969-10

        Abstract: 【Objective】 Plant organs are composed of multiple celltypes,and organs of dicotyledonous plants normally have three distinct layers ofcels,L1,L2 and L3.LayerL1 is the single layerof cells makingup the epidermis,and layer L2 is the single cell for sub-epidermal layer,and layer L3 constitutes the rest of the internal cells.Chimera refers to an organism made of the cell layers with different genotypes,and chimeric plants in citrus were often produced through grafting.Polyembryony hampers the efficiency ofsexual hybridization in citrus,and seedlings from citrus chimera canadditionally exhibit characteristics closer to the features of the donor of cell layer contributed to the gamete origination.

        Hongrou Huyou (Citrus unshiu + C.aurantium) is a periclinal chimera consisting ofL1 cell layer denoted by C. unshiu and L2/L3 cell layers derived from Changshan Huyou (C.aurantium). Tetraploids are important for rootstock application in citrus production,and for enhanced tolerance or resistance to biotic stress and abiotic stress,and for seedless triploid varieties breeding.Autotetraploid sedlings have been reported in some citrus species with a variable frequency of occurrence. However,tetraploid seedlings generated from chimera are rarely reported in citrus.In this study,one tetraploid seedling of Hongrou Huyou was identified from a population of seedlings transplanted successfully. The ploidy level and genetic origin of the tetraploid seedling were analyzed,and the morphological characteristics of the tetraploid sedling were explored using the diploid seedlings as control, suggesting an application of seedlings of peripheral chimera in citrus.【Methods】In this experiment, the embryo number per seed of Hongrou Huyou was check and identified based on the investigation of one hundred seeds selected randomly.Flow cytometry (FCM) was used to determine the ploidy level of the seedlings of Hongrou Huyou using a diploid species Hongrou Huyou as control. Folowing DNA extraction, the genetic identification of the seedlings was analyzed using 28 pairs of Simple Sequence Repeat (SSR) primers distributed in 9 chromosomes ofcitrus species.Morphological differences including leaf length,leaf width, internodal distance,leaf thickness,and leaf shape index were compared between the tetraploid seedling and the diploid sedling of Hongrou Huyou.The semi thin sections were used to observe the anatomical structure of leaves, and the thicknesses of the upper epidermis,lower epidermis,palisade tissue, and sponge tissue were compared between the tetraploid seedling and the diploid sedling under an optical microscope.The density of lipid granules and starch granules in the chloroplast were compared between the tetraploid and the diploid seedlings based on the ultramicrotomic observation under a transmission electron microscope (TEM). The stomatal density and the size of stoma and guard cels in the leaves were also observed under a scanning electron microscope (SEM). The contents of chlorophylls were measured with spectrophotometry.【Results】The results indicated that Hongrou Huyou is a polyembryonic species. The proportion of monoembryos was 42% ,and polyembryos 58% . FCM identified one tetraploid seedling of Hongrou Huyou among the 12O seedlings transplanted successfully. The results of SSR molecular markers amplified with 28 pairs of primers showed that the tetraploid seedling had identical genotype to C .aurantium, which was the Layer 2 (L2) cell donor of Hongrou Huyou. Morphological comparison showed that the leaf length,the internodal distance,and the leaf shape index were significantly decreased in the tetraploid seedling compared with the diploid seedling. Semi thin sections showed that the leaf thickness,the thicknesses of the upper and lower epidermis,palisade tissue, and sponge tissue were significantly greater in the tetraploid seedling.The SEM analysis showed that the tetraploid sedling had a significantly reduced in the stomatal density and an enlarged size of guard cells compared with the diploid seedling.The TEM observation showed that the density of lipid globules increased but the density of starch granules decreased in the chloroplasts of the tetraploid seedling compared to the diploid seedling. The chlorophyll and carotenoid contents were significantly increased in the tetraploid seedling.【Conclusion】In this study,one tetraploid seedling was identified from 120 seedlings of periclinal chimera Hongrou Huyou. SSR ploymorphism analysis showed that the tetraploid seedling was identical to C aurantium,the L2 donor to Hongrou Huyou. The tetraploid seedling displayed the typical morphological and anatomical characteristics in leaf shape and thickness, stomatal density and size,and chlorophylland carotenoid content of polyploid plants.This work provides a novel tetraploid germplasm for the application of triploid breeding in citrus in the future.

        Keywords:Hongrou Huyou;Periclinal graft chimera; Tetraploid; SSR

        柑橘是蕓香科柑橘屬的重要經(jīng)濟(jì)果樹,中國柑橘產(chǎn)量居全球首位。在果樹生產(chǎn)中,通常利用嫁接繁殖具有優(yōu)良性狀的果樹品種。偶然情況下,嫁接口的砧木細(xì)胞和接穗細(xì)胞會共同發(fā)育成不定芽并生長為一個新的枝條,形成嫁接嵌合體[2]。Schmidt3]“原套原體”學(xué)說提出植物莖尖分生組織由原套和原體兩部分組成,由外向內(nèi),分別為L1層、L2層、L3層。通常,L1層發(fā)育成表皮細(xì)胞,L2層發(fā)育成生殖細(xì)胞,L3層形成器官內(nèi)部組織[2]。當(dāng)某個細(xì)胞層或三層細(xì)胞的一個扇區(qū)發(fā)生突變,就形成植物嵌合體4。

        人工合成的周緣嵌合體,在植物組織發(fā)生規(guī)律研究中具有重要作用。Chen等[5通過離體嫁接培養(yǎng)獲得了榨菜(Brassicajuncea)和紫甘藍(lán)(Brassicaol-eracea)種間嵌合體,研究表明該嵌合體含有兩個嫁接供體的染色體,且具有兩個供體的寶貴性狀。Zhang等在溫州蜜柑(Citrusunshiu)作為中間砧高接羅伯遜臍橙(C.sinensis)的樹上發(fā)現(xiàn)了嫁接嵌合體早紅臍橙,其果實(shí)汁胞主要來源于L1供體溫州蜜柑,而果皮、果形和葉片香氣等性狀來源于L2供體羅伯遜臍橙。Zhang等在湖北省秭歸縣的一個果園進(jìn)行芽變調(diào)查時發(fā)現(xiàn)嫁接嵌合體紅肉桃葉橙(C.si-nensis+C.unshiu),研究發(fā)現(xiàn)其果肉性狀主要來源于L1層,花粉、種子和果皮香氣特征來源于L2/L3層。Yasuda等對Meiwa金柑的突變體Yubeni進(jìn)行流式細(xì)胞術(shù)分析,發(fā)現(xiàn)Yubeni是一個由二倍體和四倍體細(xì)胞構(gòu)成的周緣嵌合體,其L1層細(xì)胞為二倍體,L2和L3層為四倍體。Nukaya等發(fā)現(xiàn)Meiwa金柑周緣嵌合體葉片、花瓣、花絲、花柱、子房、果皮著色層是二四混倍體,表明這些部分由L1和L2/L3共同構(gòu)成;而葉中脈、種子和果實(shí)白皮層均是純合四倍體,表明這些組織只來源于L2/L3。

        由于存在組織異質(zhì)性,周緣嵌合體的配子或珠心胚由莖尖分生組織中的哪一層細(xì)胞發(fā)育而來,對其實(shí)生后代表型有著決定性作用4。Schmulling等[]研究表明在煙草嵌合體中,L2產(chǎn)生雄性和雌性配子。Zonneveld等[利用流式細(xì)胞術(shù)對玉簪(Hos-taTratt.)嵌合體12個組織和器官進(jìn)行起源分析,發(fā)現(xiàn) 95% 的配子來源于L2層,表明L2細(xì)胞層是配子形成的主要細(xì)胞層。柑橘類植物還具有多胚現(xiàn)象[2,多胚柑橘實(shí)生后代往往由珠心細(xì)胞發(fā)育而來并表現(xiàn)出母本的性狀。因此,柑橘周緣嵌合體實(shí)生后代表型特征還需要考慮配子或珠心胚來源于哪個供體[13]。

        柑橘四倍體有著重要的育種價(jià)值[14]。與二倍體砧木相比,柑橘四倍體砧木對鹽脅迫[15-1d]、重金屬毒害[17-18]、干旱脅迫[19]以及低溫脅迫[20]等非生物脅迫的耐受力更強(qiáng)2]。柑橘四倍體往往表現(xiàn)出大果、少核的表型特征[22-23],比如,金柑四倍體具有少核、厚果皮、含糖量高等特點(diǎn),具有良好的市場潛力[。最重要的是,柑橘四倍體可以作為倍性雜交親本創(chuàng)制多倍體砧木和三倍體接穗品種[24。研究表明,利用多胚柑橘品種珠心細(xì)胞存在自然加倍的特點(diǎn),通過實(shí)生播種已從多個柑橘品種發(fā)掘出四倍體種質(zhì)[1。但四倍體發(fā)生頻率在品種間存在差異,且同一品種的發(fā)生頻率因生長環(huán)境不同而存在顯著差異[25]。在高緯度、高海拔、低溫條件下,柑橘四倍體發(fā)生頻率顯著提高[25]。目前,通過實(shí)生播種結(jié)合倍性分析,已報(bào)道很多四倍體柑橘種質(zhì)。謝善鵬等2通過實(shí)生播種在常山胡柚、溫嶺高橙、新會橙、橘血橙雜種、衢州香橙和酸橙中獲得四倍體;周銳等[通過實(shí)生播種在紅江橙、貢柑、年橘、新會柑、滑皮金柑中獲得四倍體;Ren等[4通過秋水仙素原位活體誘導(dǎo)在秋輝橘、黃陵廟蜜橘、琥珀甜橙和HB柚等單胚性品種中獲得四倍體;Aleza等2利用秋水仙素誘導(dǎo)結(jié)合莖尖微嫁接在克里曼丁橘中獲得四倍體。但柑橘周緣嵌合體實(shí)生多倍體后代發(fā)掘鮮有報(bào)道。

        紅肉胡柚(C.unshiu+C.aurantium,“OCC\")是筆者課題組前期報(bào)道的周緣嵌合體,經(jīng)SSR(simplesequencerepeat)分子標(biāo)記證明紅肉胡柚葉片中含有兩個供體的細(xì)胞核、葉綠體和線粒體基因組,表明紅肉胡柚是常山胡柚(C.aurantium,“C\")和溫州蜜柑(C.unshiu,“O\")嫁接形成的周緣嵌合體,其L1層來源于溫州蜜柑,L2/L3層細(xì)胞來源于常山胡柚,其果肉顏色、質(zhì)地和風(fēng)味與溫州蜜柑相似,果實(shí)大小、種子數(shù)量、果皮著色層和白皮層等性狀與常山胡柚相似[2,28]。配子通常由L2層細(xì)胞發(fā)育而來,但仍有研究發(fā)現(xiàn)某些周緣嵌合體實(shí)生后代在形態(tài)學(xué)上表現(xiàn)出異于L2供體的特征,并在表觀遺傳等方面受到L1供體的影響,因此,挖掘周緣嵌合體的四倍體實(shí)生后代,有可能獲得具備L1供體性狀特征的新種質(zhì)。Yu等[4在研究榨菜(Brassicajuncea)(L1供體)和紫甘藍(lán)(Brassicaoleracea)(L2供體)合成的嵌合體時發(fā)現(xiàn),其實(shí)生后代表現(xiàn)出葉色更綠、蠟質(zhì)顯著減少等區(qū)別于L2供體的表型特征,同時伴隨著siRNA和基因組甲基化改變。Marcotrigiano等[2]在研究6組普通煙草(Nicotianatabacum)和光煙草(Nicotia-naglauca)的周緣嵌合體時也發(fā)現(xiàn),部分實(shí)生后代表現(xiàn)出與L1供體表型一致的情況。目前,柑橘周緣嵌合體實(shí)生后代研究和多倍體發(fā)掘鮮有報(bào)道。因此,筆者在本研究中以柑橘周緣嵌合體紅肉胡柚四倍體實(shí)生后代為材料,通過SSR分子標(biāo)記分析其遺傳規(guī)律,對實(shí)生后代四倍體單株的性狀進(jìn)行評價(jià),為柑橘周緣嵌合體實(shí)生后代用于育種奠定基礎(chǔ)。

        1 材料和方法

        1.1 試驗(yàn)材料

        2022年10月,在浙江農(nóng)林大學(xué)實(shí)驗(yàn)基地,采集紅肉胡柚花后6個月的果實(shí),剝出種子后在 1mol?L-1 NaOH溶液中搖晃浸泡 5min ,洗凈種子后,使用0.2mol?L-1 次氯酸鈉溶液對種子進(jìn)行消毒,將處理好的種子用MT(Murashge-Tucker)培養(yǎng)基 (4.43g) MT+30g 蔗糖 +7g 瓊脂粉)進(jìn)行無菌接種。待種子萌發(fā)并長至 8cm 株高時,將小苗移栽入 V 是 3 : 1 0 }$ : 的栽培土壤。

        1.2種子單多胚鑒定

        收獲紅肉胡柚成熟果實(shí),剝出種子后隨機(jī)挑選100粒種子,參考張斯淇3的方法統(tǒng)計(jì)每粒種子胚數(shù)

        并在體視顯微鏡下觀察和拍照。

        1.3 倍性鑒定

        以成年態(tài)二倍體紅肉胡柚葉片為對照,剪取實(shí)生后代植株 0.5cm2 嫩葉,參照解凱東等[]的方法進(jìn)行樣品制備,并采用流式細(xì)胞儀(Cy-Flow PloidyAnalyser,Sysmex,Germany)檢測植株倍性。

        1.4SSR分子標(biāo)記鑒定四倍體實(shí)生后代

        采用SimgenPlantDNAKit試劑盒,提取紅肉胡柚及其實(shí)生后代、嫁接供體溫州蜜柑和常山胡柚的葉片DNA。SSR分子標(biāo)記的反應(yīng)體系為 10μL :無菌水 2μL ,正反向引物各 1μL ,DNA模版 Accurate TaqMasterMix 。使用 T100rm Ther-malCyclerPCR儀(Biorad,America)進(jìn)行PCR擴(kuò)增,PCR擴(kuò)增程序?yàn)椋?95°C 預(yù)變性 3min,95°C 變性15s,61°C 退火 延伸 30s,35 個循環(huán)后72°C 延伸 5min,4°C 保存。擴(kuò)增產(chǎn)物用 12% PAGE膠先于 90V?400mA 電壓下電泳 30min ,再于 200V 1400mA 電壓下電泳 90min ,后進(jìn)行銀染 7min ,顯影5min ,結(jié)束后拍照觀察。利用分布于柑橘9條染色體的28對SSR引物分析紅肉胡柚實(shí)生四倍體后代的遺傳組成,SSR引物序列源自相關(guān)參考文獻(xiàn),由杭州有康生物技術(shù)有限公司合成。表1列出了其中3對引物的序列。

        表1部分SSR引物序列Table1 PartialSSRprimerssequences

        1.5葉片形態(tài)學(xué)觀察

        以紅肉胡柚二倍體實(shí)生后代植株作為對照,測定同一生長發(fā)育時期的四倍體植株形態(tài)指標(biāo),包括葉長、葉寬、節(jié)間距、葉片厚度。節(jié)間距用直尺測量,葉長、葉寬、葉片厚度用游標(biāo)卡尺測量,取平均值。

        1.6葉片透射電鏡樣品制備與觀察

        取紅肉胡柚實(shí)生四倍體和二倍體后代植株的葉片,在葉中脈附近剪取 0.5cm2 的正方形,樣品放置于 2.5% 戊二醛溶液中固定,使用真空泵抽除樣品中的空氣, 4°C 條件下固定 24h 。采用Chen等的方法,對樣品進(jìn)行固定、脫水、滲透、包埋,將處理好的部分樣品在LKB11800PYRAMITOME型半薄切片機(jī)中進(jìn)行切片,獲得厚度為 2μm 的半薄切片,使用次甲基藍(lán)對切片進(jìn)行染色,染色完成后在光學(xué)顯微鏡下觀察切片并拍照。其余樣品通過半薄切片觀察定位,使用LEICAEMUC7型超薄切片機(jī)切片,得到厚度為 70~90nm 的超薄切片,經(jīng)過檸檬酸鉛溶液、醋酸雙氧鈾 50% 乙醇飽和溶液分別染色 5min 后,在HitachiH-7650型透射電鏡中觀察。

        1.7葉片掃描電鏡樣品制備與觀察

        取紅肉胡柚實(shí)生四倍體和二倍體后代植株的葉片,雙面刀片將葉片切成 1.0cm2 的正方形,采用Chen等5的方法處理和制備樣品,樣品經(jīng)過干燥和鍍膜后,在HitachiSU-8010型掃描電鏡中觀察并拍照。

        1.9 數(shù)據(jù)分析

        1.8葉片葉綠素和總類胡蘿卜素含量測定

        稱取剪碎的紅肉胡柚實(shí)生四倍體和二倍體后代植株的新鮮葉片各 0.1g ,置于棕色試管,在每個試管中加入 5mL95% 乙醇,置于暗處 24h ,將提取液倒入光徑 1cm 的比色杯內(nèi),以 95% 乙醇作為對照,使用分光光度計(jì)在波長 665,649,470nm 下測定吸光度。試驗(yàn)設(shè)置3個生物學(xué)重復(fù)。參照張澤群[34的方法計(jì)算紅肉胡柚實(shí)生四倍體和二倍體后代植株葉片的葉綠素和總類胡蘿卜素含量。

        使用ImageJ2.14.0版本軟件進(jìn)行葉片解剖結(jié)構(gòu)和氣孔特征參數(shù)測量。試驗(yàn)數(shù)據(jù)均采用IBMSPSS25.0中的獨(dú)立樣本T檢驗(yàn)進(jìn)行統(tǒng)計(jì)分析。采用Ex-cel2010和PhotoshopCS6軟件制圖。

        2 結(jié)果與分析

        2.1紅肉胡柚種子單多胚鑒定

        拍攝紅肉胡柚及其兩個供體的果實(shí)(圖1-A),隨機(jī)挑選100粒紅肉胡柚種子統(tǒng)計(jì)胚數(shù)。結(jié)果顯

        A.溫州蜜柑(O,左),紅肉胡柚(OCC,中),常山胡柚(C,右)的果實(shí)橫切面;B.紅肉胡柚單胚型種子;C.紅肉胡柚多胚型種子;D.紅肉胡柚單胚種子的再生植株;E.紅肉胡柚多胚種子的再生植株;F.紅肉胡柚二倍體和四倍體后代植株;G.紅肉胡柚二倍體和四倍體后代葉片;H.紅肉胡柚實(shí)生后代植株倍性檢測;白色箭頭所指為胚。

        圖1紅肉胡柚果實(shí)形態(tài)、種子表型及植株、實(shí)生后代植株倍性檢測及葉片形態(tài)

        2.2紅肉胡柚后代植株倍性鑒定

        移栽成活的120株紅肉胡柚實(shí)生后代單株,參照解凱東等3的方法,以成年態(tài)紅肉胡柚二倍體葉片作為對照,采用流式細(xì)胞儀對其進(jìn)行倍性鑒定。結(jié)果表明,120株實(shí)生后代中,二倍體119株,四倍體1株。圖1-H顯示成年態(tài)紅肉胡柚二倍體與四倍體后代葉片等比例混合進(jìn)樣,四倍體后代的熒光強(qiáng)度對應(yīng)的橫坐標(biāo)數(shù)值為二倍體的兩倍。

        2.3紅肉胡柚實(shí)生四倍體后代SSR分子標(biāo)記鑒定

        利用分布于柑橘9條染色體的28對SSR引物分析紅肉胡柚實(shí)生四倍體后代的遺傳組成,表明四倍體單株與紅肉胡柚L2供體常山胡柚帶型一致,即紅肉胡柚四倍體后代具有常山胡柚雙二倍體的帶型特征。圖2顯示其中3對引物的擴(kuò)增圖譜。

        2.4實(shí)生四倍體和二倍體后代葉片形態(tài)比較

        觀察結(jié)果表明,四倍體葉片相較于二倍體更寬、更厚(圖1-F、G)。紅肉胡柚四倍體植株的葉寬和葉厚顯著大于二倍體,葉長、節(jié)間距和葉形指數(shù)顯著小于二倍體(表2)。

        1.DNAMarker;2.常山胡柚;3.紅肉胡柚;4.溫州蜜柑;5.紅肉胡柚四倍體后代。

        圖2部分實(shí)生后代四倍體植株SSR分子鑒定Fig.2SSRanalysisofthetetraploidplantinpartialanditsdonorplants
        表2紅肉胡柚二倍體與四倍體后代葉片形態(tài)比較Table 2 Comparison of leaf morphologybetween diploidand tetraploid offsprings of Hongrou Huyou
        注:不同小寫字母表示差異顯著 (plt;0.05 。下同。 Note:Different smallletters indicate significant differences at plt;0.05 level. The same below.

        2.5實(shí)生四倍體和二倍體后代葉片解剖學(xué)觀察

        紅肉胡柚二倍體和四倍體后代葉片的半薄切片顯示,四倍體薄壁細(xì)胞面積大于二倍體,且四倍體上表皮、下表皮、柵欄組織、海綿組織的厚度顯著大于二倍體,分別增加了 47.1%,34.2%,77.0% 和 64.6% (圖3-A\~D,表3)。紅肉胡柚二倍體和四倍體后代葉片的超薄切片顯示,四倍體葉片的細(xì)胞增大,胞內(nèi)脂肪球數(shù)量顯著高于二倍體,平均密度為40.0個 100μm-2 ;淀粉粒數(shù)量較二倍體顯著減少,平均密度為8.67個 100μm-2 (圖 3-E~H ,表3)。

        2.6實(shí)生四倍體和二倍體后代葉片氣孔形態(tài)學(xué)觀察

        在掃描電鏡下觀察紅肉胡柚實(shí)生二倍體與四倍體后代葉片的氣孔,結(jié)果表明,二倍體和四倍體葉片下表皮的氣孔形狀大多數(shù)為橢圓形。四倍體的氣孔和保衛(wèi)細(xì)胞均顯著大于二倍體,四倍體氣孔的平均長度為 6.76μm ,平均寬度為 4.34μm ,四倍體保衛(wèi)細(xì)胞的平均長度為 25.07μm ,平均寬度為 18.64μm 0四倍體氣孔的平均密度為269.80個 ?mm-2 ,相較于二

        A、C.二倍體后代植株葉片橫截面解剖結(jié)構(gòu);B、D.四倍體后代植株葉片橫截面解剖結(jié)構(gòu);E、G.二倍體后代植株葉片透射電鏡結(jié)構(gòu);F、H.四倍體后代植株葉片透射電鏡結(jié)構(gòu);I、K.二倍體后代植株葉片氣孔表型;J、L.四倍體后代植株葉片氣孔表型;UE.上表皮;LE.下表皮;ST.海綿組織;PT.柵欄組織;Ph.韌皮部;X.木質(zhì)部;Pa.薄壁細(xì)胞;CH.葉綠體;SG.淀粉粒;FA.脂肪球。

        圖3紅肉胡柚二倍體與四倍體后代植株葉片解剖結(jié)構(gòu)、透射電鏡結(jié)構(gòu)、葉片氣孔表型比較

        2.7實(shí)生四倍體和二倍體后代光合色素含量比較

        表明,紅肉胡柚四倍體葉片中的葉綠素含量和總類胡蘿卜素含量均顯著高于紅肉胡柚二倍體。四倍體葉片中的葉綠素a含量 ,后同)為 1.75mg?g-1 ,葉綠

        對葉片葉綠素和類胡蘿卜素含量進(jìn)行測定,結(jié)果

        表4紅肉胡柚二倍體與四倍體后代植株葉片氣孔表型比較Table4Comparisonofstomatalphenotypes inleaves between diploid and tetraploid offsprings of Hongrou Huyou

        素b含量為 0.75mg?g-1 ,葉綠素總含量為 2.49mg?g-1 總類胡蘿卜素含量為 0.34mg?g-1 ,相較于二倍體分別高 17.4%?23.0%?19.1%?6.3% (表5)。四倍體植株的葉色相較于二倍體植株更濃綠。

        表5紅肉胡柚二倍體與四倍體后代植株葉綠素和類胡蘿卜素含量比較Table 5Comparisonof chlorophyllandcarotenoidcontents indiploidand tetraploid progenyplantsofHongrouHuyou (mg:g

        3討論

        研究周緣嵌合體實(shí)生后代的遺傳規(guī)律,對嵌合體后代的應(yīng)用具有重要意義。在雙子葉植物中,配子通常由莖尖分生組織L2層細(xì)胞發(fā)育而來[29]。徐遠(yuǎn)濤[3利用開發(fā)的InDe1標(biāo)記,對紅肉桃葉橙嵌合體實(shí)生后代遺傳組成進(jìn)行研究,結(jié)果表明紅肉桃葉橙外種皮、子葉、胚以及實(shí)生苗的遺傳組成與L2供體桃葉橙一致。Goffreda等[5]在研究野生番茄(Lycop-ersiconpennelli)和栽培番茄品種(Lycopersicones-culentum)種間嵌合體時,通過細(xì)胞層標(biāo)記基因和顏色標(biāo)記分析嵌合體自交后代,發(fā)現(xiàn)后代植株只有一種基因型,且與L2供體基因型一致。筆者在本研究中利用位于柑橘9條染色體的28對SSR引物對紅肉胡柚實(shí)生四倍體后代進(jìn)行分子標(biāo)記鑒定,結(jié)果顯示四倍體單株與紅肉胡柚L2供體常山胡柚帶型一致,與徐遠(yuǎn)濤[13的研究結(jié)果是一致的。

        柑橘實(shí)生四倍體發(fā)生途徑主要有珠心細(xì)胞自然加倍產(chǎn)生同源四倍體,或通過染色體未減數(shù) 2n 雌配子與 2n 花粉自然授粉產(chǎn)生異源/同源四倍體,以及合子自然加倍產(chǎn)生四倍體3。紅肉胡柚及其嫁接供體品種均為二倍體,生長栽培環(huán)境附近不存在多倍體柑橘品種,紅肉胡柚是單多胚并存的柑橘品種,其實(shí)生子代可能存在雜交子代和珠心苗兩種情況。因此,筆者在本研究中獲得的1株四倍體后代植株可能是通過自身未減數(shù)的 2n 花粉與 2n 雌配子自交途徑形成的,也可能由紅肉胡柚珠心細(xì)胞自然加倍而成。然而,曹麗雯[在研究榨菜(Brassicajuncea)和紫甘藍(lán)(Brassicaoleracea)合成的周緣嵌合體時,發(fā)現(xiàn)與L2層供體榨菜相比,部分自交后代植株葉形發(fā)生變異,表現(xiàn)出趨向于L1供體紫甘藍(lán)的葉形特征,而且自交后代植株在siRNA數(shù)量和表達(dá)量以及CHH甲基化等表觀遺傳方面發(fā)生顯著改變,體現(xiàn)出周緣嵌合體層間細(xì)胞互作。雖然分子標(biāo)記分析表明筆者在本研究中發(fā)掘的四倍體單株只具備L2供體常山胡柚的SSR帶型特征,但L1供體溫州蜜柑對紅肉胡柚實(shí)生四倍體后代是否存在表觀遺傳等方面的影響,還需要進(jìn)一步研究。

        植物四倍體較二倍體會有明顯的形態(tài)差異,通常表現(xiàn)為葉片變寬、變厚及葉形指數(shù)變小,同時抗逆性更強(qiáng)。在本研究中,紅肉胡柚四倍體的葉寬及上下表皮、柵欄組織和海綿組織厚度較二倍體顯著增大,四倍體葉片葉綠素含量和類胡蘿卜素含量顯著高于二倍體,且四倍體脂肪球數(shù)量豐富,淀粉粒數(shù)量較二倍體顯著降低,這些特點(diǎn)有利于凈光合速率、電子傳遞量子效率和光化學(xué)猝滅系數(shù)的提高,有助于葉片進(jìn)行光合作用[22]。在本研究中,四倍體氣孔密度顯著減小,氣孔和保衛(wèi)細(xì)胞大小較二倍體顯著增大;Ren等[14對秋水仙素誘導(dǎo)獲得的秋輝橘、黃陵廟蜜橘、琥珀甜橙、HB柚四倍體與其二倍體進(jìn)行形態(tài)差異比較,表明氣孔密度隨著植物倍性增加而顯著減小。

        4結(jié)論

        筆者在本研究中從柑橘周緣嵌合體紅肉胡柚實(shí)生后代中發(fā)掘到1株四倍體,分子標(biāo)記鑒定其遺傳組成與紅肉胡柚L2供體常山胡柚一致。對該四倍體單株進(jìn)行了形態(tài)學(xué)、解剖學(xué)、色素含量等的評價(jià),為未來培育三倍體無核新品種提供了四倍體新種質(zhì)。

        參考文獻(xiàn)References:

        [1] 梁武軍,解凱東,謝宗周,徐強(qiáng),伊華林,郭文武.三倍體葡萄柚 實(shí)生后代多倍體的發(fā)掘與SSR遺傳鑒定[J].果樹學(xué)報(bào),2015, 32(1):13-18. LIANG Wujun,XIEKaidong,XIE Zongzhou,XUQiang,YI Hualin,GUO Wenwu.Exploitation of polyploids from open-pollinated triploid grapefruit progeniesand theirgenetic identifica

        tion by SSR molecular markers[J].Journal of Fruit Science, 2015,32(1):13-18.

        [2] ZHANGM,ZHANGZQ,WUQ,KEFZ,XUJG,ZHAO S Q,WANG G,ZHANG C. Chimerism evaluation of‘Hongrou Huyou’,a grafted chimera between Citrus changshan- huyou and Citrus unshiu[J]. Horticultural Science and Technology, 2020,38(1):107-117.

        [3]SCHMIDT A.Histologische studien an phanerogamen vegetations-punkten[J]. Bot Arch,1924(8):345-404.

        [4] YUNN,CAOLW,YUANL,ZHIX,CHENYQ,GANSS, CHENL P.Maintenance of grafting-induced epigenetic variations in the asexual progeny of Brassica oleracea and B. juncea chimera[J]. The Plant Journal,2018,96(1):22-38.

        [5] CHENLP,GEYM,ZHU XY.Artificial synthesis of interspecific chimeras between tuber mustard (Brassica juncea) and cabbage (Brassica oleracea) and cytological analysis[J].Plant Cell Reports,2006,25(9):907-913.

        [6] ZHANGM,DENGXX,QINCP,CHENCL,ZHANGHY, LIUQ,HUZY,GUOLL,SONGWH,TANY,LIAOSC. Characterization of a new natural periclinal navel-satsuma chimeraof citrus:‘Zaohong’navel orange[J]. Journal of the AmericanSociety forHorticulturalScience,2007,132(3):374-380.

        [7] ZHANG M,XIE Z Z,DENG X X,LIAO SC,SONGWH, TAN Y. Characteristics of‘Hongrou Taoye’,a grafted chimera in sweet orange and satsuma mandarin[J]. Horticultural Science and Technology,2015,33(3):390-395.

        [8] YASUDA K,KUNITAKE H,NAKAGAWA S,KUROGI H,YAHATAM,HIRATAR,YOSHIKURAY,KAWAKAMII,SUGIMOTO Y. The confirmation of ploidy periclinal Chimera and its morphological characteristics in meiwa kumquat ‘Yubeni’[J]. Horticultural Research (Japan),2008,7(2):165-171.

        [9] NUKAYA T,SUDO M, YAHATA M,OHTA T,TOMINAGA A, MUKAI H,YASUDA K,KUNITAKE H. The confirmationof a ploidy periclinal chimera of the meiwa kumquat (Fortunella crassifolia Swingle) induced by colchicine treatment to nucellar embryosand itsmorphological characteristics[J].Agronomy, 2019,9(9):562.

        [10]SCHMULLING T,SCHELL J. Transgenic tobacco plants regenerated from leaf disks can be periclinal chimeras[J].Plant Molecular Biology,1993,21(4):705-708.

        [11]ZONNEVELD B JM.Nuclear DNA content of ploidy chimeras of Hosta Tratt.(Hostaceae) demonstrate tree apical layers in all organs,but not in the adventitious root[J]. Plant Systematics and Evolution,2007,269(1):29-38.

        [12]周銳,解凱東,王偉,彭珺,謝善鵬,胡益波,伍小萌,郭文武. 依據(jù)多倍體形態(tài)特征快速高效發(fā)掘柑橘四倍體[J].園藝學(xué)報(bào), 2020,47(12):2451-2458. ZHOU Rui,XIE Kaidong,WANG Wei,PENG Jun,XIE Shanpeng,HU Yibo,WU Xiaomeng,GUO Wenwu. Efficient identification of tetraploid plants from seedling populations of apomicActa Horticulturae Sinica,2020,47(12):2451-2458.

        [13]徐遠(yuǎn)濤.柑橘無融合生殖和嫁接嵌合的分子基礎(chǔ)研究[D].武 漢:華中農(nóng)業(yè)大學(xué),2019. XU Yuantao.Molecular basis of apomixis and grafting chimerismin citrus[D].Wuhan:Huazhong Agricultural University, 2019.

        [14]REN J,LU X,DUANYY,XIAO GA,XIE KD,WU X M, GUO W W. In vivo tetraploid induction of mono-embryonic citrus genotypes by colchicine treatment[J]. Scientia Horticulturae, 2024,338:113701.

        [15]RUIZM,QUINONESA,MARTINEZ-ALCANTARAB,ALEZA P,MORILLON R,NAVARRO L,PRIMO-MILLO E, MARTINEZ-CUENCA MR. Effects of salinity on diploid (2x) and doubled diploid (4x) Citrus macrophylla genotypes[J]. Scientia Horticulturae,2016,207:33-40.

        [16]WEI TL,WANG Y,LIU JH. Comparative transcriptome analysis reveals synergistic and disparate defense pathways in the leavesand rootsof trifoliate orange (Poncirus trifoliata) autotetraploids with enhanced salt tolerance[J]. Horticulture Research, 2020,7(1) :88.

        [17]RUIZ M,QUINONES A,MARTINEZ-ALCANTARAB,ALEZA P,MORILLON R,NAVARRO L,PRIMO-MILLO E, MARTINEZ-CUENCA M R. Tetraploidy enhances boron- excess tolerance in carrizo citrange (Citrus sinensis L. Osb. × Poncirus trifoliata L.Raf.)[J].Frontiers in Plant Science,2016,7: 701.

        [18]BALAL RM,SHAHIDMA,VINCENTC,ZOTARELLI L, LIUG D,MATTSON N S,RATHINASABAPATHI B, MARTINEZ-NICOLAS J J, GARCIA- SANCHEZ F. Kinnow mandarin plants grafted on tetraploid rootstocks are more tolerant to Cr-toxicity than those grafted on its diploids one[J]. Environmental and Experimental Botany,2017,140:8-18.

        [19]ALLARIO T,BRUMOS J,COLMENERO-FLORES JM,IGLESIASDJ,PINAJA,NAVARROL,TALONM,OLLITRAULT P,MORILLON R. Tetraploid Rangpur lime rootstock increases drought tolerance via enhanced constitutive root abscisic acid production[J].Plant,Cell amp; Environment,2013,36(4):856-868.

        [20]OUSTRIC J,MORILLON R,LURO F,HERBETTES, LOURKISTIR,GIANNETTINI J,BERTIL,SANTINI J. Tetraploid Carrizo citrange rootstock (Citrus sinensis Osb. × PoncirustrifoliataL.Raf.)enhancesnatural chillingstress tolerance of common clementine (Citrus clementina Hort. ex Tan.)[J]. Journal of Plant Physiology,2017,214:108-115.

        [21]DAHRO B,LI C L,LIU JH. Overlappng responses to multiple abiotic stresses in citrus:From mechanism understanding to genetic improvement[J].Horticulture Advances,2023,1(1):4.

        [22]XUEH,ZHANGB,TIANJR,CHENMM,ZHANGYY, ZHANG Z H,MA Y. Comparison of the morphology,growth and development of diploid and autotetraploid‘Hanfu’ apple trees[J].Scientia Horticulturae,2017,225:277-285.

        [23]SUDOM,YASUDAK,YAHATAM,SATOM,TOMINAGA A,MUKAIH,MAG,KATOM,KUNITAKEH.Morphological characteristics,fruit qualities and evaluation of reproductive functions in autotetraploid satsuma mandarin (Citrus unshiu Marcow.)[J]. Agronomy,2021,11(12):2441.

        [24]XIE KD,YUAN DY,WANG W,XIA QM,WU X M,CHEN CW,CHENCL,GROSSERJW,GUOWW.Citrustriploid recovery based on 2x×4x crosses via an optimized embryo rescue approach[J]. Scientia Horticulturae,2019,252:104-109.

        [25] ALEZA P,F(xiàn)ROELICHER Y,SCHWARZ S,AGUSTI M, HERNANDEZ M,JUAREZ J,LURO F,MORILLON R,NAVARRO L, OLLITRAULT P. Tetraploidization events by chromosome doubling of nucellar cells are frequent in apomictic citrus and are dependent on genotype and environment[J]. Annals ofBotany,2011,108(1):37-50.

        [26]謝善鵬,解凱東,夏強(qiáng)明,周銳,張成磊,鄭浩,伍小萌,郭文 武.柑橘6個地方品種資源四倍體高效發(fā)掘及分子鑒定[J]. 果樹學(xué)報(bào),2022,39(1):1-9. XIE Shanpeng,XIE Kaidong,XIA Qiangming,ZHOU Rui, ZHANG Chenglei,ZHENG Hao,WU Xiaomeng,GUO Wenwu.Efficient exploration and SSR identification of 53 doubled diploid seedlings from six local citruscultivarsand germplasm resources[J].Journal ofFruit Science,2022,39(1):1-9.

        [27] ALEZA P,JUAREZ J,OLLITRAULT P,NAVARRO L. Production of tetraploid plants of non apomictic citrus genotypes[J]. Plant Cell Reports,2009,28(12):1837-1846.

        [28]ZHANG M,JING LY,WUQ,ZHU KJ,KEF Z,XU JG, ZHAO SQ,WANG G,ZHANGC.Metabolite profilecomparison of a graft chimera‘Hongrou Huyou’(Citrus changshanhuyou + Citrus unshiu)and its two donor plants[J].BMC Plant Biology,2019,19(1):582.

        [29] MARCOTRIGIANO M,BERNATZKY R. Arrangement of cell layers in the shoot apical meristems of periclinal chimeras influences cellfate[J].The Plant Journal,1995,7(2):193-202.

        [30]張斯淇.柑橘無融合生殖的遺傳分析和相關(guān)基因挖掘[D].武 漢:華中農(nóng)業(yè)大學(xué),2017. ZHANG Siqi. Genetic analysis of citrus apomixisand its related genes discovery[D]. Wuhan: Huazhong Agricultural University, 2017.

        [31]解凱東,王惠芹,王曉培,梁武軍,謝宗周,伊華林,鄧秀新, GROSSERJW,郭文武.單胚性二倍體為母本與異源四倍體 雜交大規(guī)模創(chuàng)制柑橘三倍體[J].中國農(nóng)業(yè)科學(xué),2013,46(21): 4550-4557. XIEKaidong,WANGHuiqin,WANGXiaopei,LIANGWujun, XIE Zongzhou,YI Hualin,DENG Xiuxin,GROSSER JW,GUO Wenwu.Extensive Citrus triploid breeding by crossing monoembryonic diploid females with allotetraploid male parents[J]. Scientia Agricultura Sinica,2013,46(21):4550-4557.

        [32]郭雁君,曾繼武,胡亞平,郭麗英,蔣惠,周希琴,吉前華.基于 SSR 標(biāo)記的肇慶地區(qū)柑橘品種分類地位研究[J].中國農(nóng)學(xué)通 報(bào),2014,30(4):137-143. GUOYanjun,ZENG Jiwu,HU Yaping,GUO Liying,JIANG Hui,ZHOU Xiqin,JI Qianhua. Classification of Zhaoqing local citrus germplasm resources based on simple sequence repeat molecular marker analysis[J]. Chinese Agricultural Science Bulletin,2014,30(4):137-143.

        [33] 李益,馬先鋒,唐浩,李娜,江東,龍桂友,李大志,牛英,韓瑞 璽,鄧子牛.柑橘品種鑒定的 SSR標(biāo)記開發(fā)和指紋圖譜庫構(gòu) 建[J].中國農(nóng)業(yè)科學(xué),2018,51(15):149-159. LIYi,MA Xianfeng,TANGHao,LI Na,JIANGDong,LONG Guiyou,LI Dazhi,NIU Ying,HANRuixi,DENG Ziniu.SSR markers screening for identification of Citrus cultivar and construction ofDNA fingerprintinglibrary[J].Scientia Agricultura Sinica,2018,51(15):149-159.

        [34]張澤群.‘紅肉胡柚'起源及特征分析[D].杭州:浙江農(nóng)林大 學(xué),2019. ZHANG Zequn. Analysis on the origin and characteristics of ‘Hongrou Huyou’[D]. Hangzhou: Zhejiang A amp;F University, 2019.

        [35]GOFFREDA J C,SZYMKOWIAK E J,SUSSEXI M, MUTSCHLER MA.Chimeric tomato plantsshow that aphid resistance and triacylglucose production are epidermal autonomous characters[J]. The Plant Cell,1990,2(7):643-649.

        [36]彭瀅,李曉妍,肖璇.柑橘多胚性砧木枳橙同源四倍體的發(fā)掘 與SSR鑒定[J].分子植物育種,2020,18(4):1211-1215. PENG Ying,LI Xiaoyan,XIAO Xuan. Excavation and SSR identification of autotetraploids in citrus polyembryonic rootstock‘Citrange'[J].Molecular Plant Breeding,2020,18(4): 1211-1215.

        [37]曹麗雯.榨菜與紫甘藍(lán)嵌合體后代變異性狀發(fā)生的分子機(jī)理 研究[D].杭州:浙江大學(xué),2018. CAO Liwen. Studies on the molecular mechanism of phenotypic variationsintheprogeniesof chimeras produced byinvitro grafting between Brassica juncea and B. oleracea[D].Hangzhou: Zhejiang University,2018.

        久久久久亚洲av无码专区首jn| 中文字幕精品久久一区二区三区 | 亚洲情综合五月天| 影视先锋av资源噜噜| 成人午夜无人区一区二区| 日本小视频一区二区三区| 国产亚洲av无码av男人的天堂| 亚洲毛片αv无线播放一区| 日韩免费小视频| 中文字幕一区二区三区喷水| 青青草精品视频在线播放| 又长又大又粗又硬3p免费视频| 日韩成人精品在线| 国产无套粉嫩白浆内精| 精品国产yw在线观看| 四川老熟妇乱子xx性bbw| 日韩啪啪精品一区二区亚洲av| 国产精品美女一区二区av| 国色天香中文字幕在线视频| 国产精品白浆视频一区| 国产粉嫩高清| 国产婷婷成人久久av免费| 国产精品久久久久9999吃药| 色综合自拍| 丰满人妻一区二区三区免费 | 日本在线视频二区一区| 婷婷亚洲岛国热超碰中文字幕| 最近日本免费观看高清视频| 熟女人妻丰满熟妇啪啪| 亚洲丝袜美腿精品视频| 午夜爽爽爽男女污污污网站| 蜜臀av免费一区二区三区| 人妻少妇久久精品一区二区| 美女在线一区二区三区视频| 国产成人无码a区在线观看视频| 99精品免费视频| 日本一区二区免费看片| 欧美国产综合欧美视频| 青青视频一区| 中文字幕日韩一区二区不卡| 内射人妻无套中出无码|