【摘要】 肺癌不僅是全球常見的惡性腫瘤之一,而且是全球病死率最高的惡性腫瘤,其中非小細(xì)胞肺癌(NSCLC)是最常見的亞型。放射治療是晚期NSCLC患者的主要治療方式之一,而長期治療過程中產(chǎn)生的放射抗性是導(dǎo)致放射治療失敗和預(yù)后差的關(guān)鍵。隨著全基因組和RNA測序技術(shù)的廣泛應(yīng)用以及在此基礎(chǔ)上對非編碼RNA(ncRNA)生物學(xué)功能的深入探究,越來越多的證據(jù)表明ncRNA是腫瘤發(fā)生發(fā)展中的關(guān)鍵調(diào)節(jié)因子,其中不同的ncRNA在腫瘤放射抗性上起著促進(jìn)或抑制作用,有望成為腫瘤診斷的標(biāo)志物和腫瘤治療的新靶點。文章對近年研究較多的ncRNA如微小RNA(miRNA)、長鏈非編碼RNA(lncRNA)、環(huán)狀RNA(circRNA)在NSCLC放射抗性中的作用研究進(jìn)展進(jìn)行綜述。
【關(guān)鍵詞】 肺癌;放射抗性;非編碼RNA;微小RNA;長鏈非編碼RNA;環(huán)狀RNA
Function of non-coding RNA in radioresistance in non-small cell lung cancer
CHEN Mengdan, WANG Huaying , YU Wanjun
(Department of Respiratory and Critical Care Medicine, the People’ s Hospital Affiliated to Ningbo University, Ningbo 315040, China)
Corresponding authors: WANG Huaying, E-mail: yingmecire@163.com; YU Wanjun, E-mail: NBYWJ2008@aliyun.com
【Abstract】 Lung cancer is not only one of the most common malignancies, but also has the highest mortality rate worldwide, among which non-small cell lung cancer (NSCLC) is the most common subtype. Radiation therapy is one of the main treatments for patients with advanced NSCLC, and the resistance generated during long-term treatment is the key to radiation therapy failure and poor prognosis. With the widespread application of whole genome and RNA sequencing technology and the in-depth exploration of the biological functions of non-coding RNA (ncRNA), there is growing evidence that ncRNA are key regulators in tumorigenesis and development, and different ncRNAs play a role in promoting or inhibiting tumor radioresistance, which are expected to become a useful markers for tumor diagnosis and new targets for tumor treatment. In this article, recent research progress in ncRNA such as microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA) in the radioresistance of NSCLC was reviewed.
【Key words】 Lung cancer; Radioresistance; Non-coding RNA; MiRNA; LncRNA; CircRNA
肺癌是世界上常見的惡性腫瘤之一,在癌癥相關(guān)死亡原因中常年穩(wěn)居首位,嚴(yán)重危害人類健康[1]。非小細(xì)胞肺癌(non-small cell lung cancer,NSCLC)是肺癌中最常見的亞型,約占所有肺癌病例的85%[2]。盡管手術(shù)切除、放射治療、化學(xué)藥物治療、分子靶向治療和免疫療法在內(nèi)的治療策略不斷發(fā)展,但是肺癌的5年生存率仍僅有15%~20%[3]。
放射治療是一種不適于手術(shù)治療的NSCLC標(biāo)準(zhǔn)治療方法,大多數(shù)NSCLC患者在整個病程中需要接受放射治療以達(dá)到根治或姑息的治療目的,而放射治療對正常肺組織的損傷往往限制了更高放射劑量的應(yīng)用,且持續(xù)的放射治療產(chǎn)生的放射抗性是導(dǎo)致腫瘤放射治療失敗和復(fù)發(fā)的關(guān)鍵原因之一[4]。因此,為了增強NSCLC患者放射治療敏感性以提高放射治療效果及改善預(yù)后,需要發(fā)現(xiàn)與放射抗性相關(guān)的潛在機制和新的生物標(biāo)志物或治療靶點。
非編碼DNA覆蓋了人類基因組中95%的DNA序列,其中大部分被轉(zhuǎn)錄為功能性非編碼RNA(non-coding RNA,ncRNA),如微小RNA(microRNA,miRNA)、長鏈非編碼RNA(long non-coding RNA,lncRNA)、環(huán)狀RNA(circular RNA,circRNA)等[4]。RNA測序技術(shù)和生物信息學(xué)的發(fā)展促進(jìn)了ncRNA在多種癌癥疾病中的生物學(xué)功能探究[5]。本文對近年來ncRNA在NSCLC放射抗性中的研究進(jìn)展進(jìn)行綜述,為放射增敏尋找新的靶點、提供個體化治療以提高肺癌患者的總體生存率提供新的思路。
1 miRNA與放射抗性
miRNA是一類由內(nèi)源基因編碼的長度約為22個核苷酸的非編碼單鏈RNA分子,參與轉(zhuǎn)錄后水平的基因表達(dá)調(diào)控,通過直接與特定mRNA的3′-非翻譯區(qū)結(jié)合,進(jìn)而調(diào)控靶mRNA表達(dá)[6]。MiRNA表達(dá)異常可以通過調(diào)節(jié)DNA損傷修復(fù)、細(xì)胞凋亡、上皮-間充質(zhì)轉(zhuǎn)化(epithelial-to-mesenchymal transition,EMT)、腫瘤干細(xì)胞樣特性以及腫瘤微環(huán)境(tumor microenvironment,TME)影響NSCLC的放射抗性。
雙鏈DNA斷裂(double strand break,DSB)是輻射誘導(dǎo)的DNA損傷的最關(guān)鍵病變,Chen等[7]發(fā)現(xiàn)肺癌組織和肺癌細(xì)胞系中的miR-182的表達(dá)水平較正常組織和正常肺細(xì)胞低,敲低miR-182的肺腺癌細(xì)胞系經(jīng)輻照后導(dǎo)致DSB未修復(fù)引起的DNA損傷增多及細(xì)胞周期G2/M停滯,過表達(dá)miR-182則通過調(diào)節(jié)叉頭框蛋白O3(forkhead box protein O3,F(xiàn)OXO3)抑制細(xì)胞活力以及DNA損傷修復(fù)而增強細(xì)胞的放射抗性。在放射治療所致的DNA損傷期間,腫瘤細(xì)胞的EMT會促進(jìn)抗輻射作用。例如Huang等[8]發(fā)現(xiàn),miR-183過表達(dá)的放射抗性肺腺癌細(xì)胞系細(xì)胞形態(tài)失去原有的上皮形狀而呈長梭狀、多邊形緊密連接樣,這種高表達(dá)上調(diào)細(xì)胞核轉(zhuǎn)錄因子鋅指E盒結(jié)合同源蛋白1(zinc finger E-box-binding homeobox protein 1,ZEB1)水平,介導(dǎo)EMT過程從而具有更強的輻射抵抗能力。Yuan等[9]的研究同樣發(fā)現(xiàn),miR-410的表達(dá)會影響腺癌細(xì)胞系細(xì)胞形態(tài)的變化,miR-410通過在體外和體內(nèi)靶向PTEN/PI3K/mTOR軸誘導(dǎo)NSCLC的EMT有助于促進(jìn)放射抗性,并且miR-410增強的放射抗性可能與DNA損傷修復(fù)有關(guān),PTEN作為蛋白磷酸酶調(diào)節(jié)染色體穩(wěn)定性、DNA修復(fù)和凋亡。Pan等[10]通過構(gòu)建三維細(xì)胞培養(yǎng)模型模擬體內(nèi)微環(huán)境來誘導(dǎo)癌癥干細(xì)胞(cancer stem cell,CSC)樣特性發(fā)現(xiàn),過表達(dá)miR-29b-3p將抑制DNA損傷修復(fù),可能通過調(diào)控DNA甲基轉(zhuǎn)移酶3B(DNA methyltransferase 3B,DNMT3B)、B細(xì)胞淋巴瘤-2(B-cell lymphoma 2,BCL-2)、磷脂酰肌醇3-激酶調(diào)節(jié)亞基1(phosphoinositide-3-kinase regulatory subunit 1,PI3KR1)、蛋白激酶B2(protein kinase B 2,AKT2)和視網(wǎng)膜母細(xì)胞瘤樣蛋白1(retinoblastoma-like protein 1,RBL1)促進(jìn)CSC樣細(xì)胞的放射敏感性。Chen等[11]通過紫杉醇和無血清培養(yǎng)基培養(yǎng)誘導(dǎo)構(gòu)建肺癌干細(xì)胞模型發(fā)現(xiàn),miR-18a-5p通過下調(diào)與DNA損傷修復(fù)相關(guān)的共濟(jì)失調(diào)毛細(xì)血管擴張突變蛋白(ataxia telangiectasia mutated protein,ATM)和缺氧誘導(dǎo)因子-1α(hypoxia-inducible factor-1α,HIF-1α)的表達(dá),提高肺癌細(xì)胞和CSC樣細(xì)胞的放射敏感性。Rong等[12]發(fā)現(xiàn),N(6)-甲基腺苷(m6A)讀取器HNRNPA2B1通過m6A介導(dǎo)的miR-106b-5p激活Wnt/β-catenin通路,加重肺腺癌的干性以達(dá)到促進(jìn)放射抗性的可能。更多的抑制NSCLC放射抗性的miRNA如miR-519a[13]、miR-219a-5p[14]、miR-16-5p[15]、miR-365[16]、miR-145[17]、miR-320a[18]、miR-129-5p[19]等,通過調(diào)控不同的下游信號通路,抑制細(xì)胞增殖、侵襲遷移,促進(jìn)細(xì)胞凋亡,減弱NSCLC的放射抗性。
TME是一個復(fù)雜且高度動態(tài)的環(huán)境,放射治療后TME的改變進(jìn)一步影響肺癌細(xì)胞的放射抗性。腫瘤相關(guān)成纖維細(xì)胞(cancer-associated fibroblast,CAF)是TME中的重要成分之一,miRNA可以穩(wěn)定地以細(xì)胞外泌體形式參與CAF與癌細(xì)胞之間的動態(tài)串并增強放射抗性,CAF來源的外泌體(CAF-exo)中的miR-196a-5p在具有放射抗性的肺腺癌細(xì)胞中高表達(dá),與CAF-exo共培養(yǎng)后的肺腺癌細(xì)胞具有更強的放射抗性,miR-196a-5p通過抑制核因子-κB(nuclear factor-κB, NF-κB)抑制蛋白α(nuclear factor kappa-light-chain-enhancer of activated B cells inhibitor α,NFKBIA)激活NF-κB通路,增強細(xì)胞活力及抑制細(xì)胞凋亡以促進(jìn)放射耐藥性的發(fā)生[20]。除CAF外,TME中還包括腫瘤相關(guān)巨噬細(xì)胞(tumor-associated macrophage,TAM)、髓系抑制性細(xì)胞(myeloid-derived suppressor cell,MDSC)、調(diào)節(jié)性T細(xì)胞等在內(nèi)的各種免疫細(xì)胞,可能與放射治療抵抗相關(guān)。在TME中,來源于肺癌細(xì)胞的外泌體miR-19b-3p通過靶向蛋白酪氨酸磷酸酶受體D型(protein tyrosine phosphatase receptor type D,PTPRD)促進(jìn)巨噬細(xì)胞的M2極化,M2表型的巨噬細(xì)胞反饋調(diào)節(jié)肺癌細(xì)胞發(fā)揮促癌作用[21],而M2 TAM與肺癌細(xì)胞之間的串?dāng)_又可由攜帶miRNA的外泌體介導(dǎo)[22]。Zhao等[23]發(fā)現(xiàn)miR-21負(fù)調(diào)控骨髓細(xì)胞中含山梨醇和SH3域1(sorbin and SH3 domain containing 1,SORBS1)的表達(dá)與立體定向放射治療時MDSC分化抑制和凋亡誘導(dǎo)相關(guān)。
為了評估與放射治療抗性相關(guān)的miRNA在臨床上的應(yīng)用,Zheng等[24]通過分離鑒定血漿外泌體并測定了外泌體內(nèi)6種miRNA的表達(dá)水平及放射耐藥性方面的診斷能力,發(fā)現(xiàn)放射抗性NSCLC患者的外泌體miR-96水平升高,證明外泌體miR-96具有區(qū)分放射治療患者是否具有放射抗性的潛力。此前Chen等[11]證明,血漿miR-18a-5p可能是預(yù)測NSCLC患者放射敏感性的新指標(biāo)。外泌體miRNA的獲得及檢測結(jié)果或許可作為臨床上非侵入性方法用于預(yù)測接受放射治療的患者的預(yù)后情況。Park等[25]發(fā)現(xiàn),與低劑量輻射誘導(dǎo)(low-dose radiation,LDR)預(yù)處理的耐輻射細(xì)胞的條件培養(yǎng)基共培養(yǎng)后的肺癌細(xì)胞較對照組細(xì)胞在輻照后具有更強的增殖侵襲遷移能力和抗細(xì)胞凋亡能力,LDR誘導(dǎo)miR-30a和miR-30b表達(dá)的增加抑制纖溶酶原激活抑制劑(plasminogen activator inhibitor-1,PAI-1)和PAI-1誘導(dǎo)的PI3K/AKT、細(xì)胞外信號調(diào)節(jié)激酶(extracellular signal-regulated kinase,ERK)生存信號通路、激活PAI-1抑制的凋亡信號通路增強NSCLC的放射敏感性,進(jìn)一步通過建立原位小鼠異種移植模型發(fā)現(xiàn)7C1-miRNA抑制劑復(fù)合物可特異性遞送至小鼠肺部為LDR或靶向PAI-1的miRNA的納米顆粒直接應(yīng)用于肺癌放射治療提供了可能性。
上述研究顯示,miRNA表達(dá)異??捎绊慏NA損傷修復(fù),干擾細(xì)胞周期,參與調(diào)節(jié)腫瘤微環(huán)境、細(xì)胞干性,調(diào)控靶mRNA的表達(dá),調(diào)控相關(guān)下游信號通路影響細(xì)胞增殖遷移侵襲能力、EMT、細(xì)胞凋亡來改變NSCLC的放射抗性,見表1。
2 lncRNA與放射抗性
LncRNA是一類序列長度超過200個核苷酸的ncRNA,豐度高,作用方式多樣[26]。LncRNA可以通過表觀修飾、轉(zhuǎn)錄及轉(zhuǎn)錄后調(diào)節(jié)等多種途徑參與基因的調(diào)控[27]。根據(jù)lncRNA在基因組上的位置可分為位于基因間區(qū)的lncRNA(long intergenic RNA, LINCRNA)、天然反義鏈lncRNA及內(nèi)含子區(qū)lncRNA共3類[28]。LncRNA可以通過多個方面調(diào)節(jié)放射抗性,包括DNA損傷修復(fù)、細(xì)胞凋亡、ROS水平、EMT以及CSC活性。
LncRNA的表達(dá)異常大多可引起NSCLC的放射抗性,位于細(xì)胞核內(nèi)的lncRNA CRNDE與多梳抑制復(fù)合物2(polycomb repressive complex 2,PRC2)結(jié)合,將其關(guān)鍵部分調(diào)味增強子同源物2(enhancer of zeste homolog, EZH2)招募到p21的啟動子區(qū)域,誘導(dǎo)組蛋白H3第27位賴氨酸殘基修飾抑制p21的轉(zhuǎn)錄,從而影響G1/S期過渡和抑制細(xì)胞凋亡以增加肺癌細(xì)胞的輻射抗性[29]。分布細(xì)胞質(zhì)和細(xì)胞核中的lncRNA ANRIL作為競爭性內(nèi)源性RNA,結(jié)合miR-7-5p,上調(diào)同源重組修復(fù)相關(guān)的關(guān)鍵蛋白,即聚腺苷二磷酸核糖聚合酶的表達(dá),增強DNA損傷修復(fù)能力,以增強NSCLC的放射抗性[30]。LncRNA CRYBG3通過與eEF1A1相互作用,促進(jìn)p53調(diào)節(jié)因子雙微體同源基因2(mousedouble minute 2,MDM2)的表達(dá),以致p53泛素化降解增多,影響細(xì)胞周期和DNA損傷修復(fù)[31]。放射治療一方面通過電離輻射直接引起DNA損傷,另一方面通過活性氧簇(reactive oxygen species,ROS)間接引起氧化損傷,過表達(dá)lnc CBR3-AS1可以通過CBR3-AS1/miR-409-3p/SOD1通路促進(jìn)放射治療后NSCLC細(xì)胞中超氧化物歧化酶1(superoxide dismutase,SOD1)的表達(dá),導(dǎo)致ROS積累減少以增強放射抗性[32]。LncRNA同樣可通過影響CSC活性和EMT調(diào)控放射抗性,線粒體RNA加工核酸內(nèi)切酶(RNA component of mitochondrial RNA processing endoribonuclease,RMRP)的lncRNA-RNA成分是與NSCLC生存率低相關(guān)的上調(diào)程度最高的lncRNA之一,m6A在RMRP中高度富集的同時增強了其RNA穩(wěn)定性。LncRNA RMRP將YBX1募集到TGFBR1啟動區(qū),導(dǎo)致TGFBR1轉(zhuǎn)錄上調(diào),通過調(diào)控TGFBR1/SMAD2/SMAD3通路促進(jìn)CSC特性和EMT以增強NSCLC的放射抗性[33]。Fu等[34]發(fā)現(xiàn)LINC01224通過介導(dǎo)鋅指樣蛋白91(Zinc Finger Protein 91,ZNF91)增強子和啟動子之間的遠(yuǎn)程染色質(zhì)相互作用增強ZNF91表達(dá),是一種增強子衍生RNA,LINC01224/ZNF91通過調(diào)節(jié)NSCLC CSC特性影響輻射抗性。更多增強放射抗性的lncRNA如lnc FAM201A[35]、lncRNA H19[36]、lncRNA CYTOR[37]、lncRNA PTPRG-AS1[38]、lncRNA XIST[39]、lncRNA KCNQ1OT1[40]、lncRNA SBF2-AS1[41]、lncRNA MALAT1[42]、lncRNA EBLN3P[43]等參與基因轉(zhuǎn)錄后調(diào)節(jié),通過海綿吸附靶miRNA介導(dǎo)下游通路,調(diào)節(jié)DNA損傷修復(fù),促進(jìn)增殖侵襲遷移及抑制凋亡以增加肺癌細(xì)胞的輻射抗性。
在TME中,M2巨噬細(xì)胞來源的外泌體中的lncRNA AGAP2-AS1通過下調(diào)miR-296和上調(diào)NOTCH2促進(jìn)細(xì)胞惡性進(jìn)展,增強放射抗性的同時增強肺癌細(xì)胞對NK細(xì)胞毒性的放射抵抗力[44]。Liang等[45]發(fā)現(xiàn),m6A甲基化的lncRNA KCTD21-AS1通過海綿化miR-519d-5p促進(jìn)CD47和TIPRL的表達(dá)來調(diào)控巨噬細(xì)胞吞噬作用和癌細(xì)胞自噬。LncRNA OIP5-AS1在CAFs-exos中高表達(dá),外泌體lncRNA OIP5-AS1 通過miR-142-5p/PD-L1軸導(dǎo)致T淋巴細(xì)胞凋亡,導(dǎo)致免疫逃逸[46]。這些研究顯示lncRNA與TME之間的串?dāng)_可能與NSCLC的放射抗性相關(guān)。
另外較少一部分lncRNA在NSCLC的放射抗性上起抑制作用,Chen等[47]發(fā)現(xiàn),通過RNA測序鑒定lncRNA GAS5在輻照后的表達(dá)具有顯著差異,過表達(dá)lncRNA GAS5可促進(jìn)A549抑制細(xì)胞活力,促進(jìn)細(xì)胞凋亡,lncRNA GAS5通過miR-21/PTEN/AKT軸調(diào)控A549細(xì)胞的放射敏感性。Brownmiller等[48]發(fā)現(xiàn)定位于Y染色體的高度重復(fù)的異色DYZ1區(qū)的LINC-SPRY3-2、LINC-SPRY3-3和LINC-SPRY3-4在照射后的NSCLC細(xì)胞系中被誘導(dǎo)表達(dá),且僅在放射敏感性細(xì)胞系中檢測到。LncRNA直接結(jié)合胰島素樣生長因子2 mRNA結(jié)合蛋白3基因(insulin like growth factor 2 mRNA binding protein 3 gene,IGF2BP3),抑制高遷移率族蛋白A2(high mobility group AT-hook 2,HMGA2)和c-Myc靶點增加了男性NSCLC細(xì)胞的輻射敏感性,證明了Y染色體衍生的lncRNA組在調(diào)節(jié)男性NSCLC輻射應(yīng)答中的重要性。相關(guān)研究見表2。
由此可見,在大多數(shù)情況下lncRNA作為miRNA的海綿,兩者之間相互作用形成網(wǎng)絡(luò)以調(diào)節(jié)NSCLC的放射治療抗性,通過表觀修飾、轉(zhuǎn)錄及轉(zhuǎn)錄后調(diào)節(jié)等多種途徑參與基因的調(diào)控,促進(jìn)NSCLC的增殖、侵襲遷移及抑制凋亡,以賦予NSCLC更強的輻射抵抗能力。
3 circRNA與放射抗性
circRNA是一類不含5'和3'末端的閉環(huán)ncRNA,含量豐富,不受RNA外切酶影響,具有較高的結(jié)構(gòu)穩(wěn)定性。許多circRNA作為miRNA的海綿降低其有效性,從而上調(diào)其靶mRNA的表達(dá)[49]。circRNA的表達(dá)異常通過多種途徑影響輻照肺癌細(xì)胞的增殖遷移侵襲、DNA損傷修復(fù)和細(xì)胞凋亡。
p21激活的Ser/Thr激酶1(p21-activated Ser/Thr kinase 1,PAK1)酪氨酸磷酸化是誘導(dǎo)肺癌細(xì)胞中EMT和放射抵抗所必需[50],Li等[51]發(fā)現(xiàn),circ_0004396在NSCLC組織和細(xì)胞中高表達(dá),并與TNM分期、淋巴結(jié)轉(zhuǎn)移和預(yù)后差相關(guān),下調(diào)circ0004396通過miR-615-5p/PAK1誘導(dǎo)細(xì)胞的G0/G1阻滯和凋亡以及抑制細(xì)胞增殖、侵襲、遷移能力抑制NSCLC的放射抗性。CircRNA還可通過被m6A修飾發(fā)揮促癌作用,如m6A修飾的circFUT8因與m6A讀取蛋白YTHDF2相互作用及海綿化mi-186-5p上調(diào)mFUT8的表達(dá),從而促進(jìn)LUAD的增殖侵襲和遷移[52]。更多增強NSCLC放射抗性的circRNA如circZNF208[53]、circ0086720[54]、circMTDH.4[55]、circ0010235[56]、circ0007580[57]、circ0079530[58]等作為miRNA的海綿來調(diào)節(jié)靶向基因的表達(dá),影響DNA損傷修復(fù)、細(xì)胞凋亡,促進(jìn)肺癌的增殖侵襲遷移及增強放射抗性,而Zhang等[59]研究發(fā)現(xiàn),circ_0001287在肺癌組織和NSCLC細(xì)胞系中低表達(dá)的同時與淋巴結(jié)轉(zhuǎn)移陽性和組織分化不良具有相關(guān)性,并海綿化miR-21上調(diào)PTEN抑制NSCLC細(xì)胞增殖、遷移、侵襲并減弱了細(xì)胞的放射抗性。見表3。
CircRNA對放射抗性的調(diào)節(jié)也與TME相關(guān),如circNOX4通過海綿miR-329-5p上調(diào)FAP激活炎性成纖維細(xì)胞生態(tài)位[60]、circ16601通過miR-5580-5p/FGB軸促進(jìn)成肌細(xì)胞和成纖維細(xì)胞的形成及募集[61]、circHSPB6促進(jìn)TAM M2極化和浸潤[62]等促進(jìn)NSCLC的惡性行為。CircRNA還參與細(xì)胞中免疫逃逸,PD1 在體外和體內(nèi)抑制T細(xì)胞活化中起著至關(guān)重要的作用。m6A修飾的circIGF2BP3海綿化miR-328-3p和miR-3173-5p減輕對PKP3表達(dá)的抑制作用,最終上調(diào)PD-L1表達(dá)參與NSCLC細(xì)胞的免疫逃逸[63]。這些研究表明circRNA可能是NSCLC患者接受放射治療中產(chǎn)生抵抗的關(guān)鍵因素。
上述提到的大多數(shù)circRNA在腫瘤細(xì)胞中高度表達(dá),并且還與NSCLC的放射抗性有關(guān)。結(jié)合circRNA結(jié)構(gòu)穩(wěn)定及其在人體體液中富集而易于檢測的特性,適合成為理想的診斷及預(yù)后生物標(biāo)志物。靶向circRNA使其功能喪失或許可以成為治療靶點提高放射治療患者的療效以改善預(yù)后。
因此,circRNA在增強或減弱NSCLC放射治療抗性上的報道對比前兩種ncRNA少,尤其是在減弱放射治療抗性的研究,circRNA對NSCLC的放射抗性影響以及其他潛在相關(guān)機制尚需進(jìn)一步探究。
4 結(jié)語與展望
肺癌的治療方法包括手術(shù)切除、放射治療、化學(xué)治療、分子靶向治療和免疫療法等,臨床上不限于上述方法單獨發(fā)揮作用,如放射治療與手術(shù)切除、化學(xué)治療、靶向治療、免疫治療等方法相結(jié)合的應(yīng)用和研究進(jìn)展為肺癌患者生存率的提高提供了可能性[64-65]。然而肺癌細(xì)胞的放射抗性的產(chǎn)生和輻射場周圍正常細(xì)胞的放射相關(guān)損傷限制了放射治療的成功率,因此需要發(fā)現(xiàn)與放射抗性相關(guān)的潛在機制和新的生物標(biāo)志物或治療靶點[4]。
隨著RNA測序技術(shù)、生物信息學(xué)分析等生物技術(shù)的發(fā)展,ncRNA功能的深入研究為腫瘤治療提供了新的視角,如ncRNA在肺癌放射抗性中的調(diào)控作用越來越受到關(guān)注,尤其是ncRNA分類中的miRNA、lncRNA以及circRNA,改變NSCLC的放射抗性則可通過調(diào)控這些ncRNA來影響細(xì)胞的損傷修復(fù)、CSC樣特性,干擾細(xì)胞周期,調(diào)節(jié)腫瘤微環(huán)境,改變相關(guān)下游信號通路影響細(xì)胞的增殖遷移侵襲能力、EMT及細(xì)胞凋亡,因此調(diào)節(jié)這些ncRNA轉(zhuǎn)錄本的表達(dá)是一種有前景的治療策略,在增強肺癌細(xì)胞的放射敏感性的同時減少對正常細(xì)胞的損傷,但同時需注意不同劑量的輻射可能使ncRNA表現(xiàn)不同的表達(dá)譜[25]。部分與輻射抗性有關(guān)的lncRNA和circRNA可能通過海綿化某些miRNA來發(fā)揮作用,基于lncRNA、circRNA和miRNA之間的相互作用網(wǎng)絡(luò)進(jìn)行高通量整合分析,將有助于確定放射抗性的分子機制,從而設(shè)計靶向治療方案去增強放射敏感性以提高治療成功率。另外ncRNA幾乎存在于所有生物體液中的這一優(yōu)勢可能使它們成為潛在的生物標(biāo)志物,從而通過檢測肺癌患者血清中特定ncRNA的表達(dá)水平來預(yù)測放射治療的效果和預(yù)后[11, 24],在此基礎(chǔ)上進(jìn)一步降低或過表達(dá)這些特定ncRNA的表達(dá)水平來增強NSCLC患者的放射敏感性,如將靶向特定的ncRNA的納米顆粒輸送至肺癌組織中以調(diào)節(jié)相關(guān)ncRNA的表達(dá)[25];外泌體介導(dǎo)的ncRNA療法在靶向癌癥治療中顯示出巨大價值[66],且外泌體作為藥物遞送載體的治療應(yīng)用已在眾多臨床前研究和多項臨床試驗中得到探索;選擇性抑制或降解致癌circRNA如通過細(xì)胞內(nèi)RNaseH酶或RNA干擾方法靶向切割其位點以誘導(dǎo)circRNA的切割[67]。因此,ncRNA在實現(xiàn)癌癥的個性化精準(zhǔn)治療上具有巨大潛力。
總體而言,ncRNA在很大程度上參與了肺癌放射抗性的調(diào)控,其作為肺癌放射治療的可能靶點有助于個體化治療的發(fā)展,有望在很大程度上改善肺癌患者的預(yù)后。因此,ncRNA對肺癌放射抗性的調(diào)控機制的基礎(chǔ)研究和臨床研究值得深入,尋找最適合的治療干預(yù)靶點的同時,ncRNA在臨床上的實際應(yīng)用亟待解決與實現(xiàn)。
利益沖突聲明:本研究未受到企業(yè)、公司等第三方資助,不存在潛在利益沖突。
參 考 文 獻(xiàn)
[1] SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022[J]. CA A Cancer J Clinicians, 2022, 72(1): 7-33. DOI: 10.3322/caac.21708.
[2] DUMA N, SANTANA-DAVILA R, MOLINA J R. Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment[J]. Mayo Clin Proc, 2019, 94(8): 1623-1640. DOI: 10.1016/j.mayocp.2019.01.013.
[3] THAI A A, SOLOMON B J, SEQUIST L V, et al. Lung
cancer[J]. Lancet, 2021, 398(10299): 535-554. DOI: 10.
1016/s0140-6736(21)00312-3.
[4] WANG W T, HAN C, SUN Y M, et al. Noncoding RNAs in cancer therapy resistance and targeted drug development[J]. J Hematol Oncol, 2019, 12(1): 55. DOI: 10.1186/s13045-019-0748-z.
[5] YAN H, BU P. Non-coding RNA in cancer[J]. Essays Biochem, 2021, 65(4): 625-639. DOI: 10.1042/ebc20200032.
[6] WU K L, TSAI Y M, LIEN C T, et al. The roles of microRNA in lung cancer[J]. Int J Mol Sci, 2019, 20(7): 1611. DOI: 10.3390/ijms20071611.
[7] CHEN G, YU L, DONG H, et al. miR-182 enhances radioresistance in non-small cell lung cancer cells by regulating FOXO3[J]. Clin Exp Pharmacol Physiol, 2019, 46(2): 137-143. DOI: 10.1111/1440-1681.13041.
[8] HUANG Y, ZHANG M, LI Y, et al. miR-183 promotes radioresistance of lung adenocarcinoma H1299 cells via epithelial-mesenchymal transition[J]. Braz J Med Biol Res, 2021, 54(5): e9700. DOI: 10.1590/1414-431X20209700.
[9] YUAN Y, LIAO H, PU Q, et al. miR-410 induces both epithelial-mesenchymal transition and radioresistance through activation of the PI3K/mTOR pathway in non-small cell lung cancer[J]. Signal Transduct Target Ther, 2020, 5(1): 85. DOI: 10.1038/s41392-020-0182-2.
[10] PAN D, DU Y, LI R, et al. miR-29b-3p increases radiosensitivity in stemness cancer cells via modulating oncogenes axis[J].
Front Cell Dev Biol, 2021, 9: 741074. DOI: 10.3389/fcell.
2021.741074.
[11] CHEN X, WU L, LI D, et al. Radiosensitizing effects of miR-18a-5p on lung cancer stem-like cells via downregulating both ATM and HIF-1α[J]. Cancer Med, 2018, 7(8): 3834-3847. DOI: 10.1002/cam4.1527.
[12] RONG L, XU Y, ZHANG K, et al. HNRNPA2B1 inhibited SFRP2 and activated Wnt-β/catenin via m6A-mediated miR-106b-5p processing to aggravate stemness in lung adenocarcinoma[J]. Pathol Res Pract, 2022, 233: 153794. DOI: 10.1016/j.prp.2022.153794.
[13] GONG S, LI Y, LV L, et al. Restored microRNA-519a enhances the radiosensitivity of non-small cell lung cancer via suppressing EphA2[J]. Gene Ther, 2022, 29(10/11): 588-600. DOI: 10.1038/s41434-020-00213-x.
[14] WEI T, CHENG S, FU X N, et al. miR-219a-5p enhances the radiosensitivity of non-small cell lung cancer cells through targeting CD164[J]. Biosci Rep, 2020, 40(7): BSR20192795. DOI: 10.1042/BSR20192795.
[15] WANG Q, CHEN Y, LU H, et al. Quercetin radiosensitizes non-small cell lung cancer cells through the regulation of miR-16-5p/WEE1 axis[J]. IUBMB Life, 2020, 72(5): 1012-1022. DOI: 10.1002/iub.2242.
[16] LI H, JIANG M, CUI M, et al. miR-365 enhances the radiosensitivity of non-small cell lung cancer cells through targeting CDC25A[J]. Biochem Biophys Res Commun, 2019, 512(2): 392-398. DOI: 10.1016/j.bbrc.2019.03.082.
[17] LI H, ZHAO S, CHEN X, et al. miR-145 modulates the radiosensitivity of non-small cell lung cancer cells by suppression of TMOD3[J]. Carcinogenesis, 2022, 43(3): 288-296. DOI: 10.1093/carcin/bgab121.
[18] XU L M, YU H, YUAN Y J, et al. Overcoming of radioresistance in non-small cell lung cancer by microRNA-320a through HIF1α-suppression mediated methylation of
PTEN[J]. Front Cell Dev Biol, 2020, 8: 553733. DOI: 10.3389/fcell.2020.553733.
[19] XUE T, YIN G, YANG W, et al. miR-129-5p promotes radio-sensitivity of NSCLC cells by targeting SOX4 and RUNX1[J]. Curr Cancer Drug Targets, 2021, 21(8): 702-712. DOI: 10.2174/1568009621666210415094350.
[20] YAO F, SHI W, FANG F, et al. Exosomal miR-196a-5p enhances radioresistance in lung cancer cells by downregulating NFKBIA[J]. Kaohsiung J Med Sci, 2023, 39(6): 554-564. DOI: 10.1002/kjm2.12673.
[21] CHEN J, ZHANG K, ZHI Y, et al. Tumor-derived exosomal miR-19b-3p facilitates M2 macrophage polarization and exosomal LINC00273 secretion to promote lung adenocarcinoma metastasis via Hippo pathway[J]. Clin Transl Med, 2021, 11(9): e478. DOI: 10.1002/ctm2.478.
[22] WEI K, MA Z, YANG F, et al. M2 macrophage-derived exosomes promote lung adenocarcinoma progression by delivering miR-942[J]. Cancer Lett, 2022, 526: 205-216. DOI: 10.1016/j.canlet.2021.10.045.
[23] ZHAO C, TANG Q, YANG C, et al. Stereotactic body radiation therapy suppresses myeloid-derived suppressor cells by regulating miR-21/Sorbin and SH3 Domain-containing Protein 1 axis[J]. Hum Exp Toxicol, 2024, 43: 9603271241261307. DOI: 10.1177/09603271241261307.
[24] ZHENG Q, DING H, WANG L, et al. Circulating exosomal miR-96 as a novel biomarker for radioresistant non-small-cell lung cancer[J]. J Oncol, 2021, 2021: 5893981. DOI: 10.1155/2021/5893981.
[25] PARK G, SON B, KANG J, et al. LDR-induced miR-30a and miR-30b target the PAI-1 pathway to control adverse effects of NSCLC radiotherapy[J]. Mol Ther, 2019, 27(2): 342-354. DOI: 10.1016/j.ymthe.2018.10.015.
[26] ZHANG X, XIE K, ZHOU H, et al. Role of non-coding RNAs and RNA modifiers in cancer therapy resistance[J]. Mol Cancer, 2020, 19(1): 47. DOI: 10.1186/s12943-020-01171-z.
[27] MERCER T R, DINGER M E, MATTICK J S. Long non-coding RNAs: insights into functions[J]. Nat Rev Genet, 2009, 10(3): 155-159. DOI: 10.1038/nrg2521.
[28] MORAN V A, PERERA R J, KHALIL A M. Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs[J]. Nucleic Acids Res, 2012, 40(14): 6391-6400. DOI: 10.1093/nar/gks296.
[29] ZHANG M, GAO C, YANG Y, et al. Long noncoding RNA CRNDE/PRC2 participated in the radiotherapy resistance of human lung adenocarcinoma through targeting p21 expression[J]. Oncol Res, 2018, 26(8): 1245-1255. DOI: 10.3727/096504017X14944585873668.
[30] DU Z, ZHANG F, LIU L, et al. LncRNA ANRIL promotes HR repair through regulating PARP1 expression by sponging miR-7-5p in lung cancer[J]. BMC Cancer, 2023, 23(1): 130. DOI: 10.1186/s12885-023-10593-z.
[31] WU A, TANG J, DAI Y, et al. Downregulation of long noncoding RNA CRYBG3 enhances radiosensitivity in non-small cell lung cancer depending on p53 status[J]. Radiat Res, 2022, 198(3): 297-305. DOI: 10.1667/RADE-21-00197.1.
[32] LIU S, ZHAN N, GAO C, et al. Long noncoding RNA CBR3-AS1 mediates tumorigenesis and radiosensitivity of non-small cell lung cancer through redox and DNA repair by CBR3-AS1/miR-409-3p/SOD1 axis[J]. Cancer Lett, 2022, 526: 1-11. DOI: 10.1016/j.canlet.2021.11.009.
[33] YIN H, CHEN L, PIAO S, et al. M6A RNA methylation-mediated RMRP stability renders proliferation and progression of non-small cell lung cancer through regulating TGFBR1/SMAD2/SMAD3 pathway[J]. Cell Death Differ, 2023, 30(3): 605-617. DOI: 10.1038/s41418-021-00888-8.
[34] FU W, ZHAO J, HU W, et al. LINC01224/ZNF91 promote stem cell-like properties and drive radioresistance in non-small cell lung cancer[J]. Cancer Manag Res, 2021, 13: 5671-5681. DOI: 10.2147/CMAR.S313744.
[35] LIU A M, ZHU Y, HUANG Z W, et al. Long noncoding RNA FAM201A involves in radioresistance of non-small-cell lung cancer by enhancing EGFR expression via miR-370[J]. Eur Rev Med Pharmacol Sci, 2019, 23(13): 5802-5814. DOI: 10.26355/eurrev_201907_18319.
[36] ZHAO X, JIN X, ZHANG Q, et al. Silencing of the lncRNA H19 enhances sensitivity to X-ray and carbon-ions through the miR-130a-3p/WNK3 signaling axis in NSCLC cells[J]. Cancer Cell Int, 2021, 21(1): 644. DOI: 10.1186/s12935-021-02268-1.
[37] ZHANG J, LI W. Long noncoding RNA CYTOR sponges miR-195 to modulate proliferation, migration, invasion and radiosensitivity in nonsmall cell lung cancer cells[J]. Biosci Rep, 2018, 38(6): BSR20181599. DOI: 10.1042/BSR20181599.
[38] MA Q, NIU R, HUANG W, et al. Long noncoding RNA PTPRG antisense RNA 1 reduces radiosensitivity of nonsmall cell lung cancer cells via regulating miR-200c-3p/TCF4[J]. Technol Cancer Res Treat, 2020, 19: 1533033820942615. DOI: 10.1177/1533033820942615.
[39] DU R, JIANG F, YIN Y, et al. Knockdown of lncRNA X inactive specific transcript (XIST) radiosensitizes non-small cell lung cancer (NSCLC) cells through regulation of miR-16-5p/WEE1 G2 checkpoint kinase (WEE1) axis[J]. Int J Immunopathol Pharmacol, 2021, 35: 2058738420966087. DOI: 10.1177/2058738420966087.
[40] LIU J, JIANG M, GUAN J, et al. LncRNA KCNQ1OT1 enhances the radioresistance of lung squamous cell carcinoma by targeting the miR-491-5p/TPX2-RNF2 axis[J]. J Thorac Dis, 2022, 14(10): 4081-4095. DOI: 10.21037/jtd-22-1261.
[41] YU Z, WANG G, ZHANG C, et al. LncRNA SBF2-AS1 affects the radiosensitivity of non-small cell lung cancer via modulating microRNA-302a/MBNL3 axis[J]. Cell Cycle, 2020, 19(3): 300-316. DOI: 10.1080/15384101.2019.1708016.
[42] LI S, XIE Y, ZHOU W, et al. Association of long noncoding RNA MALAT1 with the radiosensitivity of lung adenocarcinoma cells via the miR-140/PD-L1 axis[J]. Heliyon, 2023, 9(6): e16868. DOI: 10.1016/j.heliyon.2023.e16868.
[43] TANG H, HUANG H, GUO Z, et al. Heavy ion-responsive lncRNA EBLN3P functions in the radiosensitization of non-small cell lung cancer cells mediated by TNPO1[J]. Cancers, 2023, 15(2): 511. DOI: 10.3390/cancers15020511.
[44] ZHANG F, SANG Y, CHEN D, et al. M2 macrophage-derived exosomal long non-coding RNA AGAP2-AS1 enhances radiotherapy immunity in lung cancer by reducing microRNA-296 and elevating NOTCH2[J]. Cell Death Dis, 2021, 12(5): 467. DOI: 10.1038/s41419-021-03700-0.
[45] LIANG D M, LI Y J, ZHANG J X, et al. m6A-methylated KCTD21-AS1 regulates macrophage phagocytosis through CD47 and cell autophagy through TIPR[J]. Commun Biol, 2024,
7(1): 215. DOI: 10.1038/s42003-024-05854-x.
[46] JIANG Y, WANG K, LU X, et al. Cancer-associated fibroblasts-derived exosomes promote lung cancer progression by OIP5-AS1/miR-142-5p/PD-L1 axis[J]. Mol Immunol, 2021, 140: 47-58. DOI: 10.1016/j.molimm.2021.10.002.
[47] CHEN L, REN P, ZHANG Y, et al. Long non-coding RNA GAS5 increases the radiosensitivity of A549 cells through interaction with the miR-21/PTEN/Akt axis[J]. Oncol Rep, 2020, 43(3): 897-907. DOI: 10.3892/or.2020.7467.
[48] BROWNMILLER T, JURIC J A, IVEY A D, et al. Y chromosome LncRNA are involved in radiation response of male non-small cell lung cancer cells[J]. Cancer Res, 2020, 80(19): 4046-4057. DOI: 10.1158/0008-5472.CAN-19-4032.
[49] CHEN H H, ZHANG T N, WU Q J, et al. Circular RNAs in lung cancer: recent advances and future perspectives[J]. Front Oncol, 2021, 11: 664290. DOI: 10.3389/fonc.2021.664290.
[50] KIM E, YOUN H, KWON T, et al. PAK1 tyrosine phosphorylation is required to induce epithelial-mesenchymal transition and radioresistance in lung cancer cells[J]. Cancer Res, 2014, 74(19): 5520-5531. DOI: 10.1158/0008-5472.CAN-14-0735.
[51] LI D, YAN L, ZHANG J, et al. Circular RNA hsa_circ_0004396 acts as a sponge of miR-615-5p to promote non-small cell lung cancer progression and radioresistance through the upregulation of P21-Activated Kinase 1[J]. J Clin Lab Anal, 2022, 36(6): e24463. DOI: 10.1002/jcla.24463.
[52] DONG G, LIANG Y, CHEN B, et al. N6-methyladenosine-modified circFUT8 competitively interacts with YTHDF2 and miR-186-5p to stabilize FUT8 mRNA to promote malignant progression in lung adenocarcinoma[J]. Thorac Cancer, 2023, 14(29): 2962-2975. DOI: 10.1111/1759-7714.15086.
[53] LIU B, LI H, LIU X, et al. CircZNF208 enhances the sensitivity to X-rays instead of carbon-ions through the miR-7-5p/SNCA signal axis in non-small-cell lung cancer cells[J]. Cell Signal, 2021, 84: 110012. DOI: 10.1016/j.cellsig.2021.110012.
[54] JIN Y, SU Z, SHENG H, et al. Circ_0086720 knockdown strengthens the radiosensitivity of non-small cell lung cancer via mediating the miR-375/SPIN1 axis[J]. Neoplasma, 2021,
68(1): 96-107. DOI: 10.4149/neo_2020_200331N333.
[55] LI Y H, XU C L, HE C J, et al. circMTDH.4/miR-630/AEG-1 axis participates in the regulation of proliferation, migration, invasion, chemoresistance, and radioresistance of NSCLC[J].
Mol Carcinog, 2020, 59(2): 141-153. DOI: 10.1002/mc.
23135.
[56] ZHU H, YANG W, CHENG Q, et al. Circ_0010235 regulates HOXA10 expression to promote malignant phenotypes and radioresistance in non-small cell lung cancer cells via decoying miR-588[J]. Balkan Med J, 2022, 39(4): 255-266. DOI: 10.4274/balkanmedj.galenos.2022.2022-2-50.
[57] YANG Z, WU H, ZHANG K, et al. Circ_0007580 knockdown strengthens the radiosensitivity of non-small cell lung cancer via the miR-598-dependent regulation of THBS2[J]. Thorac Cancer, 2022, 13(5): 678-689. DOI: 10.1111/1759-7714.
14221.
[58] YANG X, LI M, ZHAO Y, et al. Hsa_circ_0079530/AQP4 axis is related to non-small cell lung cancer development and radiosensitivity[J]. Ann Thorac Cardiovasc Surg, 2022, 28(5): 307-319. DOI: 10.5761/atcs.oa.21-00237.
[59] ZHANG C C, LI Y, FENG X Z, et al. Circular RNA circ_0001287 inhibits the proliferation, metastasis, and radiosensitivity of non-small cell lung cancer cells by sponging microRNA miR-21 and up-regulating phosphatase and tensin homolog expression[J]. Bioengineered, 2021, 12(1): 414-425. DOI: 10.1080/21655979.2021.1872191.
[60] ZHAO Y, JIA Y, WANG J, et al. circNOX4 activates an inflammatory fibroblast niche to promote tumor growth and metastasis in NSCLC via FAP/IL-6 axis[J]. Mol Cancer, 2024, 23(1): 47. DOI: 10.1186/s12943-024-01957-5.
[61] ZHOU J, LI P, ZHAO X, et al. Circ_16601 facilitates Hippo pathway signaling via the miR-5580-5p/FGB axis to promote my-CAF recruitment in the TME and LUAD progression[J]. Respir Res, 2023, 24(1): 276. DOI: 10.1186/s12931-023-02566-4.
[62] LI D, DU F, JIAO H, et al. CircHSPB6 promotes tumor-associated macrophages M2 polarization and infiltration to accelerate cell malignant properties in lung adenocarcinoma by CCL2[J]. Biochem Genet, 2024, 62(2): 1379-1395. DOI: 10.1007/s10528-023-10482-x.
[63] LIU Z, WANG T, SHE Y, et al. N6-methyladenosine-modified circIGF2BP3 inhibits CD8+ T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer[J]. Mol Cancer, 2021, 20(1): 105. DOI: 10.1186/s12943-021-01398-4.
[64] PARK S, NOH J M, CHOI Y L, et al. Durvalumab with chemoradiotherapy for limited-stage small-cell lung cancer[J].
Eur J Cancer, 2022, 169: 42-53. DOI: 10.1016/j.ejca.2022.
03.034.
[65] WANG X S, BAI Y F, VERMA V, et al. Randomized trial of first-line tyrosine kinase inhibitor with or without radiotherapy for synchronous oligometastatic EGFR-mutated non-small cell lung cancer[J]. J Natl Cancer Inst, 2023, 115(6): 742-748. DOI: 10.1093/jnci/djac015.
[66] JEONG K, YU Y J, YOU J Y, et al. Exosome-mediated microRNA-497 delivery for anti-cancer therapy in a microfluidic 3D lung cancer model[J]. Lab Chip, 2020, 20(3): 548-557. DOI: 10.1039/c9lc00958b.
[67] OTTESEN E W, LUO D, SEO J, et al. Human Survival Motor Neuron genes generate a vast repertoire of circular RNAs[J]. Nucleic Acids Res, 2019, 47(6): 2884-2905. DOI: 10.1093/nar/gkz034.
(責(zé)任編輯:林燕薇)