摘""要:絲狀真菌中,菌絲需要將生長(zhǎng)相關(guān)的物質(zhì)不斷向菌絲的頂端分泌以完成極性生長(zhǎng),已有研究表明胞泌復(fù)合體(exocyst"complex)在真菌分泌、極性生長(zhǎng)過程中發(fā)揮重要作用,但目前對(duì)于專性寄生真菌的菌絲生長(zhǎng)及致病機(jī)制的研究較少。巴西橡膠樹(Hevea"brasiliensis)是天然橡膠的主要來源,白粉病是為害巴西橡膠樹最嚴(yán)重的病害之一,其病原菌橡膠樹白粉菌(Erysiphe"quercicola)屬于專性寄生真菌。本研究在橡膠樹白粉菌中鑒定到了胞泌復(fù)合體亞基EqExo70,通過電擊轉(zhuǎn)化的方法在橡膠樹白粉菌中表達(dá)GFP標(biāo)記的EqExo70,表現(xiàn)出熒光在菌絲頂端聚集的現(xiàn)象,表明EqExo70可能與菌絲頂端極性生長(zhǎng)有關(guān)。通過將EqExo70的反向互補(bǔ)序列電擊轉(zhuǎn)化到橡膠樹白粉菌中進(jìn)行基因沉默,發(fā)現(xiàn)白粉菌的致病能力下降且菌絲生長(zhǎng)減慢,說明EqExo70影響橡膠樹白粉菌的致病力。接種沉默EqExo70基因的橡膠樹白粉菌的橡膠樹葉片,表現(xiàn)出胼胝質(zhì)沉積和活性氧爆發(fā)增強(qiáng)的現(xiàn)象,這表明EqExo70能夠抑制寄主的防衛(wèi)反應(yīng)。上述結(jié)果表明EqExo70是影響橡膠樹白粉菌致病的關(guān)鍵因子,并可能參與了橡膠樹白粉菌與橡膠樹的互作及菌絲的極性生長(zhǎng)。
關(guān)鍵詞:橡膠樹;白粉菌;胞泌復(fù)合體;Exo70蛋白亞基中圖分類號(hào):S763.7""""""文獻(xiàn)標(biāo)志碼:A
EqExo70"Subunit"of"Exocyst"Complex"Regulating"the"Growth"and"Pathogenicity"of"Erysiphe"quercicola
CHEN"Yalong1,"YIN"Jinyao1,2,"ZHU"Xuehuan1,2,"LYU"Yanyang1,2,"LIU"Wenbo1,2,"MIAO"Weiguo1,2*,"LI"Xiao1,2*
1."School"of"Tropical"Agriculture"and"Forestry,"Hainan"University"/"Key"Laboratory"of"Green"Prevention"and"Control"of"Tropical"Plant"Diseases"and"Pests,"Ministry"of"Education,"Haikou,"Hainan"570228,"China;"2."Danzhou"Invasive"Species"Observation"and"Research"Station"of"Hainan"Province,"Danzhou,"Hainan"571737,"China
Abstract:"Hyphal"polarized"growth"in"filamentous"fungi"requires"tip-directed"secretion"of"growth-related"substances,"and"previous"studies"have"shown"that"exocyst"complex"plays"an"important"role"in"the"processes"of"fungal"secretion"and"polar"growth."However,"there"are"few"researches"on"the"hyphal"polarized"growth"and"pathogenic"mechanism"of"obligate"biotrophic"fungi"at"present."Rubber"tree"(Hevea"brasiliensis)"is"the"most"important"source"of"natural"rubber."Powdery"mildew"is"one"of"the"most"serious"diseases"of"H."brasiliensis,"and"its"pathogen"Erysiphe"quercicolanbsp;belongs"to"obligate"parasitic"fungi."In"this"study,"EqExo70,"a"subunit"of"the"exocyst"complex,"was"identified"in"E."quercicola."The"GFP"labeled"EqExo70"was"expressed"in"the"E."quercicola"by"electrotransformation"method,"and"it"was"found"that"the"protein"showed"fluorescence"aggregation"at"the"hyphal"tip,"suggesting"that"EqExo70"may"be"related"to"hyphal"polarized"growth."In"addition,"we"silenced"the"EqExo70"by"electroporating"the"reverse"complementary"sequence"of"EqExo70"into"the"E."quercicola,"it"was"found"that"the"pathogenic"ability"of"E."quercicola"decreased"and"the"growth"of"hypha"slowed"down,"suggesting"that"EqExo70"affects"the"pathogenicity"of"E."quercicola."The"level"of"callose"deposition"and"reactive"oxygen"species"burst"in"H."brasiliensis"significantly"increased"upon"infection"with"the"EqExo70-silenced"strain,"indicating"that"EqExo70"contributes"to"suppressing"host"immune"response."The"results"indicated"that"EqExo70"is"a"key"factor"affecting"pathogenicity"of"E."quercicola,"and"may"be"involved"in"the"interaction"with"H."brasiliensis,"as"well"as"the"hyphal"polarized"growth.
Keywords:"rubber"tree;"powdery"mildew"fungus"(Erysiphe"quercicola);"exocyst"complex;"Exo70"subunit"of"the"exocyst"complex
DOI:"10.3969/j.issn.1000-2561.2025.05.019
真核生物的胞泌復(fù)合體(exocyst"complex)控制蛋白的外泌(exocytosis)和細(xì)胞極性生長(zhǎng)(polarized"growth)。胞泌復(fù)合體主要由Exo70、Sec5和Sec6等8個(gè)蛋白亞基組成。在酵母中,胞泌復(fù)合體定位于出芽部位、子細(xì)胞的極性頂端及子細(xì)胞與母細(xì)胞連接處[1]。在絲狀真菌,如粗糙脈孢霉(Neurospora"crassa)、棉病囊菌(Ashbya"gossypii)、白色念珠菌(Candida"albicans)和米曲霉(Aspergillus"oryzae)中,胞泌復(fù)合體定位于菌絲尖端[2-6],調(diào)節(jié)菌絲的頂端生長(zhǎng)。此外,胞泌復(fù)合體也與絲狀真菌的致病性有關(guān)。稻瘟病菌(Magnaporthe"Oryzae)中Sec5和Exo70基因的突變抑制了侵染結(jié)構(gòu)附著胞的形成并導(dǎo)致毒性蛋白/效應(yīng)蛋白(effectors)分泌缺陷,導(dǎo)致致病性下降[7]?;移咸焰呔˙otrytis"cinerea)中Exo70的缺失顯著影響了真菌的生長(zhǎng)、分生孢子和菌核的產(chǎn)生以及致病性,并且Sec5、Sec4基因突變菌株的生長(zhǎng)速率減慢,對(duì)番茄、蘋果和葡萄的侵染下降[8-9]。煙曲霉(Aspergillus"fumigatus)中的Sec4同源基因敲除后其致病能力降低[10]。但目前對(duì)于該復(fù)合體在專性寄生真菌的侵染以及克服寄主防衛(wèi)反應(yīng)的過程中發(fā)揮的作用知之甚少。
白粉菌是一類專性寄生真菌,侵染多種作物,如大麥、葡萄、橡膠樹等。橡膠樹白粉菌(Erysiphe"quercicola)侵染巴西橡膠樹(Hevea"brasiliensis)后會(huì)導(dǎo)致天然橡膠產(chǎn)量嚴(yán)重下降[11-12]。該白粉菌常侵染植物幼嫩組織,包括葉片和芽,并在受侵染的組織表面產(chǎn)生由菌絲和分生孢子組成的白粉菌菌落[13]。專性寄生真菌目前無法離體培養(yǎng),因此,傳統(tǒng)的模式真菌基因操作方法無法適用[14-15]。目前已有研究報(bào)道,在瓜類白粉菌(Podosphaera"xanthii)和橡膠樹白粉菌(E."quercicola)中使用電擊轉(zhuǎn)化的方法[16-17]分別表達(dá)了綠色熒光蛋白GFP和效應(yīng)蛋白EqIsc1,并且這種電擊轉(zhuǎn)化方法可以實(shí)現(xiàn)靶基因的沉默。
本課題組前期已完成對(duì)橡膠樹白粉菌基因組的測(cè)序[18-19],多基因組比對(duì)分析結(jié)果表明該菌碳水化合物代謝相關(guān)基因、植物細(xì)胞壁降解酶和效應(yīng)蛋白基因較少,推測(cè)該菌可能可以較好地克服寄主抗性[17]。因此,本研究擬利用電擊轉(zhuǎn)化的方法初步分析和探討橡膠樹白粉菌中EqExo70蛋白亞基在菌絲極性生長(zhǎng)和致病力等方面的生物功能,以期增加對(duì)白粉菌致病機(jī)制的了解,為控制白粉病找到更多的潛力靶點(diǎn)。
1.1""材料
1.1.1""植物材料及實(shí)驗(yàn)菌株""橡膠樹(Hevea"brasiliensis)品種:熱研7-33-97(嫁接苗)購(gòu)自中國(guó)熱帶農(nóng)業(yè)科學(xué)院;橡膠樹白粉菌(Erisiphe"quercicola)(菌株HO-73)保存于海南大學(xué)植物保護(hù)學(xué)院分子植物病理學(xué)實(shí)驗(yàn)室,采自海南省儋州市橡膠林,接種在橡膠樹熱研7-33-97(嫁接苗)上,培養(yǎng)溫度為22"℃,16"h光照/8"h黑暗周期,相對(duì)濕度為70%。大腸桿菌(DH5α)購(gòu)自天根生化科技有限公司。
1.1.2""載體以及培養(yǎng)基""pJNARG載體由熱帶農(nóng)林生物災(zāi)害綠色防控教育部重點(diǎn)實(shí)驗(yàn)室保存。LB培養(yǎng)基按常規(guī)方法配制[20-21]。
1.1.3""實(shí)驗(yàn)試劑""Taq"Pro"Universal"SYBR"qPCR"Master"Mix、RNA"isolater"Total"RNA"Extraction"Reagent、DNA純化試劑盒、2×ClonExpress"Mix、2×Phanta"Max"Master"Mix購(gòu)自南京諾唯贊生物科技股份有限公司;質(zhì)粒提取試劑盒購(gòu)自O(shè)mage公司;苯胺藍(lán)、3,3¢-二氨基聯(lián)苯胺(DAB)購(gòu)自生工生物工程(上海)股份有限公司;其他試劑購(gòu)自TaKaRa公司及北京索萊寶科技有限公司。
1.2""方法
1.2.1""EqExo70的生物信息學(xué)分析""使用Bioedit軟件對(duì)橡膠樹基因組數(shù)據(jù)進(jìn)行對(duì)比,獲得酵母菌Exo70的同源基因EqExo70;使用MEGA軟件對(duì)11個(gè)同源蛋白進(jìn)行Clustal"W多序列比對(duì)并繪制進(jìn)化樹;使用MEME(https://memesuite.org/meme/"tools/meme)在線軟件對(duì)11個(gè)蛋白進(jìn)行結(jié)構(gòu)域分析;使用NCBI的Conserved"Domain"Search"Service(CD"Search)(https://www.ncbi.nlm.nih.gov/"Structure/cdd/wrpsb.cgi)分析EqExo70的保守結(jié)構(gòu)域。使用TB-tools軟件制圖[22]。
1.2.2""目的基因的克隆與載體構(gòu)建""通過Premier"5.0軟件設(shè)計(jì)基因擴(kuò)增引物EqExo70-F/R(表1),
擴(kuò)增EqExo70基因的完整序列。收集新鮮的橡膠樹白粉菌孢子,使用RNA提取試劑盒提取橡膠樹白粉菌的RNA,反轉(zhuǎn)錄合成cDNA。以橡膠樹白粉菌cDNA為模板,進(jìn)行目的片段的擴(kuò)增。在獲得目的片段之后,通過T4連接酶將片段構(gòu)建到pMD-18T載體中以便后續(xù)進(jìn)行基因擴(kuò)增。
1.2.3""EqExo70蛋白亞基在白粉菌絲中的定位""使用EcoRⅠ限制性內(nèi)切酶將pJNARG載體進(jìn)行單酶切,使用Cycle"Pure"Kit純化試劑盒(諾唯贊,DC301-1)進(jìn)行酶切載體的純化回收。擴(kuò)增EqExo70片段,通過同源重組構(gòu)建pJNARG-"EqExo70-GFP載體。提取含有pJNARG-EqExo70-"GFP載體的質(zhì)粒,使用Xcm"I限制性內(nèi)切酶進(jìn)行酶切、回收。從白粉菌基因組中擴(kuò)增RP60啟動(dòng)子及Tub2抗性基因(攜帶多菌靈抗性),進(jìn)行融合PCR后回收,通過T4連接酶與回收的pJNARG-EqExo70-GFP載體16"℃過夜連接,獲得pJNARG-EqExo70-GFP-Tub2重組表達(dá)載體。收集白粉菌孢子懸浮液(濃度為1×106個(gè)/mL),將含有pJNARG-EqExo70-GFP-Tub2的質(zhì)粒通過電擊轉(zhuǎn)化的方法(1.70"kV,間隔5"s,電擊3次)轉(zhuǎn)入白粉菌孢子[17],在橡膠樹古銅期葉片上接種白粉菌孢子懸浮液,24"℃環(huán)境下培養(yǎng)7"d,在接種的第2~7天內(nèi),每天施用多菌靈(100"μg/mL)篩選轉(zhuǎn)化菌株,7"d后用顯微鏡觀察轉(zhuǎn)化子熒光分布情況。
1.2.4""EqExo70基因沉默對(duì)白粉菌致病力的影響測(cè)定""構(gòu)建pJNARG-EqExo70RNAi-GFP-Tub2重組表達(dá)載體,通過電擊轉(zhuǎn)化的方法轉(zhuǎn)入白粉菌孢子[17](方法同1.2.3),接種在橡膠樹的古銅期葉片,進(jìn)行多菌靈藥劑篩選,接種7"d后觀察發(fā)病情況并使用ImageJ軟件對(duì)葉片上的病斑面積進(jìn)行計(jì)算,本實(shí)驗(yàn)進(jìn)行3次生物學(xué)重復(fù)。用RNA"isolater"Total"RNA"Extraction"Reagent試劑盒提取白粉菌的總RNA。以EqEF1a為內(nèi)參基因,采用SYBR"GreenⅠ熒光染料法進(jìn)行熒光定量PCR(quantitative"real-time"PCR,qRT-PCR)檢測(cè)。每個(gè)樣本進(jìn)行3次獨(dú)立重復(fù)。反應(yīng)完成后,使用2-ΔΔCt法分析EqExo70基因的相對(duì)表達(dá)水平。
1.2.5""苯胺藍(lán)染色""在橡膠樹古銅期葉片表面接種EqExo70沉默菌株(方法同1.2.4),同時(shí)施用多菌靈藥劑篩選,接種7"d后用乙醇乙酸脫色液(乙醇∶乙酸=3∶1)脫色,用0.1%的苯胺藍(lán)染色,30"min后使用顯微鏡觀察菌絲發(fā)育狀況以及吸器數(shù)量(統(tǒng)計(jì)每0.3"mm2的吸器數(shù)量)。
1.2.6""活性氧爆發(fā)和胼胝質(zhì)沉積測(cè)定""為探究EqExo70沉默后是否影響橡膠樹的防衛(wèi)反應(yīng),將沉默EqExo70的白粉菌轉(zhuǎn)化子接種至橡膠樹古銅期葉片上,使用多菌靈(100"μg/mL)溶液進(jìn)行噴灑處理,7"d后使用3,3?-二氨基聯(lián)苯胺(DAB)染色以及0.01%苯胺藍(lán)染色后檢測(cè)橡膠樹葉片活性氧爆發(fā)和胼胝質(zhì)沉積情況。
(1)活性氧爆發(fā)測(cè)定。將帶有白粉菌病斑的橡膠葉片剪下,置于培養(yǎng)皿中,加入20"mL"0.1%"3,3?-二氨基聯(lián)苯胺(DAB)溶液中,用錫箔紙包裹并在搖床上過夜染色(振蕩混勻)。配制脫色液并將葉片放在燒杯中水浴脫色,顯微鏡觀察葉片活性氧爆發(fā)情況。
(2)胼胝質(zhì)沉積測(cè)定。接種橡膠樹白粉菌的橡膠葉片放入脫色液中室溫脫色3~4"h,隨后加入緩沖液(5%"K2HPO4),在室溫靜置0.5"h。使用0.01%苯胺藍(lán)溶液(0.01"g苯胺藍(lán)溶于100"mL"0.067"mol/L"K2HPO4)進(jìn)行避光染色4"h,使用熒光顯微鏡檢測(cè)胼胝質(zhì)沉積情況(統(tǒng)計(jì)每0.3"mm2的胼胝質(zhì)數(shù)量)。
2.1""Exo70生物信息學(xué)分析
使用Mega軟件進(jìn)行Clustal"W比對(duì)并繪制進(jìn)化樹發(fā)現(xiàn),EqExo70與布氏白粉菌、葡萄白粉菌及甜瓜白粉菌的親緣關(guān)系較近,可能在遺傳上具有穩(wěn)定性和保守性。同時(shí)利用MEME在線軟件分析發(fā)現(xiàn),EqExo70與除酵母菌Exo70外的10個(gè)Exo70蛋白均具有位置、大小相近的10個(gè)motif,可能在功能上具有相似性。同時(shí)使用NCBI的CD-Search工具分析發(fā)現(xiàn),所有Exo70蛋白均具有典型的Exo70結(jié)構(gòu)域(圖1)。
2.2""EqExo70蛋白亞基定位在白粉菌菌絲尖端
為了觀察EqExo70蛋白亞基在白粉菌菌絲中的定位,構(gòu)建了pJNARG-EqExo70-GFP-Tub2熒光表達(dá)載體,通過電擊轉(zhuǎn)化的方法轉(zhuǎn)入白粉菌孢子,7"d后用熒光顯微鏡觀察其定位情況。結(jié)果顯示,EqExo70-GFP融合蛋白菌株熒光聚集在菌絲尖端,呈現(xiàn)頂端定位,而GFP菌株(對(duì)照)則均勻分布在白粉菌菌絲中,未表現(xiàn)頂端定位(圖2)。在絲狀真菌中,頂端極性的維持對(duì)菌絲的極性生長(zhǎng)至關(guān)重要,這表明EqExo70蛋白亞基可能在白粉菌菌絲的極性生長(zhǎng)中發(fā)揮作用。
2.3""電擊轉(zhuǎn)化沉默EqExo70導(dǎo)致橡膠樹白粉菌致病力下降
為了探究EqExo70是否影響橡膠樹白粉菌的致病能力,通過電擊轉(zhuǎn)化將EqExo70反向互補(bǔ)序列轉(zhuǎn)入橡膠樹白粉菌中,誘導(dǎo)靶基因沉默并測(cè)定菌株致病性。與對(duì)照(WT、GFP:表達(dá)GFP基因的轉(zhuǎn)化子)相比,-EqExo70(沉默EqExo70基因的轉(zhuǎn)化子)菌株的病斑面積降低了64%(圖3A,圖3B),提取白粉菌中的RNA,通過qRT-PCR檢測(cè)發(fā)現(xiàn),EqExo70沉默后的白粉菌中EqExo70基因表達(dá)量下調(diào)47%(圖3C)。結(jié)果表明EqExo70基因沉默會(huì)導(dǎo)致白粉菌致病力顯著下降,因此該蛋白亞基在白粉菌侵染過程中發(fā)揮重要作用。
2.4""EqExo70基因沉默影響白粉菌菌絲發(fā)育
為了探究EqExo70對(duì)白粉菌菌絲發(fā)育的影響,將EqExo70進(jìn)行沉默,觀察菌絲生長(zhǎng)發(fā)育狀況。結(jié)果顯示與對(duì)照(WT、GFP菌株)相比,EqExo70沉默菌株的菌絲發(fā)育受到明顯抑制(圖4A),經(jīng)過統(tǒng)計(jì)分析,吸器數(shù)量與對(duì)照相比減少94%(圖4B)。這表明EqExo70蛋白在白粉菌的生長(zhǎng)發(fā)育過程中發(fā)揮著至關(guān)重要的作用,EqExo70的基因沉默嚴(yán)重抑制白粉菌菌絲的生長(zhǎng)以及吸器的形成。
2.5""EqExo70影響橡膠樹的防衛(wèi)免疫反應(yīng)
植物可以通過表面受體(pattern"recognition"receptors,"PRRs)特異性識(shí)別胞外信號(hào),并引起相應(yīng)免疫應(yīng)答反應(yīng),如氣孔關(guān)閉、活性氧和胼胝質(zhì)積累等來抑制病原菌侵染實(shí)現(xiàn)廣譜抗性[23-24]。本研究中EqExo70沉默轉(zhuǎn)化子接種的橡膠樹葉片與對(duì)照相比,活性氧爆發(fā)及胼胝質(zhì)沉積顯著增加(圖5A)。沉默EqExo70后每克葉片的活性氧強(qiáng)度顯著提高,胼胝質(zhì)沉積面積增加(圖5B,圖5C)。因此,EqExo70基因沉默可增加橡膠樹葉片活性氧的爆發(fā)和胼胝質(zhì)的沉積,EqExo70可能參與白粉菌與橡膠樹的互作過程。
本研究對(duì)橡膠樹白粉菌EqExo70蛋白亞基功能進(jìn)行了分析,通過電擊轉(zhuǎn)化的方法將pJNARG-"Tub2-EqExo70-GFP載體轉(zhuǎn)入白粉菌中,觀察到EqExo70-GFP融合蛋白熒光聚集在白粉菌絲尖端,呈現(xiàn)極性定位。菌絲的極性生長(zhǎng)依賴菌絲尖端的定向延伸,此前已有研究報(bào)道,灰葡萄孢菌(B."cinerea)中的Exo70聚集在菌絲尖端,影響菌絲的極性生長(zhǎng)[8]。在非絲狀真菌中,Exo70蛋白亞基也具有相似的功能,如在裂變酵母(S."romyces)中Exo70可沿著肌動(dòng)蛋白進(jìn)行運(yùn)輸,并定位到細(xì)胞極點(diǎn)[25];在出芽酵母(S."cerevisiae)中,芽體的極性生長(zhǎng)也離不開Exo70蛋白與GTPase的相互作用[26]。這也表明EqExo70蛋白可能在菌絲極性生長(zhǎng)以及物質(zhì)的極性運(yùn)輸中發(fā)揮著重要作用,具體作用模式將在后續(xù)研究中進(jìn)行進(jìn)一步探索。
電擊轉(zhuǎn)化介導(dǎo)的基因沉默是通過電穿孔的方法將相關(guān)靶基因的反向互補(bǔ)序列轉(zhuǎn)入,進(jìn)行抗性篩選獲得沉默轉(zhuǎn)化子的一項(xiàng)技術(shù)[16]。橡膠樹白粉菌相關(guān)研究已經(jīng)報(bào)道通過該技術(shù)對(duì)保守的MAPK激酶EqFus3、EqSlt2以及actin相關(guān)基因EqSac6進(jìn)行沉默,并發(fā)現(xiàn)與EqSlt2和EqSac6沉默相比,EqFus3沉默導(dǎo)致的致病性下降更為明顯[17]。本研究中,通過電擊轉(zhuǎn)化技術(shù)對(duì)EqExo70進(jìn)行沉默,發(fā)現(xiàn)白粉菌的致病力降低并且沉默菌株吸器數(shù)量減少,表明EqExo70對(duì)橡膠樹白粉菌菌絲發(fā)育以及致病力至關(guān)重要。據(jù)報(bào)道香蕉枯萎病菌(Fusarium"odoratissimum)中Exo70基因的缺失導(dǎo)致了病原菌的生長(zhǎng)、分化和致病性的缺陷,Exo70的缺失還導(dǎo)致內(nèi)源性葡萄糖苷酶和淀粉酶活性的下降[27]。內(nèi)毒素類似物ES2-14處理稻瘟病菌(M."oryzae)可抑制附著胞的形成,減小稻瘟病菌引起的病變[28]。這為EqExo70在未來能夠應(yīng)用于橡膠樹白粉菌的防治提供了更多的參考和可能性,同時(shí),本研究也對(duì)病原菌的靶標(biāo)防治提供了新的研究方向。
Exo70蛋白亞基在真菌——植物相互作用方面,也發(fā)揮著重要作用。如植物中的Exo70亞基在PTI中扮演著重要角色,能協(xié)助對(duì)真菌病原體的分離和包裹[29-31]。活性氧爆發(fā)和胼胝質(zhì)沉積被認(rèn)為是植物應(yīng)對(duì)病原物侵染的基礎(chǔ)防衛(wèi)反應(yīng)[32]。此前的研究表明,擬南芥(Arabidopsis"thaliana)中Exo70和MLO蛋白可以相互作用調(diào)節(jié)胼胝質(zhì)的合成,增強(qiáng)其對(duì)白粉菌的抗病能力[33]。本研究中發(fā)現(xiàn),EqExo70沉默后,活性氧爆發(fā)及胼胝質(zhì)沉積顯著增加,表明植物防衛(wèi)反應(yīng)增強(qiáng),這預(yù)示著EqExo70可能參與了白粉菌與橡膠樹的互作過程,幫助白粉菌的侵染。
橡膠樹白粉菌的胞泌復(fù)合體亞基EqExo70能夠表現(xiàn)出在菌絲尖端的極性定位,沉默EqExo70時(shí)能夠影響白粉菌的生長(zhǎng)和致病力,并且能夠引起寄主防衛(wèi)反應(yīng)的增強(qiáng),這表明EqExo70蛋白亞基在真菌——植物相互作用以及病原菌的靶標(biāo)防治方面具有很大的研究?jī)r(jià)值和研究潛力。本課題組將進(jìn)一步研究橡膠樹白粉菌EqExo70蛋白亞基在極性生長(zhǎng)和極性運(yùn)輸?shù)淖饔?,以期明確EqExo70在白粉菌侵染過程中發(fā)揮的作用。
參考文獻(xiàn)
[7]"Giraldo"M"C,"Dagdas"Y"F,"Gupta"Y"K,"Mentlak"T"A,"Yi"M,"Martinez-Rocha"A"L,"Saitoh"H,"Terauchi"R,"Talbot"N"J,"Valent"B."Two"distinct"secretion"systems"facilitate"tissue"invasion"by"the"rice"blast"fungus"Magnaporthe"oryzae[J]."Nature"Communications,"2013,"4:"1996.
[8]"Zhang"Z"Q,"Qin"G"Z,"Li"B"Q."Knocking"out"Bcsas1"in"Botrytis"cinerea"impacts"growth,"development,"and"secretion"of"extracellular"proteins,"which"decreases"virulence[J]."Molecular"Plant-Microbe"Interactions,"2014,"27(6):"590-600.
[9]"Guan"W"Q,"Feng"J,"Wang"R"X,"Ma"Z"W,"Wang"W"X,"Wang"K,"Zhu"T"H."Functional"analysis"of"the"exocyst"subunit"BcExo70"in"Botrytis"cinerea[J]."Current"Genetics,"2020,"66:"85-95.
[10]"Powers-Fletcher"M"V,"Feng"X"Z,"Krishnan"K,"Askew"D"S."Deletion"of"the"sec4"homolog"srgA"from"Aspergillus"fumigatus"is"associated"with"an"impaired"stress"response,"attenuated"virulence"and"phenotypic"heterogeneity[J]."PLoS"One,"2018,"58(3):"379.
[11]"Berthelot"K,"Peruch"F,"Lecomte"S."Highlights"on"Hevea"brasiliensis"hevein"proteins[J]."Biochimie,"2016,"127:"258-270.
[12]"Liyanage"K"K,"Khan"S,"Brooks"S,"Mortimer"P"E,"Karunarathna"S"C,"Xu"J."Taxonomic"revision"and"phylogenetic"analyses"of"rubber"powderymildew"fungi[J]."Microbial"Pathogenesis,"2017,"105:"185-195.
[13]"Wu"H,"Pan"Y,"Di"R,"He"Q"G,"Rajaofera"M"J"N,"Liu"W"B."Molecular"identification"of"the"powdery"mildew"fungus"infecting"rubber"trees"in"China[J]."Frontiers"in"Microbiology,"2019,"49:"e12519.
[14]"Margaritopoulou"T,"Kizis"D,"Kotopoulis"D,"Papadakis"I"E,"Anagnostopoulos"C,"Baira"E,"Termentzi"A,"Vichou"A"E,"Leifer"t"C,"Markellou"E."Enriched"H3K4me3"marks"at"Pm-0"resistance-related"genes"prime"courgette"against"Podosphaera"xanthii[J]."Plant"Physiology,"2022,"188(1):"576-592.
[15]"Martínez-Cruz"J"M,"Polonio"á,"Ruiz-Jiménez"L,"Vielba-Fernández"A,"Hierrezuelo"J,"Romero"D."Suppression"of"chitin-triggered"immunity"by"a"new"fungal"chitin-binding"effector"resulting"from"alternative"splicing"of"a"chitin"deacetylase"gene[J]."Journal"of"Fungi,"2022,"8(10):"1022.
[16]"Martínez-Cruz"J,"Romero"D,"Vicente"A"D,"Pérez-García"A."Transformation"of"the"cucurbit"powdery"mildew"pathogen"Podosphaera"xanthii"by"Agrobacterium"tumefaciens[J]."New"Phytologist,"2017,"213(4):"1961-1973.
[17]"Yin"J"Y,"Li"X,"Dong"L"P,"Zhu"X"H,"Chen"Y,"L"Zhao"W"Y,"Liu"Y"H,"Shan"J"X,"Liu"W"B,"Lin"C"H,"Miao"W"G."Transformation-based"gene"silencing"and"functional"characterization"of"an"ISC"effector"reveal"how"a"powdery"mildew"fungus"disturbs"salicylic"acid"biosynthesis"and"immune"response"in"the"plant[J]."Molecular"Plant"Pathology,"2024,"25(11):"e70030.
[18]"Liang"P,"Liu"S"Y,"Xu"F,"Jiang"S"Q,"Yan"J,"He"Q"G,"Liu"W"B,"Lin"C"H,"Zheng"F"C,"Wang"X"F,"Miao"W"G."Powdery"mildews"are"characterized"by"contracted"carbohydrate"metabolism"and"diverse"effectors"to"adapt"to"obligate"biotrophic"lifestyle[J]."Frontiers"in"Microbiology,"2018,"9:"3160.
[19]"Ji"X"B,"Tian"Y,"Liu"W"B,"Lin"C"H,"He"F,"Yang"J,"Miao"W"G,"Li"Z"G."Mitochondrial"characteristics"of"the"powdery"mildew"genus"Erysiphe"revealed"an"extraordinary"evolution"in"protein-coding"genes[J]."Journal"of"Biological"Macromolecule,"2023,"230:"123153.
[20]"董林朋,"殷金瑤,"趙文淵,"林春花,"劉文波,"繆衛(wèi)國(guó),"李瀟."啟動(dòng)子WY172和WY195在暹羅炭疽菌中的活性研究[J]."熱帶生物學(xué)報(bào),"2023,"14(5):"506-513.Dong"L"P,"Yin"J"Y,"Zhao"W"Y,"Lin"C"H,"LIU"W"B,"Miao"W"G,"Li"X."Study"on"the"activity"of"promoter"WY172"and"WY195"in"Anthracis"Siamensis[J]."Journal"of"Tropical"Biology,"2023,"14(5):"506-513."(in"Chinese)
[21]"聶雪純,"李思鵬,"劉玉涵,"繆衛(wèi)國(guó),"李瀟."橡膠樹HbLFG2"蛋白對(duì)植物免疫防衛(wèi)的調(diào)控機(jī)理[J]."熱帶生物學(xué)報(bào),"2023,"14(4):"380-388.Nie"X"C,"Li"S"P,"Liu"Y"H,"Miao"Wnbsp;G,"Li"X."Regulation"mechanism"of"HbLFG2"protein"on"plant"immune"defense[J]."Journal"of"Tropical"Biology,"2023,"14(4):"380-388."(in"Chinese)
[22]"Chen"C"J,"Wu"Y,"Li"J"W,"Wang"X,"Zeng"Z"H,"Xu"J,"Liu"Y"L,"Feng"J"T,"Chen"H,"He"Y"H,"Xia"R."TBtools-II:"A"\"one"for"all,"all"for"one\""bioinformatics"platform"for"biological"big-data"mining[J]."Molecular"Plant,"2023,"16:"1733-1742.
[23]"Bigeard"J,"Colcombet"J,"Hirt"H."Signaling"mechanisms"in"pattern-triggered"immunity"(PTI)[J]."Molecular"Plant,"2015,"8:"521-539.
[24]"Couto"D,"Zipfel"C."Regulation"of"pattern"recognition"receptor"signalling"in"plants[J]."Nature"Reviews"Immunology,"2016,"16:"537-552.
[25]"Bendezú"F"O,"Vincenzetti"V,"Martin"S"G."Fission"yeast"Sec3"and"Exo70"are"transported"on"actin"cables"and"localize"the"exocyst"complex"to"cell"poles[J]."PLoS"One,"2012,"7(6):"e40248.
[26]"He"B,"Xi"F"G,"Zhang"X"Y,"Zhang"J,"Guo"W."Exo70"interacts"with"phospholipids"and"mediates"the"targeting"of"the"exocyst"to"the"plasma"membrane[J]."European"Molecular"Biology"Organization"Journal,"2007,"26(18):"4053-4065.
[27]"Yang"S,"Zhou"X,"Guo"P"T,"Lin"Y"Q,"Fan"Q"W,"Zuriegat"Q,"Lu"S"M,"Yang"J"J,"Yu"W"Y,"Liu"H,"Lu"G"D,"Shim"W"B,"Wang"Z"H,"Yun"Y"Z."The"exocyst"regulates"hydrolytic"enzyme"secretion"at"hyphal"tips"and"septa"in"the"banana"fusarium"wilt"fungus"Fusarium"odoratissimum[J]."Applied"and"Environmental"Microbiology,"2021,"87(17):"e0308820.
[28]"Huang"L,"Li"X"H,"Li"Y,"Yin"X"L,"Li"Y,"Wu"B,"Mo"H"P,"Liao"C"J,"Mengiste"T,"Guo"W,"Dai"M"J,"Zhang"C"H."Endosidin2-14"Targets"the"exocyst"complex"in"plants"and"fungal"pathogens"to"inhibit"exocytosis[J]."Plant"Physiology,"2019,"180(3):nbsp;1756-1770.
[29]"Stegmann"M,"Anderson"R"G,"Westphal"L,"Rosahl"S,"McDowell"J"M,"Trujillo"M."The"exocyst"subunit"Exo70B1"is"involved"in"the"immune"response"of"Arabidopsis"thaliana"to"different"pathogens"and"cell"death[J]."Plant"Signal"and"Behavior,"2013,"8:"e27421.
[30]"Stegmann"M,"Anderson"R"G,"Ichimura"K,"Pecenkova"T,"Reuter"P,"?ársky"V,"McDowell"J"M,"Shirasu"K,"Trujillo"M."The"ubiquitin"Ligase"PUB22"targets"a"subunit"of"the"exocyst"complex"required"for"PAMP-triggered"responses"in"Arabidopsis[J]."Plant"Cell,"2012,"24:"4703-4716.
[31]"Pecenková"T,"Hála"M,"Kulich"I,"Kocourková"D,"Drdová"E,"Fendrych"M,"Toupalová"H,"Zársky"V."The"role"for"the"exocyst"complex"subunits"Exo70B2"and"Exo70H1"in"the"plant-pathogen"interaction[J]."Journal"of"Experimental"Botany,"2011,"62:"2107-2116.
[32]"MITTLER"R."ROS"are"good[J]."Trends"in"Plant"Science,"2017,"22(1):"11-19.
[33]"Huebbers"J"W,"Caldarescu"G"A,"Kubátová"Z,"Sabol"P,"Levecque"S"C"J,"Kuhn"H,"Kulich"I,"Reinst?dler"A,"Büttgen"K,"Manga-Robles"A,"Mélida"H,"Pauly"M,"Panstruga"R,"?ársky"V."Interplay"of"EXO70"and"MLO"proteins"modulates"trichome"cell"wall"composition"and"susceptibility"to"powdery"mildew[J]."Plant"Cell,"2024,"36(4):"1007-1035.