摘""要:白木香果實中含有一類四環(huán)三萜化合物葫蘆素,其具有抗炎、保肝和抗腫瘤等活性。細胞色素P450酶(cytochrome"P450,"CYP)是葫蘆素生物合成途徑中的關鍵酶。白木香中參與葫蘆素合成的P450基因尚未得到深入研究,本研究基于白木香轉(zhuǎn)錄組數(shù)據(jù),克隆了1個P450基因(AsCYP131)。該基因的開放閱讀框(ORF)長度為1491"bp,編碼496個氨基酸,蛋白分子質(zhì)量為55.39"kDa,理論等電點(pI)為7.65,親水性平均系數(shù)為–0.053,不穩(wěn)定系數(shù)為47.16,屬于不穩(wěn)定蛋白,包含40個潛在磷酸化位點,二級結構以α螺旋和無規(guī)則卷曲為主。多重序列比對和系統(tǒng)進化樹分析結果顯示,AsCYP131基因編碼的蛋白與已報道參與葫蘆素生物合成的CsCYP、CmCYP和ClCYP聚為一支,C端的功能結構域序列表現(xiàn)出顯著的一致性。通過實時熒光定量PCR(RT-qPCR)檢測AsCYP131在白木香不同組織中的表達水平,結果表明,AsCYP131在根、莖、葉、花、果實、種子中的表達水平存在差異,在果實中的相對表達量最高。本研究為進一步揭示AsCYP131基因在葫蘆素生物合成中的功能提供參考依據(jù)。
關鍵詞:白木香;P450酶;AsCYP131;生物信息學;表達分析中圖分類號:S567.19""""""文獻標志碼:A
Cloning"and"Expression"Analysis"of"the"Gene"AsCYP131"in"Aquilaria"sinensis
HUANG"Xing1,2,"MEI"Wenli2,"WANG"Hao2,"HUANG"Shengzhuo2,"CHEN"Xin2,"LIU"Shoubai1*,"DAI"Haofu2*
1."School"of"Tropical"Agriculture"and"Forestry,"Hainan"University"/"Key"Laboratory"of"Genetics"and"Germplasm"Innovation"of"Tropical"Special"Forest"Trees"and"Ornamental"Plants,"Ministry"of"Education,"Haikou,"Hainan"570228,"China;"2."Institute"of"Tropical"Bioscience"and"Biotechnology,"Chinese"Academy"of"Tropical"Agricultural"Sciences"/"Key"Laboratory"of"Natural"Products"Research"and"Development"of"Li"Folk"Medicine"of"Hainan"Province"/"Hainan"Engineering"Research"Center"of"Agarwood"/"International"Joint"Research"Center"of"Agarwood,"Haikou,"Hainan"571101,"China
Abstract:"The"fruit"of"Aquilaria"sinensis"contains"a"class"of"tetracyclic"triterpenoids"known"as"cucurbitacins,"which"exhibit"anti-inflammatory,"hepatoprotective,"and"antitumor"activities."Cytochrome"P450s"(CYP)"are"key"enzymes"in"the"biosynthesis"pathway"of"cucurbitacins."The"P450"genes"for"cucurbitacin"synthesis"in"A."sinensis"have"not"been"extensively"studied."In"this"study,"a"P450"gene"(AsCYP131)"was"cloned"based"on"A."sinensis"transcriptome"data."The"complete"open"reading"frame"(ORF)"of"AsCYP131"gene"was"1491"bp,"encoding"a"protein"of"496"amino"acids"with"a"molecular"weight"of"55.39"kDa."The"theoretical"isoelectric"point"(pI)"of"the"protein"was"7.65,"with"an"average"hydrophilicity"coefficient"of"–0.053,"and"an"instability"index"of"47.16,"classifying"it"as"an"unstable"protein."The"protein"contained"40"potential"phosphorylation"sites,"and"its"secondary"structure"was"predominantly"composed"of"α-helix"and"random"coil."The"results"of"multiple"sequence"alignment"and"phylogenetic"tree"analysis"showed"that"the"protein"encoded"by"the"AsCYP131"gene"clustered"into"a"single"unit"with"CsCYP,"CmCYP,"and"ClCYP,"which"have"been"reported"to"be"involved"in"the"biosynthesis"of"cucurbitacins."The"sequence"of"the"functional"structural"domains"at"the"C-terminal"showed"high"consistency."At"the"same"time,"the"expression"levels"of"AsCYP131"in"different"tissues"of"A."sinensis"detected"by"real-time"fluorescence"quantitative"PCR"(RT-qPCR)."The"results"indicated"differential"expression"levels"of"AsCYP131"across"various"tissues,"including"roots,"stems,"leaves,"flowers,"fruits,"and"seeds,"with"the"highest"relative"expression"observed"in"fruits."This"study"would""serve"as"a"valuable"reference"for"the"subsequent"validation"of"the"functional"role"of"the"AsCYP131"gene"in"cucurbitacin"biosynthesis.
Keywords:"Aquilaria"sinensis;"P450;"AsCYP131;"bioinformatics;"expression"analysis
DOI:"10.3969/j.issn.1000-2561.2025.05.006
白木香[Aquilaria"sinensis"(Lour.)"Spreng.]又稱土沉香、女兒香,為瑞香科(Thymelaeaceae)沉香屬(Aquilaria)植物,分布于廣東、海南和廣西等熱帶、亞熱帶地區(qū)[1]。白木香在受到自然因素(雷劈、風折、蟲蛀等)或人為因素(砍傷、打洞、接菌等)脅迫后會產(chǎn)生沉香[2-4]。沉香是中國、日本、印度等國家的傳統(tǒng)名貴藥材,具有“藥中黃金”的美譽,具行氣止痛、溫中止嘔、納氣平喘等功效[5]。目前的研究主要集中于沉香,而對白木香果實等部位的研究相對較少,因此,探索果實等非藥用部位的化學成分及其藥用價值,將有效提高白木香整株資源的利用。白木香植物的主要化學成分包括三萜、二萜、木脂素類、甾體類、生物堿類、苯丙素類、色酮類和簡單酚類等[6]。葫蘆素是一類四環(huán)三萜化合物,主要分布于葫蘆科等植物中,具有廣泛的藥理活性,包括抗炎[7]、保肝[8]和抗腫瘤活性[9-11]等。民間利用含葫蘆素類化合物的植物資源,用于清熱解毒和利濕退黃等[12]。目前,葫蘆素已被開發(fā)為藥物,以葫蘆素片的形式廣泛使用。臨床上,葫蘆素片常用于慢性肝炎以及原發(fā)性肝癌的輔助治療[13]。本研究團隊早期首次發(fā)現(xiàn)白木香的果實中含有葫蘆素[14],白木香可能成為生產(chǎn)葫蘆素的新興植物資源。
細胞色素P450酶(cytochrome"P450,"CYP)是一類分布廣泛的含血紅色素的單加氧酶,可參與羥基化、環(huán)氧化、脫鹵素等反應[15]。在葫蘆素的合成途徑中,2,3-環(huán)氧角鯊烯經(jīng)過葫蘆二烯醇合酶催化形成葫蘆二烯醇,之后多個步驟需要P450酶的催化反應完成,羥基化是其中最典型的催化反應,如P450酶參與C-2、C-20和C-25處的羥基化[16]。黃瓜全基因組序列揭示了1條參與葫蘆素生物合成相關的苦味(Bi)基因簇[17],并鑒定出7個參與葫蘆素C生物合成的P450基因[18]。在甜瓜和西瓜基因組中也發(fā)現(xiàn)了Bi基因簇,分別鑒定出6個和8個可能參與葫蘆素B和葫蘆素E生物合成的P450基因。分布在Bi基因簇上編碼C-25或2β羥化酶的P450基因在葫蘆科不同物種中均存在共線關系,甚至在不同物種的轉(zhuǎn)錄排列和方向上表現(xiàn)為相同的順序[16],表明Bi基因簇上的P450基因在植物進化的過程中可能高度保守。本研究團隊前期在白木香基因組中定位了一條Bi基因簇,在該基因簇中初步鑒定出5個P450基因,與葫蘆科物種中參與葫蘆素生物合成的關鍵P450基因之間存在共線關系[19]。此前的研究主要集中在葫蘆科物種上,而能夠產(chǎn)生葫蘆素的其他物種中的P450基因尚未深入研究。因此,挖掘和驗證白木香中與葫蘆素生物合成相關的P450基因,有助于深入研究各類葫蘆素的生物合成途徑,為葫蘆素的生產(chǎn)提供重要的遺傳資源或種質(zhì)資源。
本研究基于白木香轉(zhuǎn)錄組數(shù)據(jù)[20],從前期篩選出的5個P450基因中克隆了AsCYP131基因,并對其編碼的蛋白進行基本理化性質(zhì)、磷酸化位點、蛋白結構特征等生物信息學分析。同時,采用RT-qPCR技術對AsCYP131基因進行組織差異表達分析,為進一步研究AsCYP131基因在白木香中葫蘆素的生物合成途徑中的作用提供理論支持。
1.1""材料
1.1.1""植物材料""本研究所用白木香(A."sinensis)種植于中國熱帶農(nóng)業(yè)科學院熱帶生物技術研究所試驗基地。分別于不同時期采集3年生白木香植株的根、莖、葉、花、果實、種子等組織樣品,液氮速凍后立即提取RNA,用于基因克隆及基因表達分析。
1.1.2""主要試劑""Plant"Total"RNA"Isolation"Kit、General"Plasmid"Mini"Kit購自成都福際生物技術有限公司;FastKing一步法除基因組cDNA第一鏈合成試劑盒、2×Taq"PCR"MasterMix"Ⅱ、DNA純化回收試劑盒、氨芐青霉素鈉鹽、SuperReal熒光定量預混試劑購自天根生化科技(北京)有限公司;PrimeSTAR"Max"Premix高保真酶購自寶日醫(yī)生物技術(北京)有限公司;DNA"Marker"Ⅶ購自中科瑞泰(北京)生物科技有限公司;LB培養(yǎng)基按常規(guī)配方配制。
1.2""方法
1.2.1""總RNA提取與cDNA合成""分別取白木香的根、莖、葉、花、果實、種子樣品各100"mg加入液氮迅速研磨成粉,使用Plant"Total"RNA"Isolation"Kit(FOREGENE)RNA提取試劑盒提取RNA,通過1%普通瓊脂糖凝膠電泳檢測完整性、使用生物核酸定量檢測儀Nanodrop"One"TM(Thermo"Scientific,"Wilmington,"DE,"USA)檢測濃度。使用FastKing一步法除基因組cDNA第一鏈合成試劑盒反轉(zhuǎn)錄得到cDNA,–20"℃保存?zhèn)溆谩?/p>
1.2.2""基因克隆""基于白木香轉(zhuǎn)錄組注釋拼接的AsCYP131基因序列,使用Integated"DNA"Technologies"IDT(idtdna.com)在線軟件設計高特異性引物(表1),以特異性引物AsCYP131-F/R進行PCR擴增得到目的基因片段。擴增反應體系(20"μL):2×Taq"PCR"Master"Mix"10"μL,上、下游引物各1"μL,cDNA模板1"μL,ddH2O補足至20"μL。反應程序為:95"℃預變性5"min;95"℃變性40"s,60"℃退火40"s,72"℃延伸2"min,共35個循環(huán);最后72"℃延伸5"min。用1%瓊脂糖凝膠電泳檢測擴增產(chǎn)物,回收符合目的條帶大小且明亮的單一片段,連接于pMD19-T載體,將其轉(zhuǎn)入DH5a感受態(tài)細胞中,并涂至含氨芐抗性的LB固體培養(yǎng)基中過夜培養(yǎng),篩選陽性單克隆,進行Sanger一代測序以確定其核苷酸序列,測序正確的菌液以1∶100的比例擴大培養(yǎng),培養(yǎng)16"h后進行質(zhì)粒提取,質(zhì)粒保存于–20"℃。
1.2.3""生物信息學分析""在NCBI"Reference"proteins和Ensembl"Genome"Browser數(shù)據(jù)庫中BLAST搜索與AsCYP131同源的P450氨基酸序列;使用MEGA11通過鄰位相連法(neighbor-"joining,"NT)構建進化樹。使用DNAMAN"8.0軟件進行氨基酸序列分析;使用Expasy"ProtParam(http://web.expasy.org/protparam)在線軟件預測AsCYP131的相對分子量、等電點和氨基酸數(shù)量等基本性質(zhì);使用NetPhos-3.1(https://services."healthtech.dtu."dk/services/NetPhos-3.1/)在線軟件進行蛋白磷酸化位點分析;分別采用WOLF"SOPMA(https://"npsa-prabi.ibcp.fr/cgi-bin/npsa_"automat.pl?page=/NPSA/npsa_sopma.html)和AlphaFold"Protein"Structure"Database(https://"alphafold.ebi.ac.uk/)在線軟件進行蛋白二級結構預測及蛋白三級結構模型構建。
1.2.4""AsCYP131基因的組織表達分析""采用RT-qPCR技術檢測AsCYP131基因在白木香的根、莖、葉、花、果實和種子中的表達水平。根據(jù)AsCYP131基因序列,以白木香GADPH為內(nèi)參基因,使用Integrated"DNA"Technologies軟件設計熒光定量特異性引物(表1)。使用MX3005P實時熒光定量PCR儀,采取SYBR"green嵌合熒光法檢測AsCYP131基因表達量。反應體系為:cDNA模板1"μL,上、下游引物各0.6"μL,2×Real"Universal"PreMix"10"μL,ddH2O"0.84"μL。反應程序為:95"℃預變性5"min;95"℃變性5"s,57"℃復性15"s,循環(huán)40次。每個反應3次重復,采用2–ΔΔCt法計算AsCYP131基因的相對表達量。
2.1""AsCYP131基因克隆
根據(jù)白木香的轉(zhuǎn)錄組數(shù)據(jù),AsCYP131基因的ORF長度為1491"bp,編碼496個氨基酸?;谠摶虻腛RF設計特異性引物AsCYP131-F/R(表1),以白木香嫩葉的cDNA為模板,對該基因進行PCR擴增。通過瓊脂糖凝膠電泳檢測得到長度約1491"bp大小的條帶(圖1),回收條帶并進行測序,測序結果與轉(zhuǎn)錄本序列一致。
2.2""AsCYP131序列同源比對及系統(tǒng)發(fā)育進化分析
將AsCYP131編碼的氨基酸序列與黃瓜(Cucumis"sativus)、甜瓜(Cu."melo)、西瓜(Citrullus"lanatus)、西葫蘆(Cucurbita"pepo)、南瓜(Cu."moschata)、筍瓜(Cu."maxima)、長果黃麻(Corchorus"olitorius)、可可(Theobroma"cacao)、陸地棉(Gossypium"hirsutum)等9種植物的P450同源氨基酸序列進行比對分析。結果顯示(圖2),這10個蛋白的C端氨基酸相對保守,均存在P450羥化酶特征性保守結構域heme-binding(PFGXGRRXCPG)以及其他保守結構域K-helix(EXLR)、I-helix(A/"GGXD/ETS/T)和PXRX(FXPERF),符合P450家族蛋白結構特征。將AsCYP131與其他植物中同源性較高的P450氨基酸序列進行系統(tǒng)發(fā)育樹構建,發(fā)現(xiàn)AsCYP131與已知具有羥基化功能的葫蘆科植物黃瓜CsCYP、甜瓜CmCYP和西瓜ClCYP聚為一類(圖3)。
2.3""AsCYP131蛋白理化性質(zhì)及磷酸化位點分析
通過Expanse"Prepare軟件預測表明AsCYP131蛋白的分子式為C1724H2611N473O539S14,氨基酸數(shù)量為496個,相對分子量為55.39"kDa;包含20種氨基酸,其中亮氨酸(Leu,"14.3%)含量最高,共52個帶負電殘基(Asp+Glu)和53個帶正電殘基(Arg+Lys);蛋白的理論pI值為7.65,不穩(wěn)定系數(shù)為47.16,屬于不穩(wěn)定蛋白,脂肪酸系數(shù)為99.72,親水性系數(shù)為-0.053,預測為親水性蛋白(圖4A)。利用Net"Phos-3.1軟件預測分析其氨基酸序列發(fā)現(xiàn),其共有40個潛在的磷
酸化位點,其中蘇氨酸磷酸化位點11個,絲氨酸磷酸化位點26個,酪氨酸磷酸化位點3個(圖4B)。
2.4""AsCYP131蛋白結構預測
通過NCBI的CD-Search工具分析AsCYP131蛋白的保守結構域,結果顯示該蛋白具有P450酶特征性的heme-binding保守結構域(圖5A),并被預測為CYP81亞家族成員,歸類為CYP71家族[21]。通過SOPMA軟件預測AsCYP131的二級結構發(fā)現(xiàn),該蛋白由39.52%的α-螺旋、13.31%的延伸鏈和47.18%的無規(guī)則卷曲組成(圖5B)。通過AlphaFold"Protein"Structure"Database軟件進行蛋白三級結構模型構建,獲得AsCYP131蛋白的預測模型(圖5C),預測結果與其蛋白二級結構預測保持一致,具有較多的α-螺旋和無規(guī)則卷曲。
2.5""AsCYP131基因表達分析
RT-qPCR檢測結果顯示,AsCYP131基因在白木香不同組織中的表達呈現(xiàn)顯著的組織特異性。AsCYP131基因在果實中的相對表達量最高,是根部表達量的2.48倍,分別是葉、花和種子表達量的1.78、1.88和1.99倍;在莖中的表達量顯著低于其他組織,而葉和花中的表達量相對接近(圖6)。此基因表達模式與白木香果實中含有葫蘆素,而根、莖、葉、花和種子中未分離獲得葫蘆素[14]結果一致,推測AsCYP131基因在葫蘆素生物合成過程中發(fā)揮重要作用。
P450作為植物代謝網(wǎng)絡中的關鍵酶,在植物的初生和次生代謝過程中發(fā)揮著重要作用[22]。然而,由于P450基因家族的龐大、物種間的同源性較低以及其在內(nèi)質(zhì)網(wǎng)膜上的定位,導致P450的篩選和功能研究成為植物次生代謝研究中的難點[23]。
藥用植物中具有良好活性的次生代謝產(chǎn)物多為結構復雜且修飾程度較高的天然產(chǎn)物,P450在這些化合物的結構修飾過程中發(fā)揮了關鍵作用,P450的氧化修飾主要包括引入羥基、酮基、羧基和環(huán)氧基團等,尤其是羥基的引入為其他基團的進一步修飾創(chuàng)造了條件[24]。ZHOU等[16]從黃瓜、甜瓜和西瓜中分別挖掘出與葫蘆素C、葫蘆素B和葫蘆素E合成相關的P450基因,其中黃瓜CsCYP參與了葫蘆素C合成途徑中C-25位的羥基化,甜瓜CmCYP和西瓜ClCYP則參與葫蘆素B、E合成途徑中C-2位的羥基化。為研究白木香中與葫蘆素合成相關的P450基因,本研究篩選并成功克隆了AsCYP131基因,該基因的核苷酸序列為1491"bp,編碼了496個氨基酸。通過氨基酸序列比對結果顯示,AsCYP131具有P450特征性保守結構域heme-binding(PFGXGRRXCPG),包括其他保守性較高的功能結構域K-helix(EXLR)、I-helix(A/GGXD/ETS/T)和PXRX(FXPERF),表明該蛋白可能具有較強的底物結合能力和催化活性。進一步的聚類分析發(fā)現(xiàn),AsCYP131的氨基酸序列與已知參與葫蘆素合成的CsCYP、CmCYP和ClCYP聚類于同一分支,具有較高的同源性,推測AsCYP131可能具有類似的羥基化功能。
參與生物合成的基因在不同組織中的表達水平影響植物次生代謝產(chǎn)物的含量。TAN等[25]分析了獼猴桃不同組織中類黃酮含量差異的機制,發(fā)現(xiàn)所篩選的AaF3H-1、AaF3′5′H-1和其他9種基因在葉片和葉柄中的表達水平高于果實,其表達模式與山奈酚、異鼠李素和槲皮苷這3種主要類黃酮含量的變化一致,說明這11個基因參與類黃酮類化合物的生物合成。PEI等[26]的研究表明糖基化修飾基因SbUGAT4在根部的表達水平與黃芩苷在黃芩根部的含量成正相關。楊琳等[27]分析了五指毛桃不同組織中補骨脂素合成酶基因(PS)表達水平與補骨脂素含量的關系,結果表明PS基因在根與葉中的表達水平顯著高于莖和果實,其表達模式與補骨脂素含量的變化一致。本研究通過RT-qPCR檢測發(fā)現(xiàn),AsCYP131在不同組織中的表達水平存在顯著差異,其中在果實中的表達量最高,至少是其他部位表達量的1.7倍。結合早期研究發(fā)現(xiàn)白木香果實中含有葫蘆素,而根、莖、葉、花和種子中未分離獲得葫蘆素[14],AsCYP131基因在果實中的高表達,很可能為葫蘆素的生物合成提供了關鍵的酶催化途徑,為葫蘆素在果實中積累提供了分子基礎。此結果進一步增強了AsCYP131基因參與葫蘆素生物合成的可信性。
綜上所述,本研究完成了AsCYP131基因的克隆、生物信息學分析和表達模式分析,為后續(xù)對白木香葫蘆素類化合物合成的研究提供了1個候選基因。目前本研究尚缺乏足夠的實驗證據(jù),后續(xù)將通過體外酶促反應和煙草瞬時轉(zhuǎn)染等方法,進一步驗證該基因的功能。
參考文獻
[1]"戴好富,"梅文莉."世界沉香產(chǎn)業(yè)[M]."北京:"中國農(nóng)業(yè)出版社,"2017:"32.DAI"H"F,"MEI"W"L."The"word"agarwood"industry[M]."Beijing:"China"Agriculture"Press,"2017:"32."(in"Chinese)
[2]"戴好富."沉香的現(xiàn)代研究[M]."北京:"科學出版社,"2017:"1-30".DAI"H"F."Research"progress"of"agarwood[M]."Beijing:"Science"Press,"2017:"1-30."(in"Chinese)
[3]"LI"W,"CHEN"H"Q,"WANG"H,"MEI"W"L,"DAI"H"F."Natural"products"in"agarwood"and"Aquilaria"plants:"chemistry,"biological"activities"and"biosynthesis[J]."Natural"Product"Reports,"2021,"38(3):"528-565.
[4]"NAEF"R."The"volatile"and"semi-volatile"constituent"of"agarwood,"the"infected"heartwood"of"Aquilaria"species:"a"review[J]."Flavour"and"Fragrance"Journal,"2011,"26(2):"73-89.
[5]"李琳,"張國強,"石曉峰."沉香的藥理研究及臨床應用進展[J]."亞太傳統(tǒng)醫(yī)藥,"2019,"15(11):"199-204.LI"L,"ZHANG"G"Q,"SHI"X"F."Research"progress"on"the"pharmacology"and"clinical"application"of"agarwood[J]."Asia-Pacific"Traditional"Medicine,"2019,"15(11):"199-204."(in"Chinese)
[6]"李薇,"梅文莉,"左文健,"王昊,"戴好富."白木香的化學成分與生物活性研究進展[J]."熱帶亞熱帶植物學報,"2014,"22(2):"201-212.LI"W,"MEI"W"L,"ZUO"W"J,"WANG"H,"DAI"H"F."Research"progress"on"the"chemical"composition"and"biological"activities"of"Aquilaria"sinensis[J]."Journal"of"Tropical"and"Subtropical"Botany,"2014,"22(2):"201-212."(in"Chinese)
[15]"COON"M"J."Cytochrome"P450:"nature's"most"versatile"biological"catalyst[J]."Annual"Review"of"Pharmacology"and"Toxicology,"2005,"45:"1-25.
[16]"ZHOU"Y,"MA"Y"S,"ZENG"J"G,"DUAN"L"X,"XUE"X"F,"WANG"H"S,"LIN"T,"LIU"Z"Q,"ZENG"K"W,"ZHONG"Y,"ZHANG"S,"HU"Q,"LIU"M,"ZHANG"H"M,"REED"J,"MOSES"T,"LIU"X"Y,"HUANG"P,"QING"Z"X,"LIU"X"B,"TU"P"F,"KUANG"H"H,"ZHANG"Z"H,"OSBOURN"A,"RO"D"K,"SHANG"Y,"HUANG"S"W."Convergence"and"divergence"of"bitterness"biosynthesis"and"regulation"in"Cucurbitaceae[J]."Nature"Plants,"2016,"2(12):"16183.
[17]"HUANG"S"W,"LI"R"Q,"ZHANG"Z"H,"LI"L,"GU"X"F,"FAN"W,"LUCAS"W"J,"WANG"X"W,"XIE"B"Y,"NI"P"X,"REN"Y"Y,"ZHU"H"M,"LI"J,"LIN"K,"JIN"W"W,"FEI"Z"J,"LI"G"C,"STAUB"J,"KILIAN"A,"VAN"DER"VOSSEN"E"A"G,"WU"Y,"GUO"J,"HE"J,"JIA"Z,"REN"Y,"TIAN"G,"LU"Y,"RUAN"J,"QIAN"W"B,"WANG"M"W,"HUANG"Q"F,"LI"B,"XUAN"Z,"CAOnbsp;J"J,"ASAN,"WU"Z"G,"ZHANG"J"B,"CAI"Q,"BAI"Y"Q,"ZHAO"B,"HAN"Y,"LI"Y,"LI"X"F,"WANG"S"H,"SHI"Q"X,"LIU"S"Q,"CHO"W"K,"KIM"J"Y,"XU"Y,"HELLER-USZYNSKA"K,"MIAO"H,"CHENG"Z"C,"ZHANG"S"P,"WU"J,"YANG"Y"H,"KANG"H,"LI"M,"LIANG"H,"REN"X"L,"SHI"Z"B,"WEN"M,"JIAN"M,"YANG"H,"ZHANG"G"J,"YANG"Z,"CHEN"R,"LIU"S"F,"LI"J"W,"MA"L"J,"LIU"H,"ZHOU"Y,"ZHAO"J,"FANG"X"D,"LI"G"Q,"FANG"L,"LI"Y"R,"LIU"D"Y,"ZHENG"H"K,"ZHANG"Y,"QIN"N,"LI"Z,"YANG"G"H,"YANG"S,"BOLUND"L,"KRISTIANSEN"K,"ZHENG"H,"LI"S"C,"ZHANG"X"Q,"YANG"H"M,"WANG"J,"SUN"R"F,"ZHANG"B"X,"JIANG"S"Z,"WANG"J,"DU"Y"C,"LI"S"G."The"genome"of"the"cucumber,"Cucumis"sativus"L.[J]."Nature"Genetics,"2009,"41(12):"1275-1281.
[18]"SHANG"Y,"MA"Y"S,"ZHOU"Y,"ZHANG"H"M,"DUAN"L"X,"CHEN"H"M,"ZENG"J"G,"ZHOU"Q,"WANG"S"H,"GU"W"J,"LIU"M,"REN"J"W,"GU"X"F,"ZHANG"S"P,"WANG"Y,"YASUKAWA"K,"BOUWMEESTER"H"J,"QI"X"Q,"ZHANG"Z"H,"LUCAS"W"J,"HUANG"S"W."Biosynthesis,"regulation,"and"domestication"of"bitterness"in"cucumber[J]."Science,"2014,"346(6213):"1084-1088.
[19]"DING"X"P,"YANG"Z,"WANG"H,"ZENG"J,"DAI"H"F,"MEI"W"L."Aquilaria"sinensis:"an"upstart"resource"for"cucurbitacin"production"offers"insights"into"the"origin"of"plant"bitter"(Bi)"gene"clusters[J]."Plants,"2024,"13(2):"260.
[20]"DING"X"P,"MEI"W"L,"LIN"Q,"WANG"H,"WANG"J,"PENG"S"Q,"LI"H"L,"ZHU"J"H,"LI"W,"WANG"P,"CHEN"H"Q,"DONG"W"H,"GUO"D,"CAI"C"H,"HUANG"S"Z,"CUI"P,"DAI"H"F."Genome"sequence"of"the"agarwood"tree"Aquilaria"sinensis"(Lour.)"Spreng:"the"first"chromosome-level"draft"genome"in"the"Thymelaeceae"family[J]."GigaScience,"2020,"9(3):"giaa013.
[21]"XU"J,"WANG"X"Y,"GUO"W"Z."The"cytochrome"P450"superfamily:"key"players"in"plant"development"and"defense[J]."Journal"of"Integrative"Agriculture,"2015,"14(9):"1673-1686.
[22]"MIZUTANI"M,"OHTA"D."Diversification"of"P450"genes"during"land"plant"evolution[J]."Annual"Review"of"Plant"Biology,"2010,"61:"291-315.
[23]"馬瑩,"蔡媛,"馬曉晶,"崔光紅,"唐金富,"曾雯,"張水寒,"郭娟,"黃璐琦."藥用植物活性成分生物合成中P450的研究進展[J]."藥學學報,"2020,"55(7):"1573-1589.MA"Y,"CAI"Y,"MA"X"J,"CUI"G"H,"TANG"J"F,"ZENG"W,"ZHANG"S"H,"GUO"J,"HUANG"L"Q."Research"progress"of"P450"in"the"biosynthesis"of"bioactive"compound"of"medicinal"plants[J]."Acta"Pharmacologica"Sinica,"2020,"55(7):"1573-1589."(in"Chinese)
[24]"馬永碩."黃瓜中苦味素的生物合成、調(diào)控及轉(zhuǎn)運機制[D]."北京:"中國農(nóng)業(yè)科學院,"2017.MA"Y"S."Biosynthesis,"regulation"and"transportation"of"bitterness"in"cucumber[D]."Beijing:"Chinese"Academy"of"Agricultural"Sciences"Dissertation,"2017."(in"Chinese)
[25]"TAN"C"H,"WANG"Z"G,"IRFAN"M,"LIU"C"J."Analysis"of"flavonoids"biosynthesis-related"genes"expression"reveals"the"mechanism"of"difference"of"flavonoid"content"in"different"tissues"of"Actinidia"arguta[J]."Brazilian"Journal"of"Botany,"2021,"44(3):"513-523.
[26]"PEI"T"L,"YAN"M"X,"LI"T,"LI"X"Q,"YIN"Y"J,"CUI"M"Y,"FANG"Y"M,"LIU"J,"KONG"Y,"XU"P,"ZHAO"Q."Characterization"of"UDP-glycosyltransferase"family"members"reveals"how"major"flavonoid"glycoside"accumulates"in"the"roots"of"Scutellaria"baicalensis[J]."BioMed"Central"Genomics,"2022,"23(1):"169.
[27]"楊琳,"楊帆,"張杭穎,"黃勃誠,"邱清華,"張君誠."五指毛桃不同部位補骨脂素合成酶基因的表達及其代謝產(chǎn)物含量[J]."熱帶作物學報,"2024,"45(4):"674-681.YANG"L,"YANG"F,"ZHANG"H"Y,"HUANG"B"C,"QIU"Q"H,"ZHANG"J"C."Expression"of"psoralen"synthase"gene"and"effect"of"its"product"synthesis"in"different"parts"of"Ficus"hirta"Vahl[J]."Chinese"Journal"of"Tropical"Crops,"2024,"45(4):"674-681."(in"Chinese)