亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        去泛素化修飾在衰老相關(guān)疾病中的研究進(jìn)展

        2025-03-24 00:00:00徐林慧李鵬飛吳苗苗康麗華季敏俞瑩管懷進(jìn)
        中國全科醫(yī)學(xué) 2025年9期

        【摘要】 去泛素化修飾是由去泛素化酶(DUBs)介導(dǎo)的一類重要的蛋白質(zhì)翻譯后修飾,其主要機(jī)制是DUBs與泛素化靶蛋白相互作用,切割或去除靶蛋白的泛素鏈,進(jìn)而恢復(fù)蛋白的表達(dá)水平和功能活性。本文系統(tǒng)性地綜述了去泛素化修飾在衰老相關(guān)疾病中的最新研究進(jìn)展,涵蓋了DUBs的種類、DUBs在細(xì)胞衰老中的作用,以及不同機(jī)制對(duì)衰老相關(guān)疾病的調(diào)控,并總結(jié)了針對(duì)DUBs小分子藥物開發(fā)以及相關(guān)機(jī)制的研究進(jìn)展。本文表明,隨著機(jī)體的衰老,蛋白更新功能減慢、氧化損傷等因素導(dǎo)致泛素化蛋白累積等,進(jìn)而細(xì)胞出現(xiàn)功能障礙。DUBs通過調(diào)節(jié)衰老細(xì)胞的蛋白質(zhì)穩(wěn)態(tài)、線粒體功能、細(xì)胞周期等機(jī)制,在衰老相關(guān)疾病中發(fā)揮重要且復(fù)雜的調(diào)控作用。

        【關(guān)鍵詞】 衰老;衰老相關(guān)疾病;去泛素化修飾;去泛素酶類;蛋白質(zhì)質(zhì)量控制;線粒體功能

        【中圖分類號(hào)】 R 33 R 349.1 【文獻(xiàn)標(biāo)識(shí)碼】 A DOI:10.12114/j.issn.1007-9572.2024.0357

        The Roles of Deubiquitination in Age-related Diseases

        XU Linhui1,2,LI Pengfei1,2,WU Miaomiao1,2,KANG Lihua1,2,JI Min1,2,YU Ying1,2*,GUAN Huaijin1,2*

        1.Nantong University,Nantong 226001,China

        2.Eye Institute,Affiliated Hospital of Nantong University,Nantong 226001,China

        *Corresponding authors:GUAN Huaijin,Professor/Doctoral supervisor;E-mail:guanhjeye@163.com

        YU Ying,Associate chief physician;E-mail:yuying.2009@163.com

        【Abstract】 Deubiquitination,mediated by deubiquitinating enzymes(DUBs),represents a crucial class of post-translational protein modifications. Its primary mechanism involves in the interaction of DUBs with ubiquitinated target proteins,whereby the DUBs cleave or remove ubiquitin chains from these targets,subsequently restoring their expression levels and functional activities. This article systematically reviews the latest research progress on deubiquitination in age-related diseases,covering the types of DUBs,their roles in cellular aging,and the regulatory mechanisms in age-related diseases through different pathways. It also summarizes the research progress in the development of small-molecule drugs targeting DUBs and related mechanisms. This review demonstrates that as the body ages,factors such as decreased protein renewal function and oxidative damage lead to the accumulation of ubiquitinated proteins,resulting in cellular dysfunction. DUBs play an important and complex regulatory role in age-related diseases by modulating mechanisms such as protein homeostasis,mitochondrial function,and cell cycle in aging cells.

        【Key words】 Aging;Age-related diseases;Deubiquitination;Deubiquitinating enzymes;Protein quality control;Mitochondrial function

        泛素作為一種由76個(gè)氨基酸組成的高度保守蛋白質(zhì),普遍存在于真核生物,是細(xì)胞調(diào)控機(jī)制中的關(guān)鍵分子[1]。泛素化是一種重要的蛋白質(zhì)翻譯后修飾過程,通過E1激活酶、E2結(jié)合酶及E3連接酶的級(jí)聯(lián)反應(yīng),將泛素分子以共價(jià)鍵形式連接至底物蛋白。在這一過程中,泛素通過其7個(gè)賴氨酸殘基(K6、K11、K27、K29、K33、K48和K63)中的任一或多個(gè)作為連接點(diǎn),形成結(jié)構(gòu)多樣的多聚泛素鏈,從而以多樣化的功能調(diào)控模式對(duì)底物蛋白發(fā)揮作用[2]。這種高度特異性的修飾機(jī)制不僅調(diào)控著底物蛋白的穩(wěn)定性、亞細(xì)胞定位、蛋白質(zhì)間相互作用及功能活性,還與細(xì)胞內(nèi)的多種生理過程密切相關(guān)(圖1)。

        泛素系統(tǒng)的動(dòng)態(tài)平衡是維持細(xì)胞內(nèi)環(huán)境穩(wěn)態(tài)與正常生理功能不可或缺的基石。然而,隨著年齡的增長,這一平衡狀態(tài)被打破,導(dǎo)致細(xì)胞內(nèi)多種生理過程紊亂,進(jìn)而成為多種衰老相關(guān)疾病的重要誘因[3-4]。近年來,去泛素化修飾作為泛素化過程的可逆反應(yīng),其在衰老相關(guān)疾病中的作用日益受到重視。去泛素化酶(deubiquitinating enzymes,DUBs)通過移除底物蛋白上的泛素鏈,恢復(fù)蛋白質(zhì)的原始狀態(tài),從而在維持泛素系統(tǒng)動(dòng)態(tài)平衡中扮演關(guān)鍵角色[5]。針對(duì)去泛素化修飾的研究,不僅為揭示衰老相關(guān)疾病的發(fā)病機(jī)制提供了新的視角,也為開發(fā)新型治療策略提供了潛在靶點(diǎn)。本文旨在綜述去泛素化修飾在衰老相關(guān)疾病中的最新研究進(jìn)展,以期為相關(guān)領(lǐng)域的研究者提供新的思路與方向。

        1 文獻(xiàn)檢索策略

        計(jì)算機(jī)檢索PubMed、Web of Science等數(shù)據(jù)庫,檢索時(shí)間設(shè)置為建庫至2024年7月,英文檢索詞包括“aging”“age-related diseases”“Deubiquitinating enzymes”“protein quality control” “mitochondrial function”等。納入標(biāo)準(zhǔn):文獻(xiàn)內(nèi)容涉及去泛素化修飾對(duì)衰老及相關(guān)疾病的影響、衰老及相關(guān)疾病的產(chǎn)生機(jī)制,以及去泛素化參與其中的具體機(jī)制。排除標(biāo)準(zhǔn):與本文主題無關(guān)聯(lián)、質(zhì)量低的文獻(xiàn)。最終納入文獻(xiàn)158篇。

        2 DUBs的種類和作用特點(diǎn)

        為了維持泛素化系統(tǒng)的平衡,去泛素化修飾應(yīng)運(yùn)而生,這一過程主要由DUBs負(fù)責(zé)執(zhí)行。DUBs具有高度的特異性,能夠識(shí)別并精確切割靶蛋白上的泛素鏈,進(jìn)而改變蛋白質(zhì)的泛素化狀態(tài)(圖1)。根據(jù)結(jié)構(gòu)和作用機(jī)制的不同,DUBs分為6個(gè)家族,包括泛素特異性蛋白酶(ubiquitin specific protease,USPs)、泛素C末端水解酶(ubiquitin C-terminal hydrolases,UCHs)、卵巢腫瘤蛋白酶(ovarian tumor-related protease,OTUs)、Machado-Joseph結(jié)構(gòu)域蛋白酶(Machado-Joseph disease proteases,MJDs)、Jab1/Mov34/Mpr1金屬蛋白酶(Jab1/Mov34/Mpr1 metalloproteases,JAMM)[6]以及其他類型的DUBs[7]。

        2.1 USPs

        USPs家族是已知最大的DUBs家族,包含超過50個(gè)成員[8]。在該家族中,所有成員擁有一個(gè)高度保守的USPs結(jié)構(gòu)域,該結(jié)構(gòu)域由“手指”(Fingers)、“手掌”(Palm)和“拇指”(Thumb)這3個(gè)子結(jié)構(gòu)共同構(gòu)成了USP的催化核心,使其能夠特異性地識(shí)別和去除蛋白質(zhì)底物上的泛素分子[9]。USPs家族成員與蛋白酶體途徑密切相關(guān),通過從蛋白酶體結(jié)合的底物中去除泛素鏈來保護(hù)底物蛋白免于降解[10-11],從而恢復(fù)底物蛋白的表達(dá)以及功能。

        2.2 UCHs

        UCHs家族共有4個(gè)成員,分別是UCH?L1、UCH?L3、UCH37和BRCA1相關(guān)蛋白1(BRCA1-associated protein 1,BAP1)[9]。UCHs通常包含多個(gè)結(jié)構(gòu)域,如泛素結(jié)合結(jié)構(gòu)域(ubiquitin-binding domain,UBD)、催化結(jié)構(gòu)域(ubiquitin C-terminal hydrolase,UCH)和泛素樣結(jié)構(gòu)域(ubiquitin-like domain,UBL)等,而UCH結(jié)構(gòu)域是其酶活性的關(guān)鍵位點(diǎn)[12]。UCHs常通過調(diào)節(jié)底物蛋白的泛素-蛋白酶體系統(tǒng)(ubiquitin-proteasome system,UPS)和自噬-溶酶體途徑(autophagy lysosomal pathway,ALP)降解,以調(diào)控細(xì)胞氧化應(yīng)激、DNA損傷修復(fù)等過程[13-14]。

        2.3 OTUs

        OTUs可分為4個(gè)不同的亞家族,包括OTUB亞家族、OTUD亞家族、A20類亞家族以及OTULIN亞家族[15]。與其他DUBs不同,OTUs家族成員對(duì)不同類型的泛素化具有選擇性[16]。例如,在OTUs家族中,OTUB1顯示出明顯的K48連接泛素鏈的特異性,而OTUB2切割更廣泛的多泛素鏈,偏好K63、K11連接的泛素鏈[13-14]。近年來,OTUs已成為信號(hào)傳導(dǎo)和DNA損傷反應(yīng)等多種生理過程的重要調(diào)節(jié)因子,這些過程的失調(diào)可能會(huì)增加衰老相關(guān)疾病的多個(gè)方面的風(fēng)險(xiǎn),包括神經(jīng)退行性疾病、慢性腎臟疾病和肺纖維化等[17-20]。

        2.4 MJDs

        MJDs家族是已知最小的DUBs家族,主要由ATXN3、ATXN3L、JOSD1和JOSD2這4個(gè)成員組成[21]。MJDs家族成員均包含Josephin結(jié)構(gòu)域,該結(jié)構(gòu)域由大約180個(gè)氨基酸構(gòu)成,在真核生物中高度保守[21]。MJDs被認(rèn)為與腫瘤的進(jìn)展密切相關(guān),其中,JOSD1和JOSD2在多種癌癥中過表達(dá),可能是促進(jìn)癌癥發(fā)展的癌基因因子[21]。

        2.5 JAMM

        與其他家族相比,JAMM家族的獨(dú)特之處在于其是金屬蛋白酶[22]。JAMM家族成員在結(jié)構(gòu)上具有保守的JAMM結(jié)構(gòu)域,該結(jié)構(gòu)域包含1個(gè)鋅指基序和1個(gè)催化核心,這對(duì)于其去泛素化活性至關(guān)重要[23]。然而,目前關(guān)于JAMM家族蛋白酶功能的研究仍處于初步階段,尚需更多的實(shí)驗(yàn)證據(jù)來證實(shí)他們之間的關(guān)系。

        2.6 其他類型的DUBs

        除了上述幾類主要的DUBs外,還包括MINDY家族、ZUFSP家族等。其中,MINDY1和MINDY2是MINDY家族的成員,對(duì)切割K48-poly Ub具有良好的特異性,但目前對(duì)其催化機(jī)制知之甚少[24]。而ZUFSP家族則與任何已知DUB均無同源性,被認(rèn)為是第7個(gè)DUB家族[25]。最新研究顯示,ZUFSP定位于DNA損傷,在基因組穩(wěn)定途徑中發(fā)揮重要作用,可應(yīng)對(duì)外源性DNA損傷時(shí)促進(jìn)細(xì)胞存活[26]。鑒于細(xì)胞衰老與DNA損傷的密切關(guān)系,表明ZUFSP很有可能成為衰老過程中新的調(diào)控因子。

        3 DUBs與細(xì)胞衰老

        衰老被定義為隨著年齡增長,體內(nèi)各種分子和細(xì)胞損傷逐漸累積,進(jìn)而導(dǎo)致機(jī)體功能下降的過程。細(xì)胞作為器官和生物體的基本單元,是器官和生物體衰老的主要驅(qū)動(dòng)力。近期,有學(xué)者總結(jié)了細(xì)胞衰老的十大典型生物標(biāo)志物,涵蓋了線粒體功能障礙、蛋白質(zhì)穩(wěn)態(tài)應(yīng)激、細(xì)胞周期停滯、信號(hào)通路異常等[27]。泛素平衡系統(tǒng)由E1激活酶、E2結(jié)合酶及E3連接酶和DUBs組成,廣泛參與了細(xì)胞內(nèi)的各種生命進(jìn)程,鑒于DUBs在泛素平衡系統(tǒng)中的核心地位,本文將從細(xì)胞衰老的生物標(biāo)志物與DUBs的角度出發(fā),探討二者之間的內(nèi)在聯(lián)系及機(jī)制。

        3.1 DUBs與蛋白質(zhì)穩(wěn)態(tài)應(yīng)激

        蛋白質(zhì)穩(wěn)態(tài)網(wǎng)絡(luò)是維持細(xì)胞內(nèi)蛋白質(zhì)穩(wěn)態(tài)的核心調(diào)控體系,由分子伴侶、UPS和ALP共同構(gòu)成[28]。其中,UPS和ALP是蛋白質(zhì)降解的主要途徑,通過調(diào)控受損蛋白以及錯(cuò)誤折疊蛋白的識(shí)別與清除過程發(fā)揮關(guān)鍵作用[29]。

        在正常生理?xiàng)l件下,UPS和ALP緊密合作,共同組成高效的蛋白質(zhì)降解網(wǎng)絡(luò),以維持細(xì)胞內(nèi)蛋白穩(wěn)態(tài)。然而,在衰老等應(yīng)激條件下,二者功能失調(diào),進(jìn)而導(dǎo)致蛋白質(zhì)的錯(cuò)誤折疊和異常聚集,這一現(xiàn)象是蛋白質(zhì)構(gòu)象紊亂和細(xì)胞衰老的重要標(biāo)志之一[30-31]。而泛素平衡系統(tǒng)不僅是UPS的主要構(gòu)成部分,還能作為UPS和ALP溝通的關(guān)鍵橋梁[32]。BLASIAK等[33]在對(duì)視網(wǎng)膜色素上皮細(xì)胞衰老的相關(guān)研究中發(fā)現(xiàn),E3連接酶通過調(diào)控UPS和ALP之間的串聯(lián)發(fā)揮作用。此外,在神經(jīng)元細(xì)胞衰老的過程中,泛素平衡系統(tǒng)的功能障礙會(huì)導(dǎo)致受損蛋白如微管相關(guān)蛋白Tau(microtubule-associated protein tau,Tau)、β-淀粉樣蛋白(amyloid β-protein,Aβ)等的異常積累,進(jìn)而導(dǎo)致神經(jīng)元細(xì)胞的衰老和變性[34-35]。

        作為泛素平衡系統(tǒng)中唯一的可逆調(diào)控元件,DUBs在此過程中也展現(xiàn)出重要作用。研究發(fā)現(xiàn),DUBs活性的變化能夠顯著影響UPS和ALP的功能[36-37]。BENVEGNù等[38]表示,衰老神經(jīng)元的存活能力高度依賴于泛素化-去泛素化過程的精細(xì)調(diào)控。此外,在衰老的秀麗隱桿線蟲全蛋白質(zhì)組泛素特征分析中,KOYUNCU等[39]觀察到衰老組織14種DUBs表達(dá)普遍上升和異常的蛋白聚集。這些發(fā)現(xiàn)均提示,DUBs可能通過參與泛素平衡系統(tǒng)對(duì)UPS及ALP等降解途徑的調(diào)控過程,在衰老過程中發(fā)揮關(guān)鍵作用。

        3.2 DUBs與線粒體功能障礙

        線粒體功能障礙是衰老的重要驅(qū)動(dòng)因素之一,不僅直接影響細(xì)胞的功能和壽命,還決定了生物體的衰老速度和健康狀況[40-41]。由于線粒體是一個(gè)高蛋白含量的細(xì)胞器,線粒體蛋白質(zhì)量控制(mitochondrial protein quality control,MPQC)確保線粒體蛋白的正確輸入、折疊以及周轉(zhuǎn),維持線粒體的健康和完整性[42]。MPQC涵蓋多種過程,包括UPS、線粒體自噬、線粒體未折疊蛋白反應(yīng)等[43],這些機(jī)制協(xié)同作用,有效抵御毒性損害,并清除受損蛋白質(zhì)甚至整個(gè)線粒體,以維持線粒體穩(wěn)態(tài)。

        泛素平衡系統(tǒng)在MPQC中發(fā)揮重要作用,主要體現(xiàn)在線粒體自噬以及線粒體蛋白UPS降解兩方面。線粒體自噬,特別是PINK1/PRKN依賴性的形式,高度依賴于泛素化過程,通過清除受損的線粒體以維持細(xì)胞內(nèi)線粒體網(wǎng)絡(luò)的正常運(yùn)行[44]。USP30作為DUBs的一員,通過特異性去除線粒體蛋白上K6連接的Ub鏈,拮抗PRKN介導(dǎo)的線粒體自噬[45-49]。這一發(fā)現(xiàn)提示了DUBs在MPQC中的潛在作用。進(jìn)一步研究表明,敲除USP30可減輕D-半乳糖(D-galactose,D -gal)誘導(dǎo)的線粒體損傷及心肌細(xì)胞衰老,且這一效應(yīng)在大鼠模型中得到了驗(yàn)證[50]。另一方面,線粒體外膜上受損的蛋白質(zhì)也會(huì)通過泛素平衡系統(tǒng),隨后經(jīng)UPS途徑降解,以維持線粒體功能的持續(xù)穩(wěn)定。然而,關(guān)于DUBs在這一過程中的具體貢獻(xiàn)仍需進(jìn)一步探索,以全面揭示DUBs通過線粒體與衰老之間的復(fù)雜聯(lián)系。

        除了參與MPQC過程以外,DUBs還參與調(diào)控線粒體氧化還原平衡以及線粒體動(dòng)力學(xué)變化。作為細(xì)胞內(nèi)活性氧(reactive oxygen species,ROS)的主要來源,線粒體產(chǎn)生的ROS常引發(fā)線粒體DNA(Mitochondrial DNA,mtDNA)損傷以及氧化應(yīng)激,進(jìn)而形成惡性循環(huán),加劇線粒體功能障礙和細(xì)胞衰老[40,51-52]。DUBs的酶活性與ROS水平和氧化應(yīng)激密切相關(guān)。DUBs作為氧化還原狀態(tài)的敏感指標(biāo),通過感知ROS異常來調(diào)節(jié)氧化還原信號(hào)傳導(dǎo)和保護(hù)細(xì)胞免受DNA損傷[53-54],從而維持細(xì)胞的氧化還原穩(wěn)態(tài)。此外,在衰老過程中,線粒體動(dòng)力學(xué)常受到顯著干擾,導(dǎo)致線粒體功能逐漸衰退[55]。YAN等[56]的研究指出,特異性敲除USP7會(huì)導(dǎo)致心肌細(xì)胞線粒體生物發(fā)生和動(dòng)力學(xué)紊亂[56]。綜上所述,DUBs通過精細(xì)調(diào)控MPQC及線粒體動(dòng)力學(xué)等多個(gè)層面,在線粒體功能和細(xì)胞衰老中發(fā)揮復(fù)雜的調(diào)控作用。

        3.3 DUBs與p53/p21 Cip1/Waf1通路

        研究發(fā)現(xiàn),p53/p21 Cip1/Waf1通過精細(xì)的分子網(wǎng)絡(luò)調(diào)控細(xì)胞周期進(jìn)程和DNA損傷以參與衰老的進(jìn)程[57]。近年來,DUBs在調(diào)節(jié)p53功能及細(xì)胞周期停滯中的作用受到了廣泛關(guān)注。DUBs通過直接或間接影響p53的泛素化水平,進(jìn)而調(diào)控包括細(xì)胞周期停滯在內(nèi)的多種過程。其中,USP7作為p53的穩(wěn)定劑[58-59],其上調(diào)可以激活p53-p21通路,誘導(dǎo)細(xì)胞發(fā)生過早衰老[60];同期研究也發(fā)現(xiàn),抑制USP7活性能夠選擇性地消除衰老細(xì)胞[61]。此外,其他DUBs如USP5、USP14與USP22也被發(fā)現(xiàn)參與調(diào)控p53依賴的衰老過程[62-64]。

        3.4 DUBs與異常信號(hào)通路以及其他

        細(xì)胞衰老的復(fù)雜調(diào)控網(wǎng)絡(luò)涉及多種信號(hào)通路的協(xié)同作用,其中磷脂酰肌醇3激酶(PI3K)-蛋白激酶B(AKT)通路、腫瘤壞死因子α(TNF-α)信號(hào)傳導(dǎo)與衰老密切相關(guān)[65]。具體而言,TNF-α激活的核因子κB(NF-κB)信號(hào)通路是衰老過程中的關(guān)鍵節(jié)點(diǎn),主要通過介導(dǎo)炎癥反應(yīng)參與其中[66]。在這一背景下,DUBs家庭成員A20已被證實(shí)具有特異性抑制NF-κB信號(hào)通路的能力,并且能夠?qū)NF-α誘導(dǎo)的髓核細(xì)胞衰老發(fā)揮保護(hù)作用[67-68]。除了NF-κB信號(hào)通路外,PI3K-AKT通路在正常人類細(xì)胞中也被證實(shí)參與了衰老[69-70]。泛素通過影響AKT的活性與亞細(xì)胞定位進(jìn)而調(diào)節(jié)整個(gè)環(huán)節(jié),而USP14、USP18、USP33等已被證實(shí)能夠通過去泛素化AKT以調(diào)節(jié)該通路[71-73]。

        4 DUBs與衰老相關(guān)疾病

        4.1 DUBs與神經(jīng)退行性疾?。╪eurodegenerative diseases,NDs)

        NDs主要發(fā)生在老年人群中,包括阿爾茨海默?。ˋlzheimer's disease,AD)、帕金森?。≒arkinson's disease,PD)和亨廷頓病(Huntington's disease,HD)等,尤其以前兩者較為常見,其發(fā)病率隨著年齡的增長而增加[74-75]。這些疾病的核心病理特征之一,是中樞神經(jīng)系統(tǒng)中蛋白質(zhì)的異常聚集,具體包括Aβ蛋白、Tau蛋白、α-突觸核蛋白(alpha-synuclein,α-Syn)、亨廷頓蛋白(huntingtin protein,HTT)[76]。這種蛋白質(zhì)的異常聚集通常是由于蛋白穩(wěn)態(tài)網(wǎng)絡(luò)失衡所導(dǎo)致,尤其與泛素平衡系統(tǒng)參與的UPS和ALP蛋白降解途徑的功能喪失相關(guān)[77-79]。鑒于上述DUBs在蛋白穩(wěn)態(tài)應(yīng)激中的作用,本綜述進(jìn)一步探討了其在NDs中的相關(guān)機(jī)制。

        Aβ蛋白沉積和Tau蛋白的異常磷酸化是AD的兩個(gè)核心病理特征,其相互作用,共同導(dǎo)致了神經(jīng)元的損傷和死亡,DUBs異常表達(dá)或功能障礙可能是AD中Aβ蛋白和p-Tau蛋白異常聚集的主要原因。研究發(fā)現(xiàn),USP8及USP25均可以通過去泛素化作用抑制β位淀粉樣蛋白前體蛋白切割酶1(recombinant beta-site app cleaving enzyme 1,BACE1)的ALP途徑降解,進(jìn)而導(dǎo)致其下游產(chǎn)物Aβ蛋白的病理性聚集[80]。相較之下,UCH-L1對(duì)BACE1的調(diào)控則相反,其表達(dá)下降反而穩(wěn)定了BACE1,增加了Aβ蛋白的進(jìn)一步生成[81]。除了Aβ蛋白沉積,DUBs通過調(diào)節(jié)Tau的降解(USP13、OTUB1)和磷酸化(USP9X)過程來參與其中。LONSKAYA等[82]和LIU等[83]發(fā)現(xiàn),USP13在AD患者腦皮層組織中的蛋白表達(dá)顯著上調(diào),這一變化通過減少磷酸化Tau蛋白的泛素化水平,抑制其ALP及UPS途徑的降解,導(dǎo)致其積累。OTUB1則通過去除Tau蛋白的K48-Ub鏈以抑制其UPS降解,導(dǎo)致其病理性聚集[84]。同時(shí),有研究也發(fā)現(xiàn)USP9X通過參與Tau蛋白的過度磷酸化過程,導(dǎo)致了AD的發(fā)生[85]。

        PD是第二常見的神經(jīng)退行性疾病,以α-Syn等蛋白的異常聚集以及路易小體(Lewy bodies,LBs)形成為主要特征。α-Syn蛋白的異常聚集很大程度上歸因于其降解減少,而該過程受到DUBs的嚴(yán)格調(diào)控。研究發(fā)現(xiàn),α-Syn蛋白的穩(wěn)定性與USP13以及USP8特異相關(guān)。研究者在PD中探討了USP13的作用,發(fā)現(xiàn)敲低USP13可以增加α-Syn蛋白的泛素化水平并促進(jìn)其降解[82-83]。USP8廣泛存在于PD患者的LBs中,通過去除α-Syn蛋白上K63連接的泛素鏈以抑制其ALP途徑降解,進(jìn)而導(dǎo)致其病理性積累[86]。此外,OTUB1被發(fā)現(xiàn)作為淀粉樣蛋白聚集存在于LBs中[17],這表明OTUB1具有神經(jīng)毒性。進(jìn)一步研究表明,OTUB1在氧化應(yīng)激條件下會(huì)發(fā)生S-亞硝基化,這與其催化活性降低及淀粉樣蛋白聚集有關(guān)[17]。

        另外,PINK1/Parkin介導(dǎo)的線粒體自噬異常被認(rèn)為是PD發(fā)病的另一機(jī)制。有學(xué)者發(fā)現(xiàn)USP8可以通過去除Parkin上K6連接的泛素鏈以促進(jìn)線粒體自噬的正常運(yùn)行,在PD中起保護(hù)作用[87]。此外,USP30也通過調(diào)節(jié)線粒體質(zhì)量控制系統(tǒng)參與PD的發(fā)生與發(fā)展過程[46]。FANG等[46]以USP30敲除小鼠為對(duì)象,發(fā)現(xiàn) USP30缺失可以有效增加線粒體自噬并減少α-Syn的病理性聚集,同時(shí),USP30特異性小分子抑制劑MTX115325可以有效恢復(fù)PD小鼠模型中的線粒體功能和多巴胺神經(jīng)元的功能。這些研究成果為深入探討PD的發(fā)病機(jī)制及開發(fā)新型治療策略提供了有價(jià)值的啟示。

        綜上所述,DUBs通過調(diào)節(jié)泛素系統(tǒng)的平衡,直接參與蛋白質(zhì)降解過程的調(diào)控,其異?;顒?dòng)可能進(jìn)一步加劇蛋白質(zhì)的異常聚集;同時(shí),DUBs還能夠發(fā)揮其在線粒體自噬中的獨(dú)特作用,從而加速NDs的進(jìn)展。

        4.2 DUBs與骨質(zhì)疏松(osteoporosis,OP)

        OP是一種隨年齡增長而增加的代謝性骨病,其發(fā)病機(jī)制涉及多種骨細(xì)胞的相互作用與調(diào)節(jié),包括骨間充質(zhì)干細(xì)胞(bone mesenchymal stem cells,BMSCs)、成骨細(xì)胞(osteoblast,OB)、破骨細(xì)胞(osteoclast,OC)和骨細(xì)胞(osteocyte,OCY)等[88]。在這一復(fù)雜的調(diào)控網(wǎng)絡(luò)中,Wnt/β-連環(huán)蛋白(Beta-catenin,β-catenin)信號(hào)通路是OP發(fā)生、發(fā)展的關(guān)鍵節(jié)點(diǎn),其通過調(diào)控BMSCs的分化方向,影響骨形成和骨髓微環(huán)境的脂肪化[89-90]。多項(xiàng)研究顯示,DUBs通過調(diào)節(jié)Wnt/β-catenin通路中多個(gè)蛋白的穩(wěn)定性,對(duì)整個(gè)信號(hào)通路的活性進(jìn)行精細(xì)調(diào)控。

        USP8位于Wnt/β-catenin信號(hào)通路的最上游,通過穩(wěn)定Wnt受體卷曲5(Frizzled 5,F(xiàn)ZD5)的表達(dá)以確保后續(xù)成骨分化過程的正常運(yùn)行[91]。在該通路中,β-catenin是成骨分化過程中核心介質(zhì)[92],其穩(wěn)定性和活化對(duì)骨形成至關(guān)重要。近期研究揭示,USP4和USP15通過與DVL蛋白(Dishevelled,DVL)、β-catenin的相互作用,抑制其降解,從而維持Wnt/β-catenin信號(hào)通路的活性[93-94]。此外,USP7也通過調(diào)控該信號(hào)通路發(fā)揮雙重作用。一方面,USP7通過去泛素化穩(wěn)定Yes關(guān)聯(lián)蛋白1(Yes-associated protein 1,YAP1)的表達(dá),調(diào)控Wnt/β-catenin信號(hào)轉(zhuǎn)導(dǎo)途徑,最終促進(jìn)β-catenin的核轉(zhuǎn)位,正向調(diào)節(jié)骨穩(wěn)態(tài)[95],另一方面,USP7還能利用其TRAF結(jié)構(gòu)域直接與Axis抑制蛋白(recombinant axis inhibition protein,Axin)結(jié)合,促進(jìn)其去泛素化和穩(wěn)定化,從而抑制Wnt/β-catenin信號(hào)傳導(dǎo)調(diào)節(jié)成骨細(xì)胞分化[96]。此外,USP26作為近年來新發(fā)現(xiàn)的骨穩(wěn)態(tài)調(diào)節(jié)因子,在老年小鼠BMSCs中顯著降低。進(jìn)一步研究表明,USP26通過去泛素化穩(wěn)定β-catenin以提升BMSCs的成骨活性[97]。與此同時(shí),BAEK等[98]的研究發(fā)現(xiàn),USP53在OP中的作用機(jī)制與USP26高度一致,均能通過抑制β-catenin降解正向調(diào)節(jié)骨穩(wěn)態(tài)過程并促進(jìn)骨再生。

        來源于BMSCs的OB是骨形成的主要來源,破壞該分化過程會(huì)導(dǎo)致骨代謝失衡[99]。除了Wnt/β-catenin信號(hào)通路,干細(xì)胞自我更新和多能性所必須的兩種蛋白-干細(xì)胞更新調(diào)節(jié)蛋白SRY-box轉(zhuǎn)錄因子2(SRY-box transcription factor 2,SOX2)和Nanog同源框轉(zhuǎn)錄因子(Nanog homeobox,NANOG)也通過調(diào)節(jié)BMSCs功能參與其中[100]。KIM等[101]研究發(fā)現(xiàn),USP7的表達(dá)降低通過調(diào)節(jié)SOX2和NANOG的穩(wěn)定性,顯著抑制了BMSCs的成骨分化潛能。然而,也有研究發(fā)現(xiàn)USP7可以正向調(diào)節(jié)骨穩(wěn)態(tài),通過去泛素化并穩(wěn)定特異性賴氨酸特異性脫甲基酶 6B(lysine demethylase 6B,KDM6B)的表達(dá),進(jìn)而促進(jìn)OB的增殖、分化和自噬,發(fā)揮抗OP作用[102]。

        在骨代謝過程中,OB主要合成新的骨基質(zhì),而OC主要負(fù)責(zé)骨基質(zhì)的降解。然而,炎癥因子主要通過促進(jìn)OC的分化從而導(dǎo)致過度的骨吸收,最終引發(fā)骨質(zhì)疏松[103]。在此過程中,炎癥因子包括NF-κB、TNF-α等通過促進(jìn)NF-κB受體活化因子配體(receptor activator of nuclear factor-κB ligand,RANKL)的分泌以促進(jìn)OC分化[103-104]。在上述LI等[97]針對(duì)USP26的研究中發(fā)現(xiàn),USP26還可以通過穩(wěn)定NF-κBα抑制劑IκBα以抑制該信號(hào)通路,從而阻止了OB的分化。另一研究發(fā)現(xiàn),USP34也具有相同的功能[105]。此外,LIU等[106]研究發(fā)現(xiàn),去泛素化酶CYLD可以通過去泛素化TNF受體關(guān)聯(lián)因子6(TNF receptor associated factor 6,TRAF6)阻斷RANKL誘導(dǎo)的NF-κB信號(hào)通路,從而逆轉(zhuǎn)骨質(zhì)流失。在女性外周血單核細(xì)胞中,USP25的表達(dá)與骨密度呈負(fù)相關(guān),與TRAF6的表達(dá)呈正相關(guān),這也提示USP25可能通過穩(wěn)定TRAF6的表達(dá)參與OB的分化[107]。

        隨著年齡的增長,骨微環(huán)境中大多數(shù)骨細(xì)胞均會(huì)出現(xiàn)衰老的現(xiàn)象。而p53作為衰老的生物標(biāo)志,也被發(fā)現(xiàn)是骨再生的負(fù)調(diào)控因子[108]。USP10是已知的p53的穩(wěn)定劑,研究發(fā)現(xiàn),雌激素通過USP10依賴的去泛素化途徑以穩(wěn)定p53,從而促進(jìn)p21的轉(zhuǎn)錄以及骨細(xì)胞的衰老[109]。此外,USP14也通過穩(wěn)定p53表達(dá),從而誘導(dǎo)骨細(xì)胞凋亡[110]。

        綜上,USPs的異常表達(dá)是導(dǎo)致骨形成與骨吸收失衡的重要因素。進(jìn)一步研究USPs介導(dǎo)的多種骨細(xì)胞的調(diào)控機(jī)制,將對(duì)發(fā)現(xiàn)和開發(fā)新的USPs靶向OP治療策略至關(guān)重要。

        4.3 DUBs與動(dòng)脈粥樣硬化(atherosclerosis,AS)

        AS是一種脂質(zhì)成分和炎性物質(zhì)在動(dòng)脈血管內(nèi)壁沉積形成斑塊,并伴隨血管彈性喪失的血管病變[111]。NF-κB信號(hào)通路在各種刺激下,如細(xì)胞因子、微生物抗原和細(xì)胞內(nèi)應(yīng)激等,調(diào)節(jié)一系列炎癥介質(zhì)的表達(dá),因此在AS中發(fā)揮關(guān)鍵作用[112]。在這一過程中,受體相互作用的絲氨酸/蘇氨酸蛋白激酶1(receptor interacting kinase 1,RIPK1)是該通路中細(xì)胞死亡與炎癥的關(guān)鍵介質(zhì)。RIPK1通過多聚泛素化鏈來激活I(lǐng)KK復(fù)合物,最終導(dǎo)致NF-κB通路的激活。作為AS炎癥的中心驅(qū)動(dòng)因素,RIPK1的激活通常涉及泛素化過程[113-114]。JEAN-CHARLES等[115]的研究揭示了USP20通過RIPK1在AS中的重要作用,發(fā)現(xiàn)USP20通過去泛素化RIPK1抑制其激活,進(jìn)而減弱血管平滑肌細(xì)胞(vascular smooth muscle cells,VSMCs)中TNF和白介素1β(IL-1 beta protein,IL-1β)誘發(fā)的AS信號(hào)。這一發(fā)現(xiàn)得到了進(jìn)一步體內(nèi)試驗(yàn)研究的支持。在特異性表達(dá)USP20C154S/H643Q的雄性Ldlr-/-小鼠中,頭臂動(dòng)脈粥樣硬化面積顯著增大[115],這提示USP20通過去泛素化RIPK1抑制VSMCs的炎癥反應(yīng),在AS中起保護(hù)作用。

        此外,研究發(fā)現(xiàn),USP14在AS患者樣本和氧化低密度脂蛋白(oxidized low-density lipoprotein,ox-LDL)刺激的血管內(nèi)皮細(xì)胞(vascular endothelial cells,VECs)中表達(dá)顯著降低[116]。這種降低與USP14的去泛素化功能密切相關(guān),因?yàn)槠淠軌蚍€(wěn)定NLR家族CARD結(jié)構(gòu)域蛋白5(NLR family CARD domain containing 5,NLRC5),從而在VECs中抑制NF-κB信號(hào)通路[116]。另一方面,UCH-L5在AS中的表達(dá)卻顯著上調(diào),其通過去泛素化NOD樣受體熱蛋白結(jié)構(gòu)域相關(guān)蛋白3(NLRP3),防止其降解,從而促進(jìn)了炎癥小體的形成和炎癥反應(yīng)的加劇[117]。以上結(jié)果共同揭示了DUBs在AS炎癥過程中復(fù)雜且關(guān)鍵的作用。

        白細(xì)胞分化抗原36(Cluster of Differentiation 36,CD36)是脂質(zhì)穩(wěn)態(tài)的關(guān)鍵調(diào)節(jié)者,與AS緊密相關(guān)。CD36的過度表達(dá)會(huì)促進(jìn)脂質(zhì)積累、泡沫細(xì)胞形成、炎癥等過程,均為AS的核心步驟[118]。研究發(fā)現(xiàn),UCH-L1缺失通過促進(jìn)CD36的降解以抑制巨噬細(xì)胞向泡沫細(xì)胞的轉(zhuǎn)化[119]。隨后的研究也表明,USP11則通過穩(wěn)定CD36促進(jìn)這一轉(zhuǎn)變,加劇AS發(fā)展[120]。

        除了經(jīng)典的DUBs外,沉默信息調(diào)節(jié)因子6(Sirtuin 6,SIRT6)也以其獨(dú)特的去泛素化活性在細(xì)胞中發(fā)揮關(guān)鍵作用。SIRT6的生物學(xué)效應(yīng)主要體現(xiàn)在兩個(gè)方面:一方面通過去乙?;富钚哉{(diào)節(jié)端粒維持和血管平滑肌細(xì)胞的壽命,從而發(fā)揮抗AS作用[121];另一方面,SIRT6的去泛素化活性可能對(duì)缺氧誘導(dǎo)因子1α(hypoxia-inducible factor 1-alpha,HIF-1α)的穩(wěn)定性產(chǎn)生影響,進(jìn)而參與AS的不穩(wěn)定斑塊形成[122]??偟膩碇v,對(duì)于DUBs,需要系統(tǒng)性的設(shè)計(jì)探索其潛在的功能機(jī)制,排除翻譯后修飾之間的串?dāng)_帶來的影響。

        4.4 DUBs與呼吸系統(tǒng)疾病

        4.4.1 DUBs與特發(fā)性肺纖維化(idiopathic pulmonary fibrosis,IPF):IPF是一種慢性、進(jìn)展性的纖維化肺炎,主要影響老年人,其中衰老被認(rèn)為是該疾病的一個(gè)重要風(fēng)險(xiǎn)因素[123]。

        在衰老過程中,ALP的活性變化對(duì)細(xì)胞的生存與功能具有深遠(yuǎn)影響。作為ALP的核心蛋白,自噬效應(yīng)蛋白(Beclin 1,BECN1)的表達(dá)水平常受到DUBs的精確調(diào)控,以確保自噬過程的順利進(jìn)行[124-125]。在IPF的病理過程中,USP13能特異性去泛素化BECN1,其缺乏會(huì)導(dǎo)致BECN1穩(wěn)定性下降,進(jìn)而抑制自噬活性;這一連鎖反應(yīng)促進(jìn)了成纖維細(xì)胞向侵襲性表型的轉(zhuǎn)變[126]。同時(shí),體內(nèi)實(shí)驗(yàn)也進(jìn)一步證實(shí)了以上發(fā)現(xiàn)[127]。這些發(fā)現(xiàn)揭示了USP13在保護(hù)肺組織免受纖維化損傷中的重要作用。此外,PANYAIN等[128]的研究表明,UCH-L1的小分子抑制劑Compound-1/2能夠抑制纖維化過程。未來研究應(yīng)進(jìn)一步探索DUBs相關(guān)小分子化合物的具體作用機(jī)制、療效及安全性,為IPF的治療提供新的選擇。

        4.4.2 DUBs與肺衰老:肺衰老是一個(gè)隨年齡增長而發(fā)生的復(fù)雜生理過程,涉及肺組織結(jié)構(gòu)與功能的廣泛變化;該過程與多個(gè)分子機(jī)制緊密相連,包括細(xì)胞周期停滯、DNA損傷、慢性炎癥反應(yīng)等[129]。值得注意的是,E3泛素連接酶鼠雙微體2同源物(mouse double minute2 homolog,MDM2)作為衰老調(diào)控網(wǎng)絡(luò)中的關(guān)鍵節(jié)點(diǎn),通過調(diào)控p53、p21等細(xì)胞衰老標(biāo)志物蛋白表達(dá)水平,參與細(xì)胞周期、DNA損傷響應(yīng)等關(guān)鍵衰老途徑[130-131]。近期,HE等[132]的研究發(fā)現(xiàn),在老年小鼠的肺組織中,USP13的表達(dá)顯著升高。USP13能夠特異性識(shí)別并去除MDM2上K63鏈連接的Ub鏈,有效促進(jìn)MDM2的降解過程,進(jìn)而降低了MDM2的表達(dá)水平。這一發(fā)現(xiàn)揭示了USP13間接地調(diào)控了與衰老緊密相關(guān)的細(xì)胞生物學(xué)事件,從而在肺衰老的調(diào)控網(wǎng)絡(luò)中構(gòu)建了USP13-MDM2軸這一新通路。綜上所述,USP13-MDM2軸在肺衰老中強(qiáng)調(diào)了泛素平衡系統(tǒng)的核心作用,并提供了新的抗衰思路。

        4.5 DUBs與未定潛能克隆性造血(clonal hematopoiesis

        of indeterminate potential,CHIP)

        CHIP是一種常見的與衰老相關(guān)的生物學(xué)現(xiàn)象,其發(fā)生與多種衰老相關(guān)基因的突變緊密相關(guān)[133]。為了揭示CHIP的發(fā)病機(jī)制,多梳抑制性去泛素化酶(polycomb-repressive deubiquitinase,PR-DUB)作為一種新型的DUBs成員,其分子組成以及相關(guān)信號(hào)通路已被深入研究。

        PR-DUB復(fù)合物主要由突變型附加性梳樣蛋白1(additional sex comb-like1,ASXL1)與BRCA1關(guān)聯(lián)蛋白1(BRCA1 associated protein-1,BAP1)相互作用形成,該復(fù)合物能夠識(shí)別并特異性去除核小體上組蛋白H2A K119上的Ub[134]。同時(shí),這一發(fā)現(xiàn)隨后得到了ASADA等[135]和SAHTOE等[136]的實(shí)驗(yàn)支持。進(jìn)一步地,F(xiàn)UJINO等[137]以突變型ASXL1敲入小鼠模型,揭示了PR-DUB的多重功能。他們發(fā)現(xiàn),除了經(jīng)典的組蛋白去泛素化功能外,PR-DUB還能特異性地去除p-AKT上的K48-Ub鏈,從而激活A(yù)kt/mTOR信號(hào)通路,促進(jìn)造血干細(xì)胞的異常增殖,并最終導(dǎo)致功能障礙。這一發(fā)現(xiàn)不僅揭示了PR-DUB在CHIP病理過程中的重要角色,也為開發(fā)針對(duì)CHIP的治療策略提供了潛在靶點(diǎn)。

        5 靶向DUBs的小分子化合物

        DUBs作為細(xì)胞內(nèi)的重要調(diào)節(jié)因子,通過精細(xì)調(diào)控蛋白質(zhì)穩(wěn)態(tài)、線粒體功能、p53-p21細(xì)胞周期以及炎癥反應(yīng)等多個(gè)關(guān)鍵生命過程,在衰老相關(guān)疾病的病理進(jìn)程中扮演著不可或缺的角色。因此,針對(duì)特定DUBs的小分子化合物的開發(fā)在衰老相關(guān)疾病的治療領(lǐng)域展現(xiàn)出巨大的潛力。

        近年來,針對(duì)USP7、USP30和UCH-L1等關(guān)鍵DUBs的小分子化合物的研究取得了顯著進(jìn)展。這些化合物通過特異性地阻斷或激活DUBs的酶活性,影響下游信號(hào)通路的傳導(dǎo),進(jìn)而展現(xiàn)出對(duì)衰老相關(guān)疾病的潛在治療作用。表1匯總了部分已報(bào)道的、靶向本文所述DUBs的小分子化合物,這些化合物通過調(diào)控與衰老相關(guān)的分子機(jī)制,在體外實(shí)驗(yàn)或動(dòng)物模型中已顯示出一定的藥效學(xué)活性。這些發(fā)現(xiàn)不僅加深了研究者對(duì)DUBs在細(xì)胞穩(wěn)態(tài)及疾病進(jìn)程中作用的理解,更為未來藥物研發(fā)領(lǐng)域提供了極具潛力的候選分子[138-158]。

        6 小結(jié)與展望

        近年來,泛素系統(tǒng)的研究蓬勃發(fā)展,其各種組成結(jié)構(gòu)和功能逐漸清晰。同時(shí),許多證據(jù)表明,去泛素化修飾在衰老相關(guān)疾病中扮演著至關(guān)重要的角色(圖2)。在衰老的過程中,去泛素化修飾的異常不僅會(huì)導(dǎo)致致病蛋白的異常積累,而且還會(huì)導(dǎo)致細(xì)胞內(nèi)多種功能的失調(diào),如線粒體質(zhì)量控制、炎癥反應(yīng)、細(xì)胞周期、DNA損傷等生命過程。并且,針對(duì)DUBs的相關(guān)干預(yù)藥物已部分用于臨床前期研究。然而,目前對(duì)于DUBs在衰老相關(guān)疾病中的具體作用機(jī)制仍有待繼續(xù)研究?;谀壳暗难芯炕A(chǔ),未來可以通過高通量篩選、結(jié)構(gòu)生物學(xué)、蛋白質(zhì)組學(xué)等先進(jìn)技術(shù)手段,系統(tǒng)解析DUBs在疾病發(fā)生、發(fā)展過程中的角色。同時(shí),開發(fā)針對(duì)DUBs的干預(yù)策略,以精確調(diào)控泛素系統(tǒng)的功能,有望為年齡相關(guān)性疾病的預(yù)防和治療提供新的思路和方向。

        作者貢獻(xiàn):徐林慧負(fù)責(zé)文章的構(gòu)思、收集整理文獻(xiàn)以及論文的撰寫;李鵬飛、吳苗苗負(fù)責(zé)論文修訂、文章的質(zhì)量控制以及審校;康麗華、季敏負(fù)責(zé)進(jìn)行文章的可行性分析,進(jìn)行監(jiān)督管理;俞瑩、管懷進(jìn)對(duì)文章質(zhì)量整體負(fù)責(zé)及監(jiān)督管理。

        本文無利益沖突。

        參考文獻(xiàn)

        SHENG X P,XIA Z X,YANG H T,et al. The ubiquitin codes in cellular stress responses[J]. Protein Cell,2024,15(3):157-190. DOI:10.1093/procel/pwad045.

        TRACZ M,BIALEK W. Beyond K48 and K63:non-canonical protein ubiquitination[J]. Cell Mol Biol Lett,2021,26(1):1. DOI:10.1186/s11658-020-00245-6.

        TAWO R,POKRZYWA W,KEVEI é,et al. The ubiquitin ligase CHIP integrates proteostasis and aging by regulation of insulin receptor turnover[J]. Cell,2017,169(3):470-482.e13. DOI:10.1016/j.cell.2017.04.003.

        H?HFELD J,HOPPE T. Ub and down:ubiquitin exercise for the elderly[J]. Trends Cell Biol,2018,28(7):512-522. DOI:10.1016/j.tcb.2018.03.002.

        HU S S,WANG L. The potential role of ubiquitination and deubiquitination in melanogenesis[J]. Exp Dermatol,2023,

        32(12):2062-2071. DOI:10.1111/exd.14953.

        CLAGUE M J,BARSUKOV I,COULSON J M,et al. Deubiquitylases from genes to organism[J]. Physiol Rev,2013,93(3):1289-1315. DOI:10.1152/physrev.00002.2013.

        REHMAN S A A,KRISTARIYANTO Y A,CHOI S Y,et al. MINDY-1 is a member of an evolutionarily conserved and structurally distinct new family of deubiquitinating enzymes[J]. Mol Cell,2016,63(1):146-155. DOI:10.1016/j.molcel.2016.05.009.

        NIJMAN S M B,LUNA-VARGAS M P A,VELDS A,et al. A genomic and functional inventory of deubiquitinating enzymes[J]. Cell,2005,123(5):773-786. DOI:10.1016/j.cell.2005.11.007.

        KOMANDER D,CLAGUE M J,URBé S. Breaking the chains:structure and function of the deubiquitinases[J]. Nat Rev Mol Cell Biol,2009,10(8):550-563. DOI:10.1038/nrm2731.

        WANG F,NING S,YU B,et al. USP14:structure,function,and target inhibition[J]. Front Pharmacol,2021,12:801328. DOI:10.3389/fphar.2021.801328.

        PYEON D,TIMANI K A,GULRAIZ F,et al. Function of ubiquitin(Ub)specific protease 15(USP15)in HIV-1 replication and viral protein degradation[J]. Virus Res,2016,223:161-169. DOI:10.1016/j.virusres.2016.07.009.

        MORROW M E,KIM M I,RONAU J A,et al. Stabilization of an unusual salt bridge in ubiquitin by the extra C-terminal domain of the proteasome-associated deubiquitinase UCH37 as a mechanism of its exo specificity[J]. Biochemistry,2013,52(20):3564-3578. DOI:10.1021/bi4003106.

        LI L H,XU K,BAI X,et al. UCHL1 regulated by Sp1 ameliorates cochlear hair cell senescence and oxidative damage[J]. Exp Ther Med,2023,25(2):94. DOI:10.3892/etm.2023.11793.

        CARTIER A E,UBHI K,SPENCER B,et al. Differential effects of UCHL1 modulation on alpha-synuclein in PD-like models of alpha-synucleinopathy[J]. PLoS One,2012,7(4):e34713. DOI:10.1371/journal.pone.0034713.

        ZHU Q,F(xiàn)U Y S,LI L,et al. The functions and regulation of Otubains in protein homeostasis and diseases[J]. Ageing Res Rev,2021,67:101303. DOI:10.1016/j.arr.2021.101303.

        MEVISSEN T E T,HOSPENTHAL M K,GEURINK P P,et al. OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis[J]. Cell,2013,

        154(1):169-184. DOI:10.1016/j.cell.2013.05.046.

        KUMARI R,KUMAR R,KUMAR S,et al. Amyloid aggregates of the deubiquitinase OTUB1 are neurotoxic,suggesting that they contribute to the development of Parkinson's disease[J]. J Biol Chem,2020,295(11):3466-3484. DOI:10.1074/jbc.RA119.009546.

        ZHANG Y,HU R M,WU H J,et al. OTUB1 overexpression in mesangial cells is a novel regulator in the pathogenesis of glomerulonephritis through the decrease of DCN level[J]. PLoS One,2012,7(1):e29654. DOI:10.1371/journal.pone.0029654.

        LI X Y,MAO X F,TANG X Q,et al. Regulation of Gli2 stability by deubiquitinase OTUB2[J]. Biochem Biophys Res Commun,2018,505(1):113-118. DOI:10.1016/j.bbrc.2018.09.071.

        BISSERIER M,MILARA J,ABDELDJEBBAR Y,et al. AAV1.SERCA2a gene therapy reverses pulmonary fibrosis by blocking the STAT3/FOXM1 pathway and promoting the SNON/SKI axis[J]. Mol Ther,2020,28(2):394-410. DOI:10.1016/j.ymthe.2019.11.027

        ZENG C M,ZHAO C X,GE F J,et al. Machado-Joseph deubiquitinases:from cellular functions to potential therapy targets[J]. Front Pharmacol,2020,11:1311. DOI:10.3389/fphar.2020.01311.

        CLAGUE M J,URBé S. Endocytosis:the DUB version[J]. Trends Cell Biol,2006,16(11):551-559. DOI:10.1016/j.tcb.2006.09.002.

        CAO S Y,ENGILBERGE S,GIRARD E,et al. Structural insight into ubiquitin-like protein recognition and oligomeric states of JAMM/MPN+ proteases[J]. Structure,2017,25(6):823-833.e6. DOI:10.1016/j.str.2017.04.002.

        ABDUL REHMAN S A,ARMSTRONG L A,LANGE S M,et al. Mechanism of activation and regulation of deubiquitinase activity in MINDY1 and MINDY2[J]. Mol Cell,2021,81(20):4176-4190.e6. DOI:10.1016/j.molcel.2021.08.024.

        KWASNA D,ABDUL REHMAN S A,NATARAJAN J,

        et al. Discovery and characterization of ZUFSP/ZUP1,a distinct deubiquitinase class important for genome stability[J]. Mol Cell,2018,70(1):150-164.e6. DOI:10.1016/j.molcel.2018.02.023.

        HAAHR P,BORGERMANN N,GUO X H,et al. ZUFSP deubiquitylates K63-linked polyubiquitin chains to promote genome stability[J]. Mol Cell,2018,70(1):165-174.e6. DOI:10.1016/j.molcel.2018.02.024.

        AGING BIOMARKER C,BAO H,CAO J,et al. Biomarkers of aging[J]. Sci China Life Sci,2023,66(5):893-1066. DOI:10.1007/s11427-023-2305-0.

        LOTTES E N,COX D N. Homeostatic roles of the proteostasis network in dendrites[J]. Front Cell Neurosci,2020,14:264. DOI:10.3389/fncel.2020.00264.

        LI Y M,TIAN X T,LUO J Y,et al. Molecular mechanisms of aging and anti-aging strategies[J]. Cell Commun Signal,2024,22(1):285. DOI:10.1186/s12964-024-01663-1.

        FELECIANO D R,JUENEMANN K,IBURG M,et al. Crosstalk between chaperone-mediated protein disaggregation and proteolytic pathways in aging and disease[J]. Front Aging Neurosci,2019,11:9. DOI:10.3389/fnagi.2019.00009.

        CHEN Y R,HAREL I,SINGH P P,et al. Tissue-specific landscape of protein aggregation and quality control in an aging vertebrate[J]. Dev Cell,2024,59(14):1892-1911.e13. DOI:10.1016/j.devcel.2024.04.014.

        LIEBL M P,HOPPE T. It's all about talking:two-way communication between proteasomal and lysosomal degradation pathways via ubiquitin[J]. Am J Physiol Cell Physiol,2016,

        311(2):C166-178. DOI:10.1152/ajpcell.00074.2016.

        BLASIAK J,PAWLOWSKA E,SZCZEPANSKA J,et al. Interplay between autophagy and the ubiquitin-proteasome system and its role in the pathogenesis of age-related macular degeneration[J]. Int J Mol Sci,2019,20(1):210. DOI:10.3390/ijms20010210.

        CHOI B,LIM C,LEE H,et al. Neuroprotective effects of linear ubiquitin E3 ligase against aging-induced DNA damage and amyloid β neurotoxicity in the brain of Drosophila melanogaster[J]. Biochem Biophys Res Commun,2022,637:196-202. DOI:10.1016/j.bbrc.2022.11.032.

        ZHANG Z Y,HARISCHANDRA D S,WANG R F,et al. TRIM11 protects against tauopathies and is down-regulated in Alzheimer's disease[J]. Science,2023,381(6656):eadd6696. DOI:10.1126/science.add6696.

        LEE B H,LU Y,PRADO M A,et al. USP14 deubiquitinates proteasome-bound substrates that are ubiquitinated at multiple sites[J]. Nature,2016,532(7599):398-401. DOI:10.1038/nature17433.

        CSIZMADIA T,L?W P. The role of deubiquitinating enzymes in the various forms of autophagy[J]. Int J Mol Sci,2020,21(12):4196. DOI:10.3390/ijms21124196.

        BENVEGNù S,MATEO M I,PALOMER E,et al. Aging triggers cytoplasmic depletion and nuclear translocation of the E3 ligase mahogunin:a function for ubiquitin in neuronal survival[J]. Mol Cell,2017,66(3):358-372.e7. DOI:10.1016/j.molcel.2017.04.005.

        KOYUNCU S,LOUREIRO R,LEE H J,et al. Rewiring of the ubiquitinated proteome determines ageing in C. elegans[J]. Nature,2021,596(7871):285-290. DOI:10.1038/s41586-021-03781-z.

        GUO Y,GUAN T,SHAFIQ K,et al. Mitochondrial dysfunction in aging[J]. Ageing Res Rev,2023,88:101955. DOI:10.1016/j.arr.2023.101955.

        MIWA S,KASHYAP S,CHINI E,et al. Mitochondrial dysfunction in cell senescence and aging[J]. J Clin Invest,2022,132(13):e158447. DOI:10.1172/JCI158447.

        FRIEDLANDER J E,SHEN N,ZENG A Z,et al. Failure to guard:mitochondrial protein quality control in cancer[J]. Int J Mol Sci,2021,22(15):8306. DOI:10.3390/ijms22158306.

        JADIYA P,TOMAR D. Mitochondrial protein quality control mechanisms[J]. Genes,2020,11(5):563. DOI:10.3390/genes11050563.

        HAN R,LIU Y T,LI S H,et al. PINK1-PRKN mediated mitophagy:differences between in vitro and in vivo models[J]. Autophagy,2023,19(5):1396-1405. DOI:10.1080/15548627.2022.2139080.

        HOSHINO A,WANG W J,WADA S,et al. The ADP/ATP translocase drives mitophagy independent of nucleotide exchange[J]. Nature,2019,575(7782):375-379. DOI:10.1038/s41586-019-1667-4.

        FANG T S Z,SUN Y,PEARCE A C,et al. Knockout or inhibition of USP30 protects dopaminergic neurons in a Parkinson's disease mouse model[J]. Nat Commun,2023,14(1):7295. DOI:10.1038/s41467-023-42876-1.

        CUNNINGHAM C N,BAUGHMAN J M,PHU L,et al. USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria[J]. Nat Cell Biol,2015,17(2):160-169. DOI:10.1038/ncb3097.

        LIANG J R,MARTINEZ A,LANE J D,et al. USP30 deubiquitylates mitochondrial Parkin substrates and restricts apoptotic cell death[J]. EMBO Rep,2015,16(5):618-627. DOI:10.15252/embr.201439820.

        MARCASSA E,KALLINOS A,JARDINE J,et al. Dual role of USP30 in controlling basal pexophagy and mitophagy[J]. EMBO Rep,2018,19(7):e45595. DOI:10.15252/embr.201745595.

        PAN W,WANG Y W,BAI X Y,et al. Deubiquitinating enzyme USP30 negatively regulates mitophagy and accelerates myocardial cell senescence through antagonism of Parkin[J]. Cell Death Discov,2021,7(1):187. DOI:10.1038/s41420-021-00546-5.

        SHABALINA I G,EDGAR D,GIBANOVA N,et al. Enhanced ROS production in mitochondria from prematurely aging mtDNA mutator mice[J]. Biochemistry,2024,89(2):279-298. DOI:10.1134/S0006297924020081.

        ELORZA A A,SOFFIA J P. mtDNA heteroplasmy at the core of aging-associated heart failure. an integrative view of OXPHOS and mitochondrial life cycle in cardiac mitochondrial physiology[J]. Front Cell Dev Biol,2021,9:625020. DOI:10.3389/fcell.2021.625020.

        LEE J G,BAEK K,SOETANDYO N,et al. Reversible inactivation of deubiquitinases by reactive oxygen species in vitro and in cells[J]. Nat Commun,2013,4:1568. DOI:10.1038/ncomms2532.

        OIKAWA D,GI M,KOSAKO H,et al. OTUD1 deubiquitinase regulates NF-κB- and KEAP1-mediated inflammatory responses and reactive oxygen species-associated cell death pathways[J]. Cell Death Dis,2022,13(8):694. DOI:10.1038/s41419-022-05145-5.

        SHARMA A,SMITH H J,YAO P,et al. Causal roles of mitochondrial dynamics in longevity and healthy aging[J]. EMBO Rep,2019,20(12):e48395. DOI:10.15252/embr.201948395.

        YAN M L,MEI Y,ZHANG T J,et al. USP7 cardiomyocyte specific knockout causes disordered mitochondrial biogenesis and dynamics and early neonatal lethality in mice[J]. Int J Cardiol,2024,408:132149. DOI:10.1016/j.ijcard.2024.132149.

        KASTENHUBER E R,LOWE S W. Putting p53 in context[J]. Cell,2017,170(6):1062-1078. DOI:10.1016/j.cell.2017.08.028.

        LI Z Y,WANG Z Y,ZHONG C,et al. P53 upregulation by USP7-engaging molecular glues[J]. Sci Bull,2024,69(12):1936-1953. DOI:10.1016/j.scib.2024.04.017.

        LIU J W,CAO L Z,WANG Y B,et al. The phosphorylation-deubiquitination positive feedback loop of the CHK2-USP7 axis stabilizes p53 under oxidative stress[J]. Cell Rep,2024,

        43(6):114366. DOI:10.1016/j.celrep.2024.114366.

        ZENG M H,ZHANG X F,XING W,et al. Cigarette smoke extract mediates cell premature senescence in chronic obstructive pulmonary disease patients by up-regulating USP7 to activate p300-p53/p21 pathway[J]. Toxicol Lett,2022,359:31-45. DOI:10.1016/j.toxlet.2022.01.017.

        HE Y H,LI W,LV D W,et al. Inhibition of USP7 activity selectively eliminates senescent cells in part via restoration of p53 activity[J]. Aging Cell,2020,19(3):e13117. DOI:10.1111/acel.13117.

        ZHOU D,LIU P,SUN D W,et al. USP22 down-regulation facilitates human retinoblastoma cell aging and apoptosis via inhibiting TERT/P53 pathway[J]. Eur Rev Med Pharmacol Sci,2017,21(12):2785-2792.

        LI J,WANG Y,LUO Y,et al. USP5-Beclin 1 axis overrides p53-dependent senescence and drives Kras-induced tumorigenicity[J]. Nat Commun,2022,13(1):7799. DOI:10.1038/s41467-022-35557-y.

        GUBAT J,SJ?STRAND L,SELVARAJU K,et al. Loss of the proteasomal deubiquitinase USP14 induces growth defects and a senescence phenotype in colorectal cancer cells[J]. Sci Rep,2024,14(1):13037. DOI:10.1038/s41598-024-63791-5.

        SCIORATI C,GAMBERALE R,MONNO A,et al. Pharmacological blockade of TNFα prevents sarcopenia and prolongs survival in aging mice[J]. Aging,2020,12(23):23497-23508. DOI:10.18632/aging.202200.

        TILSTRA J S,CLAUSON C L,NIEDERNHOFER L J,et al. NF-κB in aging and disease[J]. Aging Dis,2011,2(6):449-465.

        PRIEM D,VAN LOO G,BERTRAND M J M. A20 and cell death-driven inflammation[J]. Trends Immunol,2020,41(5):421-435. DOI:10.1016/j.it.2020.03.001.

        PENG X,ZHANG C,BAO J P,et al. A20 of nucleus pulposus cells plays a self-protection role via the nuclear factor-kappa B pathway in the inflammatory microenvironment[J]. Bone Joint Res,2020,9(5):225-235. DOI:10.1302/2046-3758.95.BJR-2019-0230.R1.

        WANG D X,WANG E H,LI Y,et al. Anti-aging effect of Momordica charantia L. on d-Galactose-Induced subacute aging in mice by activating PI3K/AKT signaling pathway[J]. Molecules,2022,27(14):4502. DOI:10.3390/molecules27144502.

        ORTEGA M A,ASúNSOLO á,LEAL J,et al. Implication of the PI3K/Akt/mTOR pathway in the process of incompetent valves in patients with chronic venous insufficiency and the relationship with aging[J]. Oxid Med Cell Longev,2018,2018:1495170. DOI:10.1155/2018/1495170.

        WANG H,LIU Z N,SUN Z,et al. Ubiquitin specific peptidase 33 promotes cell proliferation and reduces apoptosis through regulation of the SP1/PI3K/AKT pathway in retinoblastoma[J]. Cell Cycle,2021,20(19):2066-2076. DOI:10.1080/15384101.2021.1970305.

        GOLDBRAIKH D,NEUFELD D,EID-MUTLAK Y,et al. USP1 deubiquitinates Akt to inhibit PI3K-Akt-FoxO signaling in muscle during prolonged starvation[J]. EMBO Rep,2020,21(4):e48791. DOI:10.15252/embr.201948791.

        DIAO W J,GUO Q S,ZHU C Y,et al. USP18 promotes cell proliferation and suppressed apoptosis in cervical cancer cells via activating AKT signaling pathway[J]. BMC Cancer,2020,

        20(1):741. DOI:10.1186/s12885-020-07241-1.

        RANSOHOFF R M. How neuroinflammation contributes to neurodegeneration[J]. Science,2016,353(6301):777-783. DOI:10.1126/science.aag2590.

        CUI L,HOU N N,WU H M,et al. Prevalence of Alzheimer's disease and Parkinson's disease in China:an updated systematical analysis[J]. Front Aging Neurosci,2020,12:603854. DOI:10.3389/fnagi.2020.603854.

        LIU B H,RUAN J,CHEN M,et al. Deubiquitinating enzymes(DUBs):decipher underlying basis of neurodegenerative diseases[J]. Mol Psychiatry,2022,27(1):259-268. DOI:10.1038/s41380-021-01233-8.

        ARK C W,JUNG B K,RYU K Y. Reduced free ubiquitin levels and proteasome activity in cultured neurons and brain tissues treated with amyloid beta aggregates[J]. Mol Brain,2020,13(1):89. DOI:10.1186/s13041-020-00632-2.

        AL MAMUN A,RAHMAN M M,ZAMAN S,et al. Molecular insight into the crosstalk of UPS components and Alzheimer's disease[J]. Curr Protein Pept Sci,2020,21(12):1193-1201. DOI:10.2174/1389203721666200923153406.

        FUNG T Y,IYASWAMY A,SREENIVASMURTHY S G,et al. Klotho an autophagy Stimulator as a potential therapeutic target for Alzheimer's disease:a review[J]. Biomedicines,2022,10(3):705. DOI:10.3390/biomedicines10030705.

        YEATES E F A,TESCO G. The endosome-associated deubiquitinating enzyme USP8 regulates BACE1 enzyme ubiquitination and degradation[J]. J Biol Chem,2016,

        291(30):15753-15766. DOI:10.1074/jbc.M116.718023.

        ZHANG M M,DENG Y,LUO Y W,et al. Control of BACE1 degradation and APP processing by ubiquitin carboxyl-terminal hydrolase L1[J]. J Neurochem,2012,120(6):1129-1138. DOI:10.1111/j.1471-4159.2011.07644.x.

        LONSKAYA I,HEBRON M L,DESFORGES N M,et al. Tyrosine kinase inhibition increases functional parkin-Beclin-1 interaction and enhances amyloid clearance and cognitive performance[J]. EMBO Mol Med,2013,5(8):1247-1262. DOI:10.1002/emmm.201302771.

        LIU X G,HEBRON M L,MULKI S,et al. Ubiquitin specific protease 13 regulates tau accumulation and clearance in models of Alzheimer's disease[J]. J Alzheimers Dis,2019,72(2):425-441. DOI:10.3233/JAD-190635.

        WANG P,JOBERTY G,BUIST A,et al. Tau interactome mapping based identification of Otub1 as Tau deubiquitinase involved in accumulation of pathological Tau forms in vitro and in vivo[J]. Acta Neuropathol,2017,133(5):731-749. DOI:10.1007/s00401-016-1663-9.

        K?GLSBERGER S,CORDERO-MALDONADO M L,ANTONY P,et al. Gender-specific expression of ubiquitin-specific peptidase 9 modulates tau expression and phosphorylation:possible implications for tauopathies[J]. Mol Neurobiol,2017,54(10):7979-7993. DOI:10.1007/s12035-016-0299-z.

        ALEXOPOULOU Z,LANG J,PERRETT R M,et al. Deubiquitinase Usp8 regulates α-synuclein clearance and modifies its toxicity in Lewy body disease[J]. Proc Natl Acad Sci USA,2016,113(32):E4688-E4697. DOI:10.1073/pnas.1523597113.

        DURCAN T M,TANG M Y,PéRUSSE J R,et al. USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin[J]. EMBO J,2014,33(21):2473-2491. DOI:10.15252/embj.201489729.

        PAI M V. Osteoporosis prevention and management[J]. J Obstet Gynaecol India,2017,67(4):237-242. DOI:10.1007/s13224-017-0994-3.

        HUANG Y X,XIAO D,HUANG S H,et al. Circular RNA YAP1 attenuates osteoporosis through up-regulation of YAP1 and activation of Wnt/β-catenin pathway[J]. Biomed Pharmacother,2020,129:110365. DOI:10.1016/j.biopha.2020.110365.

        CHEN M,HAN H,ZHOU S Q,et al. Morusin induces osteogenic differentiation of bone marrow mesenchymal stem cells by canonical Wnt/β-catenin pathway and prevents bone loss in an ovariectomized rat model[J]. Stem Cell Res Ther,2021,12(1):173. DOI:10.1186/s13287-021-02239-3.

        CHAUGULE S,KIM J M,YANG Y S,et al. Deubiquitinating enzyme USP8 is essential for skeletogenesis by regulating Wnt signaling[J]. Int J Mol Sci,2021,22(19):10289. DOI:10.3390/ijms221910289.

        ZHU B,XUE F,LI G Y,et al. CRYAB promotes osteogenic differentiation of human bone marrow stem cells via stabilizing β-catenin and promoting the Wnt signalling[J]. Cell Prolif,2020,53(1):e12709. DOI:10.1111/cpr.12709.

        ZHOU F F,LI F,F(xiàn)ANG P F,et al. Ubiquitin-specific protease 4 antagonizes osteoblast differentiation through dishevelled[J]. J Bone Miner Res,2016,31(10):1888-1898. DOI:10.1002/jbmr.2863.

        GREENBLATT M B,SHIN D Y,OH H,et al. MEKK2 mediates an alternative β-catenin pathway that promotes bone formation[J]. Proc Natl Acad Sci USA,2016,113(9):E1226-E1235. DOI:10.1073/pnas.1600813113.

        WANG X P,ZOU C C,HOU C J,et al. Extracellular vesicles from bone marrow mesenchymal stem cells alleviate osteoporosis in mice through USP7-mediated YAP1 protein stability and the Wnt/β-catenin pathway[J]. Biochem Pharmacol,2023,217:115829. DOI:10.1016/j.bcp.2023.115829.

        JIANG L,YANG Q H,GAO J J,et al. BK channel deficiency in osteoblasts reduces bone formation via the Wnt/β-catenin pathway[J]. Mol Cells,2021,44(8):557-568. DOI:10.14348/molcells.2021.0004.

        LI C W,QIU M L,CHANG L L,et al. The osteoprotective role of USP26 in coordinating bone formation and resorption[J]. Cell Death Differ,2022,29(6):1123-1136. DOI:10.1038/s41418-021-00904-x.

        BAEK D,PARK K H,LEE K M,et al. Ubiquitin-specific protease 53 promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells[J]. Cell Death Dis,2021,12(3):238. DOI:10.1038/s41419-021-03517-x.

        CRANE J L,CAO X. Bone marrow mesenchymal stem cells and TGF-β signaling in bone remodeling[J]. J Clin Invest,2014,124(2):466-472. DOI:10.1172/JCI70050.

        TIE K,CAI J H,QIN J,et al. Nanog/NFATc1/Osterix signaling pathway-mediated promotion of bone formation at the tendon-bone interface after ACL reconstruction with De-BMSCs transplantation[J]. Stem Cell Res Ther,2021,12(1):576. DOI:10.1186/s13287-021-02643-9.

        KIM Y J,PARK K H,LEE K M,et al. Deubiquitinating enzyme USP7 is required for self-renewal and multipotency of human bone marrow-derived mesenchymal stromal cells[J]. Int J Mol Sci,2022,23(15):8674. DOI:10.3390/ijms23158674.

        LU X H,ZHANG Y T,ZHENG Y,et al. The miRNA-15b/USP7/KDM6B axis engages in the initiation of osteoporosis by modulating osteoblast differentiation and autophagy[J]. J Cell Mol Med,2021,25(4):2069-2081. DOI:10.1111/jcmm.16139.

        TIAN H L,CHEN F,WANG Y F,et al. Nur77 prevents osteoporosis by inhibiting the NF-κB signalling pathway and osteoclast differentiation[J]. J Cell Mol Med,2022,26(8):2163-2176. DOI:10.1111/jcmm.17238.

        LIN A Y,KITAURA H,OHORI F,et al.(D-Ala2)GIP inhibits inflammatory bone resorption by suppressing TNF-α and RANKL expression and directly impeding osteoclast formation[J]. Int J Mol Sci,2024,25(5):2555. DOI:10.3390/ijms25052555.

        LI Q W,WANG M Y,XUE H X,et al. Ubiquitin-specific protease 34 inhibits osteoclast differentiation by regulating NF-κB signaling[J]. J Bone Miner Res,2020,35(8):1597-1608. DOI:10.1002/jbmr.4015.

        LIU L,JIN R R,DUAN J M,et al. Bioactive iron oxide nanoparticles suppress osteoclastogenesis and ovariectomy-induced bone loss through regulating the TRAF6-p62-CYLD signaling complex[J]. Acta Biomater,2020,103:281-292. DOI:10.1016/j.actbio.2019.12.022.

        SHEN J,F(xiàn)U B,WU Y,et al. USP25 expression in peripheral blood mononuclear cells is associated with bone mineral density in women[J]. Front Cell Dev Biol,2021,9:811611. DOI:10.3389/fcell.2021.811611.

        YU T,YOU X M,ZHOU H C,et al. p53 plays a central role in the development of osteoporosis[J]. Aging,2020,12(11):10473-10487. DOI:10.18632/aging.103271.

        WEI Y,F(xiàn)U J Y,WU W J,et al. Estrogen prevents cellular senescence and bone loss through Usp10-dependent p53 degradation in osteocytes and osteoblasts:the role of estrogen in bone cell senescence[J]. Cell Tissue Res,2021,386(2):297-308. DOI:10.1007/s00441-021-03496-7.

        ZHOU P Y,XIA D M,WANG Y,et al. Matrine derivate MASM protects murine MC3T3-E1 osteoblastic cells against dexamethasone-induced apoptosis via the regulation of USP14/p53[J]. Artif Cells Nanomed Biotechnol,2019,47(1):3720-3728. DOI:10.1080/21691401.2019.1664563.

        LORENZO C,DELGADO P,BUSSE C E,et al. ALDH4A1 is an atherosclerosis auto-antigen targeted by protective antibodies[J]. Nature,2021,589(7841):287-292. DOI:10.1038/s41586-020-2993-2.

        LI W J,JIN K H,LUO J C,et al. NF-κB and its crosstalk with endoplasmic reticulum stress in atherosclerosis[J]. Front Cardiovasc Med,2022,9:988266. DOI:10.3389/fcvm.2022.988266.

        KARUNAKARAN D,NGUYEN M A,GEOFFRION M,et al. RIPK1 expression associates with inflammation in early atherosclerosis in humans and can be therapeutically silenced to reduce NF-κB activation and atherogenesis in mice[J]. Circulation,2021,143(2):163-177. DOI:10.1161/CIRCULATIONAHA.118.038379.

        AKSENTIJEVICH I,ZHOU Q. NF-κB pathway in autoinflammatory diseases:dysregulation of protein modifications by ubiquitin defines a new category of autoinflammatory diseases[J]. Front Immunol,2017,8:399. DOI:10.3389/fimmu.2017.00399.

        JEAN-CHARLES P Y,WU J H,ZHANG L S,et al. USP20(ubiquitin-specific protease 20)inhibits TNF(tumor necrosis factor)-triggered smooth muscle cell inflammation and attenuates atherosclerosis[J]. Arterioscler Thromb Vasc Biol,2018,

        38(10):2295-2305. DOI:10.1161/ATVBAHA.118.311071.

        FU Y,QIU J X,WU J H,et al. USP14-mediated NLRC5 upregulation inhibits endothelial cell activation and inflammation in atherosclerosis[J]. Biochim Biophys Acta Mol Cell Biol Lipids,2023,1868(5):159258. DOI:10.1016/j.bbalip.2022.159258.

        YANG X H,WANG C,ZHU G L,et al. METTL14/YTHDF1 axis-modified UCHL5 aggravates atherosclerosis by activating the NLRP3 inflammasome[J]. Exp Cell Res,2023,427(2):113587. DOI:10.1016/j.yexcr.2023.113587.

        WEN S Y,ZHI X Y,LIU H X,et al. Is the suppression of CD36 a promising way for atherosclerosis therapy?[J]. Biochem Pharmacol,2024,219:115965. DOI:10.1016/j.bcp.2023.115965.

        XIA X H,XU Q,LIU M K,et al. Deubiquitination of CD36 by UCHL1 promotes foam cell formation[J]. Cell Death Dis,2020,11(8):636. DOI:10.1038/s41419-020-02888-x.

        ZENG M,WEI X,HE Y L,et al. Ubiquitin-specific protease 11-mediated CD36 deubiquitination acts on C1q/TNF-related protein 9 against atherosclerosis[J]. ESC Heart Fail,2023,10(4):2499-2509. DOI:10.1002/ehf2.14423.

        GROOTAERT M O J,F(xiàn)INIGAN A,F(xiàn)IGG N L,et al. SIRT6 protects smooth muscle cells from senescence and reduces atherosclerosis[J]. Circ Res,2021,128(4):474-491. DOI:10.1161/CIRCRESAHA.120.318353.

        YANG Z,HUANG Y J,ZHU L,et al. SIRT6 promotes angiogenesis and hemorrhage of carotid plaque via regulating HIF-1α and reactive oxygen species[J]. Cell Death Dis,2021,

        12(1):77. DOI:10.1038/s41419-020-03372-2.

        LIANG J R,HUANG G L,LIU X,et al. Reciprocal interactions between alveolar progenitor dysfunction and aging promote lung fibrosis[J]. eLife,2023,12:e85415. DOI:10.7554/eLife.85415.

        FERNáNDEZ á F,SEBTI S,WEI Y J,et al. Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice[J]. Nature,2018,558(7708):136-140. DOI:10.1038/s41586-018-0162-7.

        NAKKAS H,OCAL B G,KIPEL S,et al. Ubiquitin proteasome system and autophagy associated proteins in human testicular tumors[J]. Tissue Cell,2021,71:101513. DOI:10.1016/j.tice.2021.101513.

        GENG J,HUANG X X,LI Y,et al. Down-regulation of USP13 mediates phenotype transformation of fibroblasts in idiopathic pulmonary fibrosis[J]. Respir Res,2015,16:124. DOI:10.1186/s12931-015-0286-3.

        LIU Y,LI Z,XIAO H J,et al. USP13 deficiency impairs autophagy and facilitates age-related lung fibrosis[J]. Am J Respir Cell Mol Biol,2023,68(1):49-61. DOI:10.1165/rcmb.2022-0002OC.

        PANYAIN N,GODINAT A,LANYON-HOGG T,et al. Discovery of a potent and selective covalent inhibitor and activity-based probe for the deubiquitylating enzyme UCHL1,with antifibrotic activity[J]. J Am Chem Soc,2020,142(28):12020-12026. DOI:10.1021/jacs.0c04527.

        SCHNEIDER J L,ROWE J H,GARCIA-DE-ALBA C,

        et al. The aging lung:Physiology,disease,and immunity[J]. Cell,2021,184(8):1990-2019. DOI:10.1016/j.cell.2021.03.005.

        VILGELM A E,COBB P,MALIKAYIL K,et al. MDM2 antagonists counteract drug-induced DNA damage[J]. EBioMedicine,2017,24:43-55. DOI:10.1016/j.ebiom.2017.09.016.

        LESSEL D,WU D Y,TRUJILLO C,et al. Dysfunction of the MDM2/p53 axis is linked to premature aging[J]. J Clin Invest,2017,127(10):3598-3608. DOI:10.1172/JCI92171.

        HE J S,BAOYINNA B,TALEB S J,et al. USP13 regulates cell senescence through mediating MDM2 stability[J]. Life Sci,2023,331:122044. DOI:10.1016/j.lfs.2023.122044.

        XIE M C,LU C,WANG J Y,et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies[J]. Nat Med,2014,20(12):1472-1478. DOI:10.1038/nm.3733.

        BALASUBRAMANI A,LARJO A,BASSEIN J A,et al. Cancer-associated ASXL1 mutations may act as gain-of-function mutations of the ASXL1-BAP1 complex[J]. Nat Commun,2015,6:7307. DOI:10.1038/ncomms8307.

        ASADA S,GOYAMA S,INOUE D,et al. Mutant ASXL1 cooperates with BAP1 to promote myeloid leukaemogenesis[J]. Nat Commun,2018,9(1):2733. DOI:10.1038/s41467-018-05085-9.

        SAHTOE D D,VAN DIJK W J,EKKEBUS R,et al. BAP1/ASXL1 recruitment and activation for H2A deubiquitination[J]. Nat Commun,2016,7:10292. DOI:10.1038/ncomms10292.

        FUJINO T,GOYAMA S,SUGIURA Y,et al. Mutant ASXL1 induces age-related expansion of phenotypic hematopoietic stem cells through activation of Akt/mTOR pathway[J]. Nat Commun,2021,12(1):1826. DOI:10.1038/s41467-021-22053-y.

        CHENG Y J,ZHUANG Z,MIAO Y L,et al. Identification of YCH2823 as a novel USP7 inhibitor for cancer therapy[J]. Biochem Pharmacol,2024,222:116071. DOI:10.1016/j.bcp.2024.116071.

        GU Y H,REN K W,WANG Y,et al. Administration of USP7 inhibitor P22077 inhibited cardiac hypertrophy and remodeling in Ang II-induced hypertensive mice[J]. Front Pharmacol,2022,13:1021361. DOI:10.3389/fphar.2022.1021361.

        LEGER P R,HU D X,BIANNIC B,et al. Discovery of potent,selective,and orally bioavailable inhibitors of USP7 with in vivo antitumor activity[J]. J Med Chem,2020,63(10):5398-5420. DOI:10.1021/acs.jmedchem.0c00245.

        YUAN P,ZHOU L,ZHANG X N,et al. UCH-L1 inhibitor LDN-57444 hampers mouse oocyte maturation by regulating oxidative stress and mitochondrial function and reducing ERK1/2 expression[J]. Biosci Rep,2020,40(10):BSR20201308. DOI:10.1042/BSR20201308.

        KOOIJ R,LIU S J,SAPMAZ A,et al. Small-molecule activity-based probe for monitoring ubiquitin C-terminal hydrolase L1(UCHL1)activity in live cells and zebrafish embryos[J]. J Am Chem Soc,2020,142(39):16825-16841. DOI:10.1021/jacs.0c07726.

        VAN DER WAL L,BEZSTAROSTI K,DEMMERS J A A. A ubiquitinome analysis to study the functional roles of the proteasome associated deubiquitinating enzymes USP14 and UCH37[J]. J Proteomics,2022,262:104592. DOI:10.1016/j.jprot.2022.104592.

        ZHANG F C,XU R Q,CHAI R J,et al. Deubiquitinase inhibitor b-AP15 attenuated LPS-induced inflammation via inhibiting ERK1/2,JNK,and NF-kappa B[J]. Front Mol Biosci,2020,7:49. DOI:10.3389/fmolb.2020.00049.

        GUBAT J,SELVARAJU K,SJ?STRAND L,et al. Comprehensive target screening and cellular profiling of the cancer-active compound b-AP15 indicate abrogation of protein homeostasis and organelle dysfunction as the primary mechanism of action[J]. Front Oncol,2022,12:852980. DOI:10.3389/fonc.2022.852980.

        MOFERS A,PEREGO P,SELVARAJU K,et al. Analysis of determinants for in vitro resistance to the small molecule deubiquitinase inhibitor b-AP15[J]. PLoS One,2019,

        14(10):e0223807. DOI:10.1371/journal.pone.0223807.

        ROWINSKY E K,PANER A,BERDEJA J G,et al. Phase 1 study of the protein deubiquitinase inhibitor VLX1570 in patients with relapsed and/or refractory multiple myeloma[J]. Invest New Drugs,2020,38(5):1448-1453. DOI:10.1007/s10637-020-00915-4.

        WANG Y W,JIANG Y X,DING S,et al. Small molecule inhibitors reveal allosteric regulation of USP14 via steric blockade[J]. Cell Res,2018,28(12):1186-1194. DOI:10.1038/s41422-018-0091-x.

        WANG X,BAO Y,DONG Z H,et al. WP1130 attenuates cisplatin resistance by decreasing P53 expression in non-small cell lung carcinomas[J]. Oncotarget,2017,8(30):49033-49043. DOI:10.18632/oncotarget.16931.

        LUO H K,KRIGMAN J,ZHANG R H,et al. Pharmacological inhibition of USP30 activates tissue-specific mitophagy[J]. Acta Physiol,2021,232(3):e13666. DOI:10.1111/apha.13666.

        RUSILOWICZ-JONES E V,JARDINE J,KALLINOS A,et al. USP30 sets a trigger threshold for PINK1-PARKIN amplification of mitochondrial ubiquitylation[J]. Life Sci Alliance,2020,

        3(8):e202000768. DOI:10.26508/lsa.202000768.

        KLUGE A F,LAGU B R,MAITI P,et al. Novel highly selective inhibitors of ubiquitin specific protease 30(USP30)accelerate mitophagy[J]. Bioorg Med Chem Lett,2018,28(15):2655-2659. DOI:10.1016/j.bmcl.2018.05.013.

        Mission therapeutics announces US FDA approval to initi-ate phaseⅡ clinical trial of its lead asset MTX652 in acute kidney injury-mission therapeutics[EB/OL]. (2024-02-19)[2024-07-20]. https://missiontherapeutics.com/mission-therapeutics-announces-us-fda-approval-to-initiate-phase-ii-clinical-trial-of-its-lead-asset-mtx652-in-acute-kidney-injury.

        LIU X G,BALARAMAN K,LYNCH C C,et al. Novel ubiquitin specific protease-13 inhibitors alleviate neurodegenerative pathology[J]. Metabolites,2021,11(9):622. DOI:10.3390/metabo11090622.

        TAN L L,SHAN H Y,HAN C,et al. Discovery of potent OTUB1/USP8 dual inhibitors targeting proteostasis in non-small-cell lung cancer[J]. J Med Chem,2022,65(20):13645-13659. DOI:10.1021/acs.jmedchem.2c00408.

        WANG L H,LI M M,SHA B B,et al. Inhibition of deubiquitination by PR-619 induces apoptosis and autophagy via ubi-protein aggregation-activated ER stress in oesophageal squamous cell carcinoma[J]. Cell Prolif,2021,54(1):e12919. DOI:10.1111/cpr.12919.

        WANG Y,PARK N Y,JANG Y,et al. Vitamin E γ-tocotrienol inhibits cytokine-stimulated NF-κB activation by induction of anti-inflammatory A20 via stress adaptive response due to modulation of sphingolipids[J]. J Immunol,2015,195(1):126-133. DOI:10.4049/jimmunol.1403149.

        ZHANG W N,WANG M Z,SONG Z W,et al. Farrerol directly activates the deubiqutinase UCHL3 to promote DNA repair and reprogramming when mediated by somatic cell nuclear transfer[J]. Nat Commun,2023,14(1):1838. DOI:10.1038/s41467-023-37576-9.

        (收稿日期:2024-07-25;修回日期:2024-10-15)

        (本文編輯:鄒琳)

        国产乱人无码伦av在线a| 无码国产一区二区色欲| 美腿丝袜一区在线观看| 久久精品人搡人妻人少妇 | 日本japanese丰满多毛| 中文字幕一区二区三区久久网站| 丰满少妇棚拍无码视频| 国产av无码专区亚洲av| 久久精品熟女不卡av高清| 91中文在线九色视频| 久久精品国产久精国产爱| 青草视频在线播放| 亚洲国产99精品国自产拍| 国产精品不卡免费版在线观看| 日本办公室三级在线观看| 国产精品永久在线观看| 亚洲人成无码www久久久| 亚洲精品成人网线在线播放va| 白白色免费视频一区二区在线 | 蜜桃噜噜一区二区三区| 欧美成人午夜免费影院手机在线看 | 中文无码日韩欧| 久久亚洲国产中v天仙www| 高清少妇一区二区三区| 在线一区二区三区国产精品| 风间由美性色一区二区三区| 国产成人久久蜜一区二区| 无码国产一区二区色欲| 手机免费高清在线观看av| 国精品人妻无码一区免费视频电影| 亚洲熟女少妇一区二区| 国产一区二区三区视频免费在线| 论理视频二区三区四区在线观看 | 亚洲av网站在线免费观看| 亚洲av无码成h在线观看| 久久久久亚洲精品无码网址蜜桃| 久久精品国产亚洲av电影| 美腿丝袜av在线播放| 欲女在线一区二区三区| 亚洲av无码国产精品色午夜洪| 国产日韩欧美911在线观看|