摘 要 通過梳理近十年的相關(guān)文獻(xiàn),從生理、個(gè)體心理和社會(huì)環(huán)境三方面分析女性在科學(xué)、技術(shù)、工程和數(shù)學(xué)(Science, Technology, Engineering, Mathematics, STEM)領(lǐng)域的低參與度和高流失率現(xiàn)象的成因。生理因素主要是大腦結(jié)構(gòu)和性激素的作用;心理因素是自我效能感、認(rèn)知能力以及STEM興趣的性別差異;社會(huì)環(huán)境因素則涉及性別刻板印象、家庭和學(xué)校的影響。目前的干預(yù)研究主要探究了學(xué)校、家庭和社會(huì)媒體消除性別刻板印象和提升STEM興趣的相關(guān)教育干預(yù)措施的效果。未來研究應(yīng)聚焦于拓展研究視野至STEM新興領(lǐng)域、加強(qiáng)本土化研究、開展干預(yù)研究并評估其長期效果。
關(guān)鍵詞 女性缺失;性別差異;性別刻板印象;STEM興趣
分類號(hào) B849:C91;R395
DOI:10.16842/j.cnki.issn2095-5588.2025.03.006
1 引言
《中共中央關(guān)于進(jìn)一步全面深化改革 推進(jìn)中國式現(xiàn)代化的決定》指出,教育、科技、人才是中國式現(xiàn)代化的基礎(chǔ)性、戰(zhàn)略性支撐(張榮, 2024)。我國每年STEM專業(yè)畢業(yè)生數(shù)量超過500萬人,全球領(lǐng)先(邱海峰, 2024)。截至2020年底,我國科技人力資源已達(dá)11234.1萬人,其中女性占比從2005年的約三分之一提升至2019年的40.1%,性別比例更加趨于均衡(中國婦女報(bào)社, 2024)。
然而STEM領(lǐng)域,全球女性缺失現(xiàn)象仍然普遍存在(Urry, 2015)。聯(lián)合國婦女署發(fā)布的報(bào)告顯示,女性在數(shù)據(jù)和人工智能領(lǐng)域的勞動(dòng)力占比僅為26%,在云計(jì)算領(lǐng)域更是低至12%(UN-Women and DESA, 2024)。不同國家和地區(qū)的數(shù)據(jù)顯示,女性在STEM學(xué)科中的表現(xiàn)或參與度遠(yuǎn)低于男性(Miningou, 2022; Kirkham amp; Chapman, 2022; Reilly et al., 2015)。例如,Reilly等(2015)分析1990年至2011年美國學(xué)生的成績發(fā)現(xiàn),成績優(yōu)異的學(xué)生中男性比例遠(yuǎn)高于女性,并且這一現(xiàn)象在STEM科目上尤為明顯。此外,Miningou(2022)對比了非洲十個(gè)國家的小學(xué)六年級(jí)學(xué)生的科目成績發(fā)現(xiàn),女性在閱讀方面表現(xiàn)更好,而男性在數(shù)學(xué)方面表現(xiàn)更優(yōu)。Kirkham和Chapman(2022)還探討了澳大利亞942名10年級(jí)學(xué)生在11年級(jí)數(shù)學(xué)課程的選擇情況發(fā)現(xiàn),即使了解女學(xué)生學(xué)習(xí)能力的老師相信她們有能力完成更高難度的課程內(nèi)容,女性還是更傾向于選擇難度較低的數(shù)學(xué)課程。
此外,女性在STEM相關(guān)的職業(yè)發(fā)展機(jī)會(huì)受限。女性在學(xué)術(shù)生涯中不斷流失的現(xiàn)象,被稱為“管道泄漏”(Sheltzer amp; Smith, 2014),且從高中到職業(yè)生涯中期均存在性別差異(Akin et al., 2024;Speer, 2023)。Speer(2023)利用全國青少年縱向調(diào)查(National Longitudinal Survey of Youth, NLSY)和美國社區(qū)調(diào)查(American Community Survey, ACS)數(shù)據(jù)分析美國學(xué)生的STEM發(fā)展,將其從高中到職業(yè)生涯中期劃分為六個(gè)階段,以探明產(chǎn)生性別差異的關(guān)鍵階段。結(jié)果表明,大學(xué)前的STEM準(zhǔn)備階段、大學(xué)期間的初始專業(yè)選擇階段和大學(xué)畢業(yè)后向早期職業(yè)的過渡階段是性別差異尤為凸顯的三個(gè)階段。進(jìn)入職場后,“管道泄漏”現(xiàn)象依然存在。研究者分析2014至2016年美國地球物理聯(lián)盟會(huì)議上的發(fā)言機(jī)會(huì)發(fā)現(xiàn),女性被邀請進(jìn)行演講的頻率明顯低于男性(Ford et al., 2018)。特別是研究導(dǎo)向的教職女員工更容易在學(xué)術(shù)生涯中遭遇“霧燈”困境,即指女性在晉升和終身教職申請過程中,往往面臨政策信息不透明、獲取資源難的挑戰(zhàn)(Banerjee amp; Pawley, 2013)。這種經(jīng)歷不僅使得女性員工在職業(yè)道路上感到迷茫和無力,更在一定程度上阻礙了她們在學(xué)術(shù)界的平等參與和晉升,從而進(jìn)一步加劇了“管道泄露”(詳見圖1)。
綜上,本文意圖梳理STEM領(lǐng)域女性缺失現(xiàn)象成因和干預(yù)方面的研究成果,并展望和規(guī)劃未來研究方向。
2 STEM領(lǐng)域女性缺失的成因
2.1 生理因素
空間能力是早期學(xué)習(xí)的基礎(chǔ),對解釋男性和女性在STEM領(lǐng)域成就差異具有重要影響(Halpern, 2013; Martens amp; Antonenko, 2012)。海馬體作為人類大腦中負(fù)責(zé)形成和存儲(chǔ)空間信息的關(guān)鍵區(qū)域,其組織結(jié)構(gòu)、激活水平都可能影響個(gè)體的空間認(rèn)知能力。海馬體結(jié)構(gòu)差異,尤其是右側(cè)前海馬體灰質(zhì)體積,可能是導(dǎo)致兩性在三維心理旋轉(zhuǎn)任務(wù)中表現(xiàn)差異的神經(jīng)基礎(chǔ)(Wei et al., 2016)。
此外,大腦區(qū)域協(xié)同作用存在性別差異。前額葉皮層與海馬體協(xié)同影響空間記憶能力,在執(zhí)行大范圍空間任務(wù)時(shí),前額葉皮層控制注意力并調(diào)節(jié)海馬區(qū)信息(García et al., 2025; Tse et al., 2007)。女性在執(zhí)行空間任務(wù)時(shí)前額葉皮層活動(dòng)水平較低(Duff amp; Hampson, 2001; Suárez-Pellicioni et al.,2013)。大腦功能連接也存在性別差異,女性在默認(rèn)模式網(wǎng)絡(luò)中連接更強(qiáng),男性在感覺運(yùn)動(dòng)區(qū)域連接更強(qiáng)(Serio et al.,2024)。
空間能力與STEM領(lǐng)域的表現(xiàn)受到性激素水平的影響。特別是睪酮素,對個(gè)體的空間能力及其在STEM領(lǐng)域的表現(xiàn)有顯著影響。研究發(fā)現(xiàn),睪酮素水平與記憶和空間認(rèn)知能力顯著相關(guān)。雄激素影響認(rèn)知功能,而睪酮素水平與記憶和空間認(rèn)知能力顯著相關(guān)(Li et al.,2024; Spritzer et al.,2021)。實(shí)驗(yàn)表明,睪酮素可改善女性在空間任務(wù)中三維可視化方面的表現(xiàn)(Pintzka et al., 2016)。
2.2 個(gè)體因素
自我效能感低是導(dǎo)致女性對STEM相關(guān)職業(yè)興趣不足的重要原因(Tellhed et al., 2017)。女性對物理等STEM科目的意愿和動(dòng)機(jī)較弱,部分歸因于較低的自我效能感(Radulovi? et al., 2022)。此外,對STEM領(lǐng)域的興趣和自我效能感共同影響個(gè)體未來是否參與STEM領(lǐng)域,且性別差異顯著,男性更多受興趣驅(qū)動(dòng),女性則更多受能力信心影響(Sakellariou amp; Fang, 2021)。
認(rèn)知能力,尤其是空間能力,對女性選擇投身STEM領(lǐng)域具有決定性影響(Reilly et al., 2017)。盡管男女在一般智力上無顯著差異,但在空間能力等具體認(rèn)知能力上存在性別差異,且這種差異長期存在(Martens amp; Antonenko, 2012)。STEM的性別差異不僅體現(xiàn)在絕對認(rèn)知能力上,還體現(xiàn)在認(rèn)知能力的廣度上,具有單一領(lǐng)域天賦的個(gè)體更可能從事該領(lǐng)域職業(yè)(Cur?eu et al., 2021;Valla amp; Ceci, 2014)。
STEM興趣低也是女性參與度不足的原因之一,涉及學(xué)科興趣、職業(yè)興趣和同伴興趣。男性對STEM領(lǐng)域更感興趣,而女性雖有興趣,但可能因廣泛職業(yè)選擇而放棄STEM職業(yè)(Christensen et al., 2014; Cardador et al., 2021)。加之,男性和女性的職業(yè)興趣不同,男性傾向與物打交道,女性傾向與人打交道(Su et al., 2009)。即便女性選擇STEM專業(yè),畢業(yè)后也更偏愛社會(huì)導(dǎo)向型職業(yè)(Freund et al., 2013)。在中國的中學(xué)生中,男性對STEM職業(yè)興趣也高于女性(王濤等, 2020)。同伴興趣對增加學(xué)生選擇STEM職業(yè)的可能性也有積極作用(Hazari et al., 2017)。
2.3 社會(huì)因素
根據(jù)特定領(lǐng)域能力信念假說,社會(huì)中普遍存在的文化觀念和刻板印象將男性與原始智力天賦相聯(lián)系,而女性則被排除在這種聯(lián)系之外,這可能導(dǎo)致女性在STEM領(lǐng)域代表不足(Leslie et al., 2015)。研究發(fā)現(xiàn),兒童時(shí)期就已形成STEM領(lǐng)域的性別刻板印象,如男孩在工程和技術(shù)領(lǐng)域被認(rèn)為更優(yōu)秀(McGuire et al., 2022),女孩對計(jì)算機(jī)課程的興趣被認(rèn)為不如男孩(Master et al., 2021)。這種刻板印象與青少年對STEM學(xué)科的認(rèn)同感緊密相關(guān),進(jìn)而影響他們在整個(gè)高中階段的STEM學(xué)科學(xué)習(xí)成績(Starr amp; Simpkins, 2021)。
家庭環(huán)境對女性在STEM領(lǐng)域的發(fā)展同樣重要。一方面,家庭成員對女性從事STEM工作的看法影響女性的發(fā)展,父母更重視兒子的數(shù)學(xué)能力(Stoet et al., 2016),即使控制了青少年的實(shí)際空間能力,男孩的父母仍認(rèn)為自己的孩子比女孩更有能力(Muenks et al., 2020)。另一方面,家庭環(huán)境還會(huì)影響STEM領(lǐng)域從業(yè)女性的流失,有孩子的女性科學(xué)家被聘用為終身教職的可能性更低(Ginther amp; Kahn, 2009),且生育孩子是STEM領(lǐng)域性別失衡的一個(gè)重要原因(Cech amp; Blair-Loy, 2019)。
學(xué)校的教育環(huán)境也會(huì)潛移默化地影響女性在STEM領(lǐng)域的職業(yè)選擇。教師的態(tài)度和行為發(fā)揮著重要影響,無論男性還是女性學(xué)生,都更喜歡那些鼓舞和激勵(lì)他們繼續(xù)完成學(xué)業(yè)或職業(yè)生涯的老師(Ortiz-Martínez et al., 2023)。而教師的“性別-學(xué)科”刻板印象會(huì)降低女性在STEM學(xué)科上的自我效能感,使她們認(rèn)為自己不適合學(xué)習(xí)STEM領(lǐng)域?qū)W科(Kollmayer et al., 2018)。女性學(xué)生在教育過程中更有可能被要求完成實(shí)驗(yàn)室的管理任務(wù),這也在很大程度上限制了她們在STEM領(lǐng)域的長期發(fā)展(Lubienski et al., 2018)。
3 干預(yù)策略
研究表明,學(xué)校教育干預(yù)是消除性別刻板印象的有效策略(Bigler et al., 1997),如展示女性科學(xué)家的杰出成就和成功故事,能提升女性學(xué)生的職業(yè)抱負(fù)(Avolio et al., 2020)。同時(shí),探究式教學(xué)方法鼓勵(lì)學(xué)生主動(dòng)參與和解決問題,可顯著提高學(xué)生對STEM領(lǐng)域的興趣(LaForce et al., 2017; Kijima et al., 2021)。此外,將STEM項(xiàng)目融入多學(xué)科課程,能有效激勵(lì)女性在高中及大學(xué)階段繼續(xù)學(xué)習(xí)STEM科目(D?kme et al., 2022)。
創(chuàng)設(shè)支持性的家庭環(huán)境同樣能激發(fā)兒童在STEM領(lǐng)域的興趣,特別是與兒童開展“科學(xué)對話”,不僅能增加他們的STEM知識(shí)和技能,還能促進(jìn)他們對STEM領(lǐng)域的身份認(rèn)同(Dou amp; Cian, 2021)。對于面臨身份障礙和刻板印象的青少年,與親密家庭成員的科學(xué)對話尤為重要,有助于他們的STEM身份發(fā)展。
通過媒體宣傳和公共政策的有效介入,可以增強(qiáng)社會(huì)對性別平等重要性的認(rèn)識(shí),重塑社會(huì)對女性在STEM領(lǐng)域的期望與態(tài)度(Santoniccolo et al., 2023)。社會(huì)身份對兒童的職業(yè)選擇動(dòng)機(jī)、能力信念和歸屬感具有深遠(yuǎn)影響(Allison, 2021)。因此,VIDS(Video Interventions for Diversity in STEM)項(xiàng)目等短視頻干預(yù)措施,旨在改變性別刻板印象,提高人們對女性在STEM領(lǐng)域表現(xiàn)的認(rèn)可,并增強(qiáng)促進(jìn)STEM性別平等的行動(dòng)意愿(Moss-Racusin et al., 2014)。
4 總結(jié)與展望
本文回顧了STEM領(lǐng)域性別差異的相關(guān)研究發(fā)現(xiàn),生理因素、個(gè)體心理因素和社會(huì)心理因素均與STEM領(lǐng)域的女性缺失現(xiàn)象有關(guān)。盡管已有研究揭示了數(shù)學(xué)和科學(xué)領(lǐng)域的性別差異(Iwuanyanwu, 2022; Mejía-Rodríguez et al., 2021; Weeden et al., 2020),但隨著STEM領(lǐng)域向STEAM、STEMx、STEM+等新方向發(fā)展,對計(jì)算編程等新興科技領(lǐng)域的性別差異探討仍顯不足。
現(xiàn)有文獻(xiàn)也多從國際視角探討女性在STEM領(lǐng)域的流失問題及影響因素(Cech amp; Blair-Loy, 2019; Miningou, 2022; Starr amp; Simpkins, 2021),但我國STEM領(lǐng)域的女性缺失現(xiàn)象同樣嚴(yán)重。因此,未來有必要開展本土化研究,深入理解我國文化背景下STEM領(lǐng)域女性缺失現(xiàn)象的獨(dú)特成因,并制定針對性的干預(yù)措施。同時(shí),跨文化比較研究對于全球范圍內(nèi)促進(jìn)性別平等在STEM領(lǐng)域的發(fā)展具有重要意義。
以往教育或政策干預(yù)研究雖多,但少有采用科學(xué)評估方法檢驗(yàn)干預(yù)措施的有效性,而且其實(shí)驗(yàn)設(shè)計(jì)的科學(xué)性和有效性存疑(Moss-Racusin et al., 2014; van den Hurk et al., 2019)。未來研究需致力于開發(fā)能夠有效減少性別差異的干預(yù)措施,并開展實(shí)證研究檢驗(yàn)這些措施的效果,特別是評估干預(yù)措施的長期效果??蒲腥藛T應(yīng)密切關(guān)注在不同時(shí)間跨度上,教育干預(yù)等措施對女性在STEM領(lǐng)域的參與度和職業(yè)發(fā)展的影響。
參考文獻(xiàn)
中國婦女報(bào)社(2022-06-27). 女性科技人力資源占比提高至40.1%. 中國婦女報(bào), 1.
邱海峰(2024-04-01). 每年超500萬STEM畢業(yè)生, 全球領(lǐng)先!. 人民日報(bào)海外版, 1.
張榮(2024). 統(tǒng)籌推進(jìn)教育科技人才體制機(jī)制一體改革提升國家創(chuàng)新體系整體效能的制勝方略. 人民論壇, (22), 6-10.
王濤, 馬勇軍, 王晶瑩(2020). 我國中學(xué)生STEM職業(yè)興趣的實(shí)證研究. 上海教育科研, (11), 35-38, 51.
Akin, V., Santillan, S. T., amp; Valentino, L. (2024). Strengthening the STEM pipeline for women: An interdisciplinary model for improving math identity. Problems, Resources, and Issues in Mathematics Undergraduate Studies, 34(5), 452-475.
Allison, R., amp; Knoester, C. (2021). Gender, sexual, and sports fan identities. Sociology of Sport Journal, 38(3), 310-321.
Avolio, B., Chávez, J., amp; Vílchez-Román, C. (2020). Factors that contribute to the underrepresentation of women in science careers worldwide: A literature review. Social Psychology of Education, 23(3), 773-794.
Banerjee, D., amp; Pawley, A. (2013). Gender and promotion: How do science, technology, engineering, and mathematics (STEM) faculty members survive a foggy climate? Journal of Women and Minorities in Science and Engineering, 19(4), 329-347.
Bigler, R. S., Jones, L. C., amp; Lobliner, D. B. (1997). Social categorization and the formation of intergroup attitudes in children. Child Development, 68(3), 530-543.
Cardador, M. T., Damian, R. I., amp; Wiegand, J. P. (2021). Does more mean less? Interest surplus and the gender gap in STEM careers. Journal of Career Assessment, 29(1), 76-97.
Cech, E. A., amp; Blair-Loy, M. (2019). The changing career trajectories of new parents in STEM. Proceedings of the National Academy of Sciences, 116(10), 4182-4187.
Christensen, R., Knezek, G., amp; Tyler-Wood, T. (2014). Student perceptions of science, technology, engineering and mathematics (STEM) content and careers. Computers in Human Behavior, 34, 173-186.
Cur?eu, P. L., Semeijn, J. H., amp; Nikolova, I. (2021). Career challenges in smart cities: A sociotechnical systems view on sustainable careers. Human Relations, 74(5), 656-677.
D?kme, ?., A??ks?z, A., amp; Koyunlu ünlü, Z. (2022). Investigation of STEM fields motivation among female students in science education colleges. International Journal of STEM Education, 9(1), 8.
Dou, R., amp; Cian, H. (2021). The relevance of childhood science talk as a proxy for college students’ STEM identity at a Hispanic serving institution. Research in Science Education, 51(4), 1093-1105.
Duff, S. J., amp; Hampson, E. (2001). A sex difference on a novel spatial working memory task in humans. Brain and Cognition, 47(3), 470-493.
Freund, A. M., Weiss, D., amp; Wiese, B. S. (2013). Graduating from high school: The role of gender-related attitudes, self-concept and goal clarity in a major transition in late adolescence. European Journal of Developmental Psychology, 10(5), 580-596.
Ford, H. L., Brick, C., Blaufuss, K., amp; Dekens, P. S. (2018). Gender inequity in speaking opportunities at the American Geophysical Union Fall Meeting. Nature Communications, 9(1), 1358.
García, F., Torres, M. J., Chacana-Véliz, L., Espinosa, N., El-Deredy, W., Fuentealba, P., amp; Negrón-Oyarzo, I. (2025). Prefrontal cortex synchronization with the hippocampus and parietal cortex is strategy-dependent during spatial learning. Communications Biology, 8(1), 79.
Ginther, D. K., amp; Kahn, S. (2009). Does science promote women? Evidence from academia 1973-2001. In R. B. Freeman amp; D. L. Goroff (Eds.), Science and engineering careers in the United States: An analysis of markets and employment (pp. 163-194). Chicago: University of Chicago Press.
Halpern, D. F. (2013). Sex differences in cognitive abilities. New York: Psychology Press.
Hazari, Z., Potvin, G., Cribbs, J. D., Godwin, A., Scott, T. D., amp; Klotz, L. (2017). Interest in STEM is contagious for students in biology, chemistry, and physics classes. Science Advances, 3(8), e1700046.
Iwuanyanwu, P. N. (2022). Is science really for me? Gender differences in student attitudes toward science. School Science and Mathematics, 122(5), 259-270.
Kijima, R., Yang-Yoshihara, M., amp; Maekawa, M. S. (2021). Using design thinking to cultivate the next generation of female STEAM thinkers. International Journal of STEM Education, 8(1), 14.
Kirkham, J., amp; Chapman, E. (2022). Gender, achievement level and sociocultural factors in the mathematics course choices of Year 10 students in Western Australia. The Australian Educational Researcher, 49(1), 97-114.
Kollmayer, M., Schober, B., amp; Spiel, C. (2018). Gender stereotypes in education: Development, consequences, and interventions. European Journal of Developmental Psychology, 15(4), 361-377.
LaForce, M., Noble, E., amp; Blackwell, C. (2017). Problem-based learning (PBL) and student interest in STEM careers: The roles of motivation and ability beliefs. Education Sciences, 7(4), 92.
Leslie, S. J., Cimpian, A., Meyer, M., amp; Freeland, E. (2015). Expectations of brilliance underlie gender distributions across academic disciplines. Science, 347(6219), 262-265.
Li, F., Xing, X., Jin, Q., Wang, X.-M., Dai, P., Han, M., ... Gao, D. (2024). Sex differences orchestrated by androgens at single-cell resolution. Nature, 629, 193-200.
Lubienski, S. T., Miller, E. K., amp; Saclarides, E. S. (2018). Sex differences in doctoral student publication rates. Educational Researcher, 47(1), 76-81.
Martens, J., amp; Antonenko, P. D. (2012). Narrowing gender-based performance gaps in virtual environment navigation. Computers in Human Behavior, 28(3), 809-819.
Master, A., Meltzoff, A. N., amp; Cheryan, S. (2021). Gender stereotypes about interests start early and cause gender disparities in computer science and engineering. Proceedings of the National Academy of Sciences, 118(48), e2100030118.
McGuire, L., Hoffman, A. J., Mulvey, K. L., Hartstone-Rose, A., Winterbottom, M., Joy, A., ... Rutland, A. (2022). Gender stereotypes and peer selection in STEM domains among children and adolescents. Sex Roles, 87(9), 455-470.
Mejía-Rodríguez, A. M., Luyten, H., amp; Meelissen, M. R. (2021). Gender differences in mathematics self-concept across the world: An exploration of student and parent data of TIMSS 2015. International Journal of Science and Mathematics Education, 19(6), 1229-1250.
Miningou, é. W. (2022). Understanding the gender gap in learning outcomes in primary education: Evidence from PASEC results. International Journal of Gender Studies in Developing Societies, 4(3), 191-207.
Moss-Racusin, C. A., Pietri, E. S., Hennes, E. P., Dovidio, J. F., Brescoll, V. L., Roussos, G., amp; Handelsman, J. (2018). Reducing STEM gender bias with VIDS (video interventions for diversity in STEM). Journal of Experimental Psychology: Applied, 24(2), 236-260.
Moss-Racusin, C. A., van der Toorn, J., Dovidio, J. F., Brescoll, V. L., Graham, M. J., amp; Handelsman, J. (2014). Scientific diversity interventions. Science, 343, 615-616.
Muenks, K., Peterson, E. G., Green, A. E., Kolvoord, R. A., amp; Uttal, D. H. (2020). Parents’ beliefs about high school students’spatial abilities: Gender differences and associations with parent encouragement to pursue a STEM career and students’ STEM career intentions. Sex Roles, 82(9), 570-583.
Ortiz-Martínez, G., Vázquez-Villegas, P., Ruiz-Cantisani, M. I., Delgado-Fabián, M., Conejo-Márquez, D. A., amp; Me-mbrillo-Hernández, J. (2023). Analysis of the retention of women in higher education STEM programs. Humanities and Social Sciences Communications, 10(1), 1-14.
Pintzka, C. W., Evensmoen, H. R., Lehn, H., amp; H?berg, A. K. (2016). Changes in spatial cognition and brain activity after a single dose of testosterone in healthy women. Behavioural Brain Research, 298, 78-90.
Radulovi?, B., ?upanec, V., Stojanovi?, M., amp; Budi?, S. (2022). Gender motivational gap and contribution of different teaching approaches to female students’ motivation to learn physics. Scientific Reports, 12(1), 18224.
Reilly, D., Neumann, D. L., amp; Andrews, G. (2015). Sex differences in mathematics and science achievement: A meta-analysis of national assessment of educational progress assessments. Journal of Educational Psychology, 107(3), 645-662.
Reilly, D., Neumann, D. L., amp; Andrews, G. (2017). Gender differences in spatial ability: Implications for STEM education and approaches to reducing the gender gap for parents and educators. In M. S. Khine (Ed.), Visual-spatial ability in STEM education: Transforming research into practice (pp. 195-224). Berlin: Springer.
Sakellariou, C., amp; Fang, Z. (2021). Self-efficacy and interest in STEM subjects as predictors of the STEM gender gap in the US: The role of unobserved heteroge-neity. International Journal of Educational Research, 109, 101821.
Santoniccolo, F., Trombetta, T., Paradiso, M. N., amp; Rollè, L. (2023). Gender and media representations: A review of the literature on gender stereotypes, objectification and sexualization. International Journal of Environmental Research and Public Health, 20(10), 5770.
Serio, B., Hettwer, M. D., Wiersch, L., Bignardi, G., Sacher, J., Weis, S., ...Valk, S. L. (2024). Sex differences in functional cortical organization reflect differences in network topology rather than cortical morphometry. Nature Communications, 15(1), 7714.
Sheltzer, J. M., amp; Smith, J. C. (2014). Elite male faculty in the life sciences employ fewer women. Proceedings of the National Academy of Sciences, 111(28), 10107-10112.
Speer, J. D. (2023). Bye bye Ms. American Sci: Women and the leaky STEM pipeline. Economics of Education Review, 93, 102371.
Spritzer, M. D., Jaeger, E. C., amp; Guo, J. D. (2021). Testosterone and spatial memory: Rodent models and clinical applications. Androgens: Clinical Research and Therapeutics, 2(1), 275-293.
Starr, C. R., amp; Simpkins, S. D. (2021). High school students’ math and science gender stereotypes: relations with their STEM outcomes and socializers’ stereotypes. Social Psychology of Education, 24(1), 273-298.
Stoet, G., Bailey, D. H., Moore, A. M., amp; Geary, D. C. (2016). Countries with higher levels of gender equality show larger national sex differences in mathematics anxiety and relatively lower parental mathematics valuation for girls. Plos One, 11(4), e0153857.
Su, R., Rounds, J., amp; Armstrong, P. I. (2009). Men and things, women and people: A meta-analysis of sex differences in interests. Psychological Bulletin, 135(6), 859-884.
Suárez-Pellicioni, M., Nú?ez-Pe?a, M. I., amp; Colomé, A. (2013). Mathematical anxiety effects on simple arithmetic processing efficiency: An event-related potential study. Biological psychology, 94(3), 517-526.
Tellhed, U., B?ckstr?m, M., amp; Bj?rklund, F. (2017). Will I fit in and do well? The importance of social belongingness and self-efficacy for explaining gender differences in interest in STEM and HEED majors. Sex Roles, 77(1), 86-96.
Tse, D., Langston, R. F., Kakeyama, M. Bethus, I., Spooner, P. A., Wood, E. R., ... Morris, R. G. M. (2007). Schemas and memory consolidation. Science, 316(5821), 76-82.
UN-Women and DESA. (2024). Progress on the Sustainable Development Goals: The Gender Snapshot 2024. New York: UN-Women and DESA.
Urry, M. (2015). Science and gender: Scientists must work harder on equality. Nature, 528(7583), 471-473.
Valla, J. M., amp; Ceci, S. J. (2014). Breadth-based models of women’s underrepresentation in STEM fields: An integrative commentary on Schmidt (2011) and Nye et al.(2012). Perspectives on Psychological Science, 9(2), 219-224.
van den Hurk, A., Meelissen, M., amp; van Langen, A. (2019). Interventions in education to prevent STEM pipeline leakage. International Journal of Science Education, 41(2), 150-164.
Weeden, K. A., Gelbgiser, D., amp; Morgan, S. L. (2020). Pipeline dreams: Occupational plans and gender differences in STEM major persistence and completion. Sociology of Education, 93(4), 297-314.
Wei, W., Chen, C., Dong, Q., amp; Zhou, X. (2016). Sex differences in gray matter volume of the right anterior hippocampus explain sex differences in three-dimensional mental rotation. Frontiers in Human Neuroscience, 10, 580.