摘 要:【目的】探尋不同生境下石灰?guī)r山地優(yōu)勢(shì)種淡竹Phyllostachys glauca McClure蔸根和鞭根根際與非根際土壤的養(yǎng)分供應(yīng)特征與根際效應(yīng)差異,為喀斯特生境植物的養(yǎng)分管理利用提供理論依據(jù)?!痉椒ā扛鶕?jù)石灰?guī)r山地裸巖率的不同劃分了連續(xù)土(CS)、半連續(xù)土(SCS)、零星土(SS)3種生境,對(duì)3種生境淡竹林設(shè)置樣地調(diào)查,進(jìn)行淡竹不同類型根系土壤取樣,測(cè)定其養(yǎng)分含量及根際效應(yīng),分析不同生境下淡竹根系土壤養(yǎng)分含量及根際效應(yīng)的變化?!窘Y(jié)果】1)隨著裸巖率的升高,淡竹根際與非根際土壤銨態(tài)氮、硝態(tài)氮以及有效磷含量整體呈上升趨勢(shì)。其中,以SS生境淡竹蔸根非根際土的銨態(tài)氮和硝態(tài)氮最高,分別為(28.10±1.70)、(2.81±0.35)mg/kg;有效磷則以SCS生境鞭根的非根際土含量最高,為(5.97±0.23)mg/kg,不同生境類型土壤銨態(tài)氮含量差異顯著(P<0.05)。2)淡竹銨態(tài)氮根際效應(yīng)隨裸巖率的升高呈現(xiàn)由正效應(yīng)轉(zhuǎn)變?yōu)樨?fù)效應(yīng)的趨勢(shì),分布范圍為-6.56%~44.57%。硝態(tài)氮根際效應(yīng)在3種生境中變化趨勢(shì)與銨態(tài)氮相同,分布范圍為-35.22%~1.33%。3)蔸根和鞭根土壤有效磷含量及根際效應(yīng)沒有顯著差異?!窘Y(jié)論】石灰?guī)r山地淡竹蔸根和鞭根的根際效應(yīng)無顯著差異,但從不同生境淡竹根系銨態(tài)氮和硝態(tài)氮的根際效應(yīng)來看,淡竹具有喜銨厭硝的特點(diǎn)。
關(guān)鍵詞:淡竹;石灰?guī)r山地;根際效應(yīng);土壤有效態(tài)養(yǎng)分;根系
中圖分類號(hào):S714.2;S795.9 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1673-923X(2025)01-0039-09
基金項(xiàng)目:國家自然科學(xué)基金項(xiàng)目(32060380,31660198);江西省主要學(xué)科學(xué)術(shù)和技術(shù)帶頭人培養(yǎng)計(jì)劃(領(lǐng)軍人才)項(xiàng)目(20225BCJ22006);中央財(cái)政林業(yè)科技推廣示范項(xiàng)目(JXTG〔2022〕02);江西鄉(xiāng)土樹種良種選育與高效利用江西省重點(diǎn)實(shí)驗(yàn)室提供平臺(tái)資助項(xiàng)目(2024SSY04093)。
Different nitrogen and phosphorus related rhizosphere effects of culm root and rhizome root of Phyllostachys glauca McClure in the limestone mountain
CHEN Yongzhen1, WANG Guangru2, YU Hongying1, ZHOU Liping3, ZHANG Yang1, LI Zuyao1, SHI Jianmin1, SHEN Zhan1
(1. Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China; 2. CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China; 3. Ruichang Bureau of Forestry, Ruichang 333200, Jiangxi, China)
Abstract:【Objective】In order to explore the differences of plant available nutrients and their rhizosphere effects of two kinds of roots of Phyllostachys glauca McClure, a dominant species in limestone mountain areas, in different rock exposure habitats, and to provide theoretical basis for the nutrient management and utilization of karst plants.【Method】Based on the bare rock rates in the limestone mountain, three habitats of Phyllostachys glauca McClure forests, continuous soil (CS), semi continuous soil (SCS), and scattered soil (SS), were divided, and sampling plots were set up for investigation. Soil nutrient contents and rhizosphere effects of two kinds of bamboo roots were measured, and the changes of soil nutrient contents and rhizosphere effects of bamboo roots under different habitats were analyzed.【Result】1) As the bare rock rate increases, the total contents of ammonium, nitrate, and available phosphorus in the rhizosphere and bulk soils of P. glauca showed an upward trend. Among them, the ammonium and nitrate contents of the bulk soil of P. glauca in sporadic soil habitats were the highest, at (28.10±1.70) mg/kg and (2.81±0.35) mg/kg, respectively. The available phosphorus content was the highest in the bulk soil of SCS habitat, at (5.97±0.23) mg/kg. Soil ammonium content significantly differed among three habitats (P<0.05); 2) The rhizosphere effect of ammonium shifted from positive to negative as the bare rock rate increases, ranging from -6.56% to 44.57%, and the same pattern was found in ammonium, the rhizosphere effect of nitrate was the same as ammonium, ranging from -35.22% to 1.33%; 3) there was no significant difference in plant available soil phosphorus contents and their rhizosphere effect.【Conclusion】The rhizosphere effects of culm root and rhizome root of P.glauca did not differed significantly, however, from the perspective of rhizosphere effects of ammonium and nitrate, P.glauca prefer ammonium rather than nitrate.
Keywords: Phyllostachys glauca; limestone mountain; rhizosphere effects; plant available soil nutrients; roots
根系是植物長(zhǎng)期進(jìn)化過程中重要的營養(yǎng)器官,兼具植株固定、水分和養(yǎng)分吸收、合成與儲(chǔ)藏等生理功能,在植物的生命活動(dòng)中具有重要作用[1]。植物生長(zhǎng)期間,根系細(xì)胞凋亡及其他根系活動(dòng)向土壤中釋放大量的有機(jī)復(fù)合物,例如有機(jī)酸、氨基酸、粘液及凋亡的根細(xì)胞等。根際碳輸入導(dǎo)致根際土在物理、化學(xué)和生物學(xué)特性方面發(fā)生變化,從而與非根際土產(chǎn)生差異,這種差異被稱為根際效應(yīng)(rhizosphere effect)[2]。根際區(qū)的生命活動(dòng)是土壤有機(jī)質(zhì)降解與養(yǎng)分釋放的重要驅(qū)動(dòng)力,因此在土壤養(yǎng)分循環(huán)過程中有重要作用[3-4]。
氮(N)和磷(P)是植物生長(zhǎng)發(fā)育過程中極為重要的礦質(zhì)元素[5],對(duì)植物的生命活動(dòng)有著調(diào)節(jié)作用[6]。植物所需的氮磷主要從土壤中吸收[7],而土壤養(yǎng)分有效性受根際效應(yīng)影響。根源碳輸入(如糖類、有機(jī)酸、氨基酸、酚類化合物等[8])會(huì)刺激土壤微生物活動(dòng),使其產(chǎn)生與土壤養(yǎng)分活化相關(guān)的酶,礦化土壤養(yǎng)分,進(jìn)而增加土壤養(yǎng)分的有效性[9]。因此,植物的根際效應(yīng)差異強(qiáng)烈影響其養(yǎng)分吸收狀況,從而影響植物表現(xiàn)。
植物根際效應(yīng)的差異主要來源于三個(gè)方面:植物的養(yǎng)分偏好、土壤理化性質(zhì)以及根系功能性狀差異。首先,不同植物對(duì)土壤中特定養(yǎng)分的吸收偏好不同,例如毛竹對(duì)銨態(tài)氮的吸收高于硝態(tài)氮,表現(xiàn)出明顯的喜銨耐銨性[10-11]。植物的養(yǎng)分偏好可能導(dǎo)致其不同養(yǎng)分根際效應(yīng)的差異。其次,根際效應(yīng)也受土壤物理化學(xué)性質(zhì)的影響,如非根際土的pH值、有機(jī)質(zhì)含量及水分狀態(tài)等因素[3]。土壤的養(yǎng)分限制導(dǎo)致植物需要增加土壤養(yǎng)分活化量以滿足生長(zhǎng)需求。研究表明,在養(yǎng)分和水分限制下,根際區(qū)土壤有效態(tài)養(yǎng)分含量增加,產(chǎn)生正向的根際效應(yīng)[12-13]。最后,根系的功能性狀同樣影響根際效應(yīng)。一般來說,具有較高比根長(zhǎng)和氮含量的根系通常周轉(zhuǎn)速度快,生理代謝活躍。大量的代謝產(chǎn)物輸入根際土壤,促進(jìn)根際微生物活性,進(jìn)而加快根際土壤的養(yǎng)分循環(huán)[14-15]。由此可得,植物對(duì)土壤養(yǎng)分的選擇性吸收、土壤條件的變化以及根系特征均是影響根際效應(yīng)的重要因素。目前,大多數(shù)研究多聚焦于不同樹種及其在不同環(huán)境條件下的根際效應(yīng)對(duì)比,而對(duì)于不同生境及根系特征的根際效應(yīng)差異的研究相對(duì)不足。深入理解這些差異有助于解析植物根系養(yǎng)分獲取策略以及植物對(duì)嚴(yán)酷生境的適應(yīng)能力。因此,進(jìn)一步探討不同生境下植物根際與非根際區(qū)養(yǎng)分含量的變化,在理論和實(shí)踐應(yīng)用中都具有重要意義。
在贛西北區(qū)域,有相當(dāng)數(shù)量的淡竹Phyllostachys glauca McClure純林成片分布,甚至在裸巖率高達(dá)60%的生境下,淡竹依舊生長(zhǎng)良好[16]。由此可見,淡竹對(duì)石灰?guī)r生境具有很強(qiáng)的適應(yīng)能力[17]。在喀斯特生境下,淡竹根系根際與非根際土壤的養(yǎng)分特征差異是植物有效吸收、利用土壤養(yǎng)分和適應(yīng)脆弱環(huán)境的最直接表征之一[18],對(duì)揭示淡竹的生存機(jī)制有重要意義。此外,淡竹的地下根系統(tǒng)可以根據(jù)其發(fā)生位置分為蔸根和鞭根,兩類根系存在性狀和功能的分化:蔸根組織密度大,比根長(zhǎng)小,根系機(jī)械強(qiáng)度大,被認(rèn)為主要執(zhí)行土壤固持功能;鞭根比根長(zhǎng)大,根系分枝多,養(yǎng)分吸收能力強(qiáng)[19]。目前,已出現(xiàn)功能分化的蔸根和鞭根的根際效應(yīng)是否存在差異尚不清楚。為此,本研究依據(jù)高華端[20]的生境分類,按照裸巖率差異將石灰?guī)r山地分為連續(xù)土(CS,裸露率<30%)、半連續(xù)土(SCS,裸露率為30%~50%)和零星土(SS,裸露率>50%)生境,探究不同裸巖率生境淡竹蔸根和鞭根根際與非根際土壤養(yǎng)分的供應(yīng)特征,以期探析淡竹在石灰?guī)r生境的養(yǎng)分吸收策略,為喀斯特生境下植物資源利用提供理論依據(jù)。
1 材料與方法
1.1 研究區(qū)概況
瑞昌市位于江西省西北部(29°23′~29°51′N,115°06′~115°44′E),北臨長(zhǎng)江,幕阜山余脈自西向東綿延全境,地形多為低山、丘陵,區(qū)域內(nèi)石灰?guī)r廣泛分布。土壤類型主要為鐵鋁土,中度脫硅而表現(xiàn)出富鋁化的特征,腐殖質(zhì)層較薄,土壤鹽基飽和度低,顯現(xiàn)出典型的喀斯特地貌特征。該區(qū)屬于中亞熱帶北緣濕潤性季風(fēng)氣候,年均氣溫為16.6 ℃,極端最高氣溫為41.2 ℃,極端最低氣溫為-13.4 ℃,年均降水量為1 394 mm,年均日照時(shí)數(shù)為1 890 h,無霜期為260 d。研究區(qū)有5 600 hm2天然淡竹成片分布,其他樹種僅零星點(diǎn)綴其中[21]。
1.2 樣地設(shè)置及其理化性質(zhì)特征
研究區(qū)根據(jù)其裸巖率分為連續(xù)土(CS,裸露率<30%)、半連續(xù)土(SCS,裸露率為30%~50%)和零星土(SS,裸露率>50%)3種生境。本研究選擇海拔、坡度、坡向相對(duì)一致的淡竹純林,3種生境分別選取6個(gè)10 m×10 m的樣地,共計(jì)18個(gè)樣地。不同生境的淡竹純林均未出現(xiàn)林下植被。連續(xù)土、半連續(xù)土和零星土生境淡竹的胸徑分別為(2.68±0.09)、(2.86±0.09)和(3.23±0.22)cm,連續(xù)土、半連續(xù)土和零星土生境淡竹純林的林分密度分別為(4.89±0.22)、(2.86±0.45)和(1.12±0.53)棵/m2。
各生境土壤理化性質(zhì)等基礎(chǔ)數(shù)據(jù)如表1所示[22]。
1.3 土壤取樣方法
圖1為蔸根和鞭根的取樣方法。
蔸根:在樣方內(nèi)隨機(jī)選取6棵淡竹植株進(jìn)行蔸根采樣。在每個(gè)植株基部、中部、末端打土鉆(蔸根的水平延長(zhǎng)距離為胸徑的十倍左右)。在第2個(gè)植株的方位基礎(chǔ)上旋轉(zhuǎn)60°取樣,6個(gè)植株依次取樣,土鉆內(nèi)徑為46 mm,取樣深度為30 cm。土芯樣品采集后帶回實(shí)驗(yàn)室。
鞭根:取該樣地6個(gè)交點(diǎn)上的淡竹植株,沿鞭的方向挖出第1個(gè)地下莖(鞭)的節(jié),貼近鞭的位置垂直向下打土鉆,取樣深度為30 cm,取出土芯樣品,裝入自封袋。
用土鉆取得的樣品帶回實(shí)驗(yàn)室后,將根際周圍<2 mm的土壤定義為根際土,其他為非根際土,用于土壤養(yǎng)分含量的測(cè)定。
1.4 指標(biāo)測(cè)定
將采集到的新鮮土壤樣品過2 mm孔徑篩后,立即進(jìn)行土壤銨態(tài)氮、硝態(tài)氮以及有效磷含量的測(cè)定。其中,土壤銨態(tài)氮和硝態(tài)氮含量分別采用靛酚藍(lán)比色法和鍍銅鎘還原-重氮化偶合比色法、分光光度計(jì)(TU-1901,北京普析)進(jìn)行測(cè)定。將10 g鮮土用0.5 mol NaHCO3溶液提取后過濾[23],經(jīng)鉬藍(lán)法顯色后,通過紫外分光光度計(jì)測(cè)定土壤有效磷。
1.5 數(shù)據(jù)分析
采用SPSS 26.0軟件進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析。采用雙因素方差分析對(duì)比不同生境下淡竹蔸根和鞭根根際與非根際土壤銨態(tài)氮、硝態(tài)氮、有效磷含量以及相關(guān)根際效應(yīng)的差異顯著性,并利用最小顯著差異法(LSD)進(jìn)行多重比較分析,采用Origin 2019軟件作圖。
2 結(jié)果與分析
2.1 不同生境下淡竹蔸根、鞭根的根際土和非根際土氮含量
不同生境下淡竹鞭根、蔸根根際土和非根際土中的銨態(tài)氮和硝態(tài)氮含量均隨土壤裸巖率的升高而顯著增加(圖2)。生境類型顯著影響銨態(tài)氮含量,零星土生境蔸根和鞭根的銨態(tài)氮含量均顯著高于連續(xù)土和半連續(xù)土(P<0.001)(圖2,表2)。其中,零星土生境鞭根的根際土和非根際土銨態(tài)氮含量分別為(22.70±1.40)、(24.10±1.30)mg/kg;蔸根的根際土和非根際土銨態(tài)氮含量分別為(24.10±1.50)、(28.10±1.70)mg/kg。根系類型對(duì)土壤銨態(tài)氮含量無顯著影響(表2)。
不同生境類型淡竹蔸根和鞭根的根際土硝態(tài)氮含量沒有顯著差異,但非根際土硝態(tài)氮含量差異顯著。零星土生境蔸根和鞭根的非根際土硝態(tài)氮含量均顯著大于連續(xù)土和零星土生境(圖2)(P<0.05),其中以零星土生境下蔸根非根限土硝態(tài)氮含量最高,為(2.81±0.35)mg/kg。根系類型對(duì)土壤硝態(tài)氮含量無顯著影響(表2)。
2.2 不同生境下淡竹蔸根、鞭根的根際土與非根際土有效磷含量
不同生境下淡竹蔸根、鞭根的根際土和非根際土有效磷含量沒有顯著差異(圖3)。連續(xù)土生境下蔸根根際土與非根際土壤有效磷含量分別為(4.10±0.20)、(4.00±0.30)mg/kg,鞭根根際土與非根際土壤有效磷含量分別為(4.90±0.30)、(4.60±0.30)mg/kg,各根系類型間有效磷含量并未表現(xiàn)出顯著差異(P>0.05),以半連續(xù)土生境下鞭根非根際土有效磷含量最高,為(5.97±0.23)mg/kg。。雙因素方差分析結(jié)果表明,生境與根系類型對(duì)淡竹蔸根、鞭根的根際土和非根際土有效磷含量沒有顯著影響(表3)。
2.3 不同生境淡竹蔸根和鞭根的氮磷根際效應(yīng)
不同生境淡竹蔸根和鞭根的銨態(tài)氮和硝態(tài)氮根際效應(yīng)隨裸巖率的增加顯著下降,而3種生境蔸根和鞭根有效磷的根際效應(yīng)沒有顯著差異(圖4)。鞭根銨態(tài)氮根際效應(yīng)在連續(xù)土和半連續(xù)土生境顯著高于零星土生境(P<0.05),呈現(xiàn)-6.50%~44.57%的變化趨勢(shì);蔸根銨態(tài)氮根際效應(yīng)在連續(xù)土生境顯著大于半連續(xù)土和零星土生境(P<0.05),呈現(xiàn)-35.22%~1.33%的變化趨勢(shì)。另外,3種生境中鞭根硝態(tài)氮根際效應(yīng)由正轉(zhuǎn)負(fù),且連續(xù)土和半連續(xù)土生境鞭根硝態(tài)氮的根際效應(yīng)顯著大于零星土生境(P<0.05),不同生境蔸根硝態(tài)氮根際效應(yīng)的變化趨勢(shì)與鞭根一致。3種生境蔸根和鞭根的有效磷根際效應(yīng)均無顯著差異(表4)。
3 討 論
3.1 不同生境淡竹根系土壤養(yǎng)分含量及其根際效應(yīng)差異
喀斯特生境土壤淺薄,異質(zhì)性高,土壤養(yǎng)分供應(yīng)不均衡[24-25],因此植物對(duì)養(yǎng)分有較強(qiáng)的選擇性與截留性[26-27]。有研究表明,喀斯特生境下土壤養(yǎng)分高于非喀斯特地區(qū)[28],全氮、銨態(tài)氮與硝態(tài)氮含量隨石漠化程度的上升而上升,這與本研究中淡竹根際與非根際土壤的銨態(tài)氮、硝態(tài)氮與有效磷等養(yǎng)分隨裸巖率上升而上升的結(jié)果相符[29-30]。其原因可能是零星土生境的特殊性造成其凋落物輸入量大,養(yǎng)分流失量小。具體來說,零星土生境裸巖率高,林地的葉凋落物及其分解過程均匯集在巖石中間零星裸露的土壤中,加上零星土生境中淡竹細(xì)根的生物量高于連續(xù)土和半連續(xù)土生境[31],根凋落物量大。另一方面,大量的裸露巖石改變了淡竹生長(zhǎng)區(qū)域的地形,易形成巖面徑流,從而減少了零星土生境中土壤養(yǎng)分的流失[32]。此外,零星土生境缺少土壤緩沖,這會(huì)加強(qiáng)凋落物的破碎作用,并加快微生物對(duì)凋落物的分解[33]。大量的根葉凋落物輸入,以及少量的養(yǎng)分流失使得零星土生境養(yǎng)分含量比連續(xù)土和半連續(xù)土高。
根際區(qū)域的養(yǎng)分狀況直接反映土壤養(yǎng)分向根系轉(zhuǎn)移或被根系吸收的情況,而植物根系土壤養(yǎng)分的根際效應(yīng)可直觀地反映出植物對(duì)于養(yǎng)分的選擇性和競(jìng)爭(zhēng)能力[34-35]。石灰?guī)r山地淡竹林銨態(tài)氮隨著裸巖率升高由正效應(yīng)逐漸轉(zhuǎn)變?yōu)樨?fù)效應(yīng),表明在連續(xù)土生境中,淡竹根際活動(dòng)有利于銨態(tài)氮的活化。而在零星土生境中,淡竹林銨態(tài)氮為負(fù)根際效應(yīng),表明零星土生境淡竹根系從根際土中吸收的養(yǎng)分較連續(xù)土和半連續(xù)土生境多,或者零星土生境淡竹根系排斥銨態(tài)氮。根據(jù)竹類植物喜銨厭硝的特性,推測(cè)淡竹根系更可能在零星土吸收的銨態(tài)氮含量大于其余兩類生境。大量研究結(jié)果表明,養(yǎng)分限制時(shí),提高根的分枝強(qiáng)度可提高根系的養(yǎng)分獲取能力[36-37]。在零星土生境中,50%以上的巖石裸露率壓縮了植物根系的生長(zhǎng)空間,淡竹為了吸收足夠多的土壤養(yǎng)分,會(huì)在有限的土壤體積中提高根系的覓食能力,即增加根系的根長(zhǎng)密度,由于單位體積土壤的根系量增加,重疊的根系消耗了根際區(qū)的土壤養(yǎng)分。因此,淡竹銨態(tài)氮根際效應(yīng)由正轉(zhuǎn)負(fù)。
雖然淡竹硝態(tài)氮的根系效應(yīng)趨勢(shì)與銨態(tài)氮根際效應(yīng)趨勢(shì)相同,均隨土壤裸巖率的上升而顯著下降,但淡竹硝態(tài)氮根際效應(yīng)在連續(xù)土生境為負(fù)效應(yīng),這表明淡竹厭硝效應(yīng)明顯。這一結(jié)果與竹類喜銨厭硝的特性相符。ZOU等[38]在研究毛竹的氮吸收情況時(shí)發(fā)現(xiàn),毛竹對(duì)銨態(tài)氮表現(xiàn)出明顯的喜好性,而對(duì)硝態(tài)氮?jiǎng)t有明顯的排異性。石灰?guī)r山地淡竹喜銨厭硝的機(jī)理有待進(jìn)一步研究。各生境下淡竹林的有效磷含量較低,根際效應(yīng)也隨裸巖率上升有由正轉(zhuǎn)負(fù)的趨勢(shì)。這與喀斯特植被恢復(fù)階段土壤有效磷根際效應(yīng)明顯的結(jié)果不符[39]??赡艿脑蚴侵耦愔饕ㄟ^分泌有機(jī)酸等手段來進(jìn)行磷元素的礦化,而有機(jī)酸的分泌具有季節(jié)性,故不同季節(jié)植物養(yǎng)分礦化效率不同[40]。本研究所用樣品采集于十一月,正值喀斯特地區(qū)較旱時(shí)期,此時(shí)期淡竹根系有機(jī)酸分泌量較少,磷活化量有限。此外,喀斯特地貌下地表土壤對(duì)磷有吸附作用,隨著裸巖率的升高,土壤有效磷含量有增加的趨勢(shì)[41],同時(shí)石灰?guī)r土壤中鈣鎂離子過多,磷酸根離子容易被固定,能夠供植物直接利用的磷含量為1~8 mg/kg,這也加大了根系活化土壤磷的難度[42]。
3.2 淡竹蔸根與鞭根的根際效應(yīng)差異
植物根系通過調(diào)整自身形態(tài)、結(jié)構(gòu)和生理等特性,能夠有效應(yīng)對(duì)環(huán)境帶來的挑戰(zhàn),最大限度地減少不利影響[43]。根功能性狀如根系直徑、氮含量和比根長(zhǎng)的變化,不僅有助于改變根際微生物群落組成,還能顯著提升養(yǎng)分吸收效率。研究顯示,根際效應(yīng)與根系氮含量呈正相關(guān)關(guān)系,而與根系直徑則呈現(xiàn)負(fù)相關(guān)[14]。前期研究發(fā)現(xiàn),在石灰?guī)r山地生態(tài)系統(tǒng)中,淡竹的蔸根和鞭根表現(xiàn)出明顯的功能分化:蔸根主要為固持土壤的作用,并兼具一定的養(yǎng)分吸收功能,其抗拉強(qiáng)度大,主根直徑大,側(cè)根比根長(zhǎng)較鞭根??;相較之下,鞭根主要承擔(dān)吸收土壤養(yǎng)分的功能,具有更大的比根長(zhǎng)、更多的分枝以及更快的養(yǎng)分吸收速率[19]。
本研究中蔸根和鞭根的根際效應(yīng)并無顯著差異,這可能是因?yàn)樗鼈兺瑢儆诘窀档囊徊糠?,偏好相似的根際微生物群落,或者兩者的性狀差異不足以顯著改變根際微生物群落,從而影響根際養(yǎng)分狀況。此外,雖然蔸根和鞭根周圍土壤的有效磷含量沒有顯示出統(tǒng)計(jì)學(xué)上的顯著差異(P=0.09),但數(shù)據(jù)顯示鞭根周圍的土壤有效磷含量略高。研究表明,根系分泌速率與根尖數(shù)量和比根長(zhǎng)成正比,因此相比蔸根,鞭根由于擁有更高的分枝密度和更大的比根長(zhǎng),可以產(chǎn)生更多的根系分泌物,進(jìn)而有助于釋放被固定在根際土壤中的磷元素[19]。
4 結(jié) 論
資源匱乏性生境中植物根際與非根際土壤的養(yǎng)分特征反映了植物在適應(yīng)脆弱環(huán)境時(shí)的養(yǎng)分獲取策略。石灰?guī)r山地淡竹林根際土與非根際土銨態(tài)氮、硝態(tài)氮和有效磷含量均隨裸巖率的上升而上升。淡竹根系銨態(tài)氮的根際效應(yīng)隨土壤裸巖率的升高由正根際效應(yīng)轉(zhuǎn)為負(fù)根際效應(yīng),而硝態(tài)氮在3種生境均為負(fù)效應(yīng)。石灰?guī)r山地3種生境淡竹有效磷根際效應(yīng)沒有顯著差異,不同生境淡竹蔸根和鞭根的根際效應(yīng)差異也不明顯,但淡竹表現(xiàn)出了喜銨厭硝的特性。本研究為竹類植物的養(yǎng)分獲取策略和經(jīng)營管理提供了理論參考。
參考文獻(xiàn):
[1] 董淑富,束懷瑞.根際微域環(huán)境研究進(jìn)展[J].落葉果樹,1994,26(增刊1):97-100. DONG S F, SHU H R. Research progress of rhizosphere microenvironment[J]. Deciduous Fruit Tree,1994,26(Suppl.1):97-100.
[2] PHILLIPS R P, FAHEY T J. The species and mycorrhizal associations influence the magnitude of rhizosphere effects[J]. Ecology,2006,87(5):1302-1313.
[3] GAN D Y, FENG J G, HAN M G, et al. Rhizosphere effects of woody plants on soil biogeochemical processes: a metaanalysis[J]. Soil Biology and Biochemistry,2021,160:108310.
[4] 楊婭琳,陳健鑫,武自強(qiáng),等.油茶根腐病根際土壤和根系內(nèi)細(xì)菌群落結(jié)構(gòu)及多樣性[J].經(jīng)濟(jì)林研究,2023,41(2):69-82. YANG Y L, CHEN J X, WU Z Q, et al. Bacterial community structure and diversity in rhizosphere soil and root system of Camellia oleifera root rot[J]. Non-wood Forest Research, 2023,41(2):69-82.
[5] VILLAR-ARGAIZ M, STERNER R W. Life history bottlenecks in Diaptomus clavipes induced by phosphorus-limited algae[J]. Limnology and Oceanography,2002,47(4):1229-1233.
[6] ELSER J J, BRACKEN M E S, CLELAND E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecology Letters,2007,10(12):1135-1142.
[7] 李偉,謝文歌,張曦瑜,等.施氮對(duì)香梨園土壤養(yǎng)分、根系生物量及產(chǎn)量品質(zhì)的影響[J].經(jīng)濟(jì)林研究,2023,41(3):235-243. LI W, XIE W G, ZHANG X Y, et al. Effect of nitrogen fertilization on soil nutrients, root biomass, yield and quality in Korla Fragrant Pear orchard [J]. Non-wood Forest Research, 2023,41(3):235-243.
[8] BULGARELLI D, SCHLAEPPI K, SPAEPEN S, et al. Structure and functions of the bacterial microbiota of plants[J]. Annual Review of Plant Biology,2013,64(1):807-838.
[9] ANDRESEN L C, CARRILLO Y, MACDONALD C A, et al. Nitrogen dynamics after two years of elevated CO2 in phosphorus limited Eucalyptus woodland[J]. Biogeochemistry, 2020,150(3):297-312.
[10] 宋慶妮,楊清培,劉駿,等.毛竹擴(kuò)張對(duì)常綠闊葉林土壤氮素礦化及有效性的影響[J].應(yīng)用生態(tài)學(xué)報(bào),2013,24(2):338-344. SONG Q N, YANG Q P, LIU J, et al. Effects of Phyllostachys edulis expansion on soil nitrogen mineralization and its availability in evergreen broadleaf forest[J]. Chinese Journal of Applied Ecology,2013,24(2):338-344.
[11] 黃玲.毛竹和栲樹幼苗生長(zhǎng)銨硝響應(yīng)差異的生理機(jī)制研究[D].南昌:江西農(nóng)業(yè)大學(xué),2018. HUANG L. Research on physiological mechanism of ammonium and nitrate response difference between Phyllostachys edulis and Castanopsis fargesii Franch seedlings [D]. Nanchang: Jiangxi Agricultural University, 2018.
[12] 孫明偉,徐月喬,王貴,等.松嫩草地兩種生態(tài)型羊草根際效應(yīng)和光合生理對(duì)干旱脅迫的響應(yīng)[J].中國草地學(xué)報(bào), 2021,43(5):8-17. SUN M W, XU Y Q, WANG G, et al. Responses of the rhizosphere effect and photosynthetic physiology of two ecotypes of Leymus chinensis to drought stress in Songnen grassland[J]. Chinese Journal of Grassland,2021,43(5):8-17.
[13] WU F M, WEI P, LI X, et al. Research progress of rhizosphere effect in the phytoremediation of uranium-contaminated soil[J]. Journal of Radioanalytical and Nuclear Chemistry,2022,331(12): 5493-5505.
[14] HAN M G, SUN L J, GAN D Y, et al. Root functional traits are key determinants of the rhizosphere effect on soil organic matter decomposition across 14 temperate hardwood species[J]. Soil Biology and Biochemistry,2020,151(1):108019.
[15] HENNERON L, KARDOL P, WARDLE D A, et al. Rhizosphere control of soil nitrogen cycling: a key component of plant economic strategies[J]. New Phytologist,2020,228(4):1269-1282.
[16] SARDANS J, PE?UELAS J, PRIETO P, et al. Drought and warming induced changes in P and K concentration and accumulation in plant biomass and soil in a Mediterranean shrubland[J]. Plant and Soil, 2008, 306(1): 261-271.
[17] 鄒凱,談麗華,巫娟, 等.石灰?guī)r山地淡竹生物量模型研究[J].江西農(nóng)業(yè)大學(xué)學(xué)報(bào),2020,42(1):110-117. ZOU K, TAN L H, WU J, et al. A study on biomass predicting models of Phyllostachys glauca in the limestone mountains[J]. Acta Agriculturae Universitatis Jiangxiensis,2020,42(1):110-117.
[18] 楊陽,劉秉儒.荒漠草原不同植物根際與非根際土壤養(yǎng)分及微生物量分布特征[J].生態(tài)學(xué)報(bào),2015,35(22):7562-7570. YANG Y, LIU B R. Distribution of soil nutrient and microbial biomass in rhizosphere versus non-rhizosphere area of different plant species in desertified steppe[J]. Acta Ecologica Sinica, 2015,35(22):7562-7570.
[19] WANG G R, YU F, WU H Y, et al. Roots originating from different shoot parts are functionally different in running bamboo, Phyllostachys glauca[J]. Functional Ecology,2023,37(4): 1082-1094.
[20] 高華端.貴州陡坡退耕地立地分類系統(tǒng)研究[J].水土保持研究,2003,10(4):76-79. GAO H D. Study on site classification system of steep cultivated land for quitting in Guizhou Province[J]. Research of Soil and Water Conservation,2003,10(4):76-79.
[21] 梁寬,樊燕,馮火炬,等.不同石灰?guī)r生境淡竹非結(jié)構(gòu)性碳水化合物濃度及分配特征[J].林業(yè)科學(xué),2019,55(6):22-27. LIANG K, FAN Y, FENG H J, et al. Concentration and distribution pattern of non-structural carbohydrate of Phyllostachys glauca in different limestone habitats [J]. Scientia Silvae Sinicae, 2019,55(6):22-27.
[22] 梁寬,樊燕,卜文圣,等.石灰?guī)r山地優(yōu)勢(shì)種淡竹的表型可塑性研究[J].江西農(nóng)業(yè)大學(xué)學(xué)報(bào),2017,39(6):1178-1186. LIANG K, FAN Y, BU W S, et al. Phenotypic plasticity of a dominant bamboo species(Phyllostachys glauca) in limestone mountain in northwest of Jiangxi Province[J]. Acta Agriculturae Universitatis Jiangxiensis,2017,39(6):1178-1186.
[23] HEDLEY M J, WHITE R E, NYE P H. Plant-induced changes in the rhizosphere of rape (Brassica napus var. emerald) seedlings:Ⅲ. Changes in L value, soil phosphate fractions and phosphatase activity[J]. New Phytologist,1982,91(1):45-56.
[24] 陸志星 , 王智慧 , 韋鑠星 , 等 . 桂西北喀斯特地區(qū)不同植被恢復(fù)模式植物群落結(jié)構(gòu)與多樣性特征 [J]. 中南林業(yè)科技大學(xué)學(xué)報(bào),2022,42(9):115-126. LU Z X, WANG Z H, WEI S X, et al. Plant community structure and diversity characteristics of different vegetation restoration modes in the karst region of northwest Guangxi, China[J]. Journal of Central South University of Forestry Technology, 2022,42(9):115-126.
[25] 徐燕,龍健.貴州喀斯特山區(qū)土壤物理性質(zhì)對(duì)土壤侵蝕的影響[J].水土保持學(xué)報(bào),2005,19(1):157-159,175. XU Y, LONG J. Effect of soil physical properties on soil erosion in Guizhou Karst mountainous region[J]. Journal of Soil and Water Conservation,2005,19(1):157-159,175.
[26] 董利蘋,曹靖,李先婷,等.不同耐鹽植物根際土壤鹽分的動(dòng)態(tài)變化[J].生態(tài)學(xué)報(bào),2011,31(10):2813-2821. DONG L P, CAO J, LI X T, et al. Dynamic change of salt contents in rhizosphere soil of salt-tolerant plants[J]. Acta Ecologica Sinica,2011,31(10):2813-2821.
[27] 弋良朋,馬健,李彥.荒漠鹽生植物根際土壤鹽分和養(yǎng)分特征[J].生態(tài)學(xué)報(bào),2007,27(9):3565-3571. YI L P, MA J, LI Y. Soil salt and nutrient concentration in the rhizosphere of desert halophytes[J]. Acta Ecologica Sinica,2007,27(9):3565-3571.
[28] LI Y F, YANG R, HU P L, et al. Lower sensitivity of soil carbon and nitrogen to regional temperature change in Karst forests than in non-karst forests[J]. Forests,2023,14(2):355.
[29] 楊丹,楊智,朱光旭,等.黔西南不同程度石漠化土壤養(yǎng)分及微生物特征[J].江蘇農(nóng)業(yè)科學(xué),2022,50(13):256-264. YANG D, YANG Z, ZHU G X, et al. Soil nutrients and microbial characteristics of rocky desertification in southwest Guizhou[J]. Jiangsu Agricultural Sciences,2022,50(13):256-264.
[30] 隋夕然,吳麗芳,王妍,等.滇中巖溶高原不同石漠化程度土壤團(tuán)聚體養(yǎng)分及酶活性特征[J].浙江農(nóng)林大學(xué)學(xué)報(bào),2022, 39(1):115-126. SUI X R, WU L F, WANG, Y, et al. Characteristics of nutrient and enzyme activity in soil aggregates of different rocky desertification levels in central Yunnan Plateau[J]. Journal of Zhejiang A F University,2022,39(1):115-126.
[31] FORDE B, LORENZO H. The nutritional control of root development[J]. Plant and Soil,2001,232(1-2):51-68.
[32] 盛茂銀,熊康寧,崔高仰,等.貴州喀斯特石漠化地區(qū)植物多樣性與土壤理化性質(zhì)[J].生態(tài)學(xué)報(bào),2015,35(2):434-448. SHENG M Y, XIONG K N, CUI G Y, et al. Plant diversity and soil physical-chemical properties in Karst rocky desertification ecosystem of Guizhou, China[J]. Acta Ecologica Sinica, 2015,35(2):434-448.
[33] 劉娜,吳鵬,周汀,等.石面及土面小生境對(duì)典型喀斯特森林凋落葉分解過程的影響[J].中南林業(yè)科技大學(xué)學(xué)報(bào), 2023,43(3):145-154. LIU N, WU P, ZHOU T, et al. Effects of rock surface and soil surface micro-habitats on the leaf litter decomposition process in typical Karst forests [J]. Journal of Central South University of Forestry Technology,2023,43(3):145-154.
[34] 張學(xué)利,楊樹軍,張百習(xí).我國林木根際土壤研究進(jìn)展[J].沈陽農(nóng)業(yè)大學(xué)學(xué)報(bào),2002,33(6):461-465. ZHANG X L, YANG S J, ZHANG B X. A summary of studies on rhizosphere soil of trees in China[J]. Journal of Shenyang Agricultural University,2002,33(6):461-465.
[35] 陳明福.杉木擬赤楊根際土壤研究[J].福建林學(xué)院學(xué)報(bào), 1998,18(4):369-372. CHEN M F. Studies on rhizosphere soil of Chinese fir and Alniphyllum fortunei[J]. Journal of Fujian College of Forestry, 1998,18(4):369-372.
[36] CAHILL J F Jr, MCNICKLE G G, HAAG J J, et al. Plants integrate information about nutrients and neighbors[J]. Science, 2010,328(5986):1657.
[37] 郝倩葳,于水強(qiáng),曹雨婷,等.外源養(yǎng)分對(duì)麻櫟細(xì)根生長(zhǎng)形態(tài)及氮磷含量的影響[J].西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2022,50(4):66-73. HAO Q W, YU S Q, CAO Y T, et al. Effects of different exogenous nutrients on fine roots growth, morphology and N and P contents of Quercus acutissima[J]. Journal of Northwest A F University(Natural Science Edition),2022,50(4):66-73.
[38] ZOU N , HUANG L, CHEN H J, et al. Nitrogen form plays an important role in the growth of moso bamboo (Phyllostachys edulis) seedlings[J]. PeerJ,2020,8:e9938.
[39] 潘復(fù)靜,王克林,張偉,等.喀斯特不同恢復(fù)階段植物根際土養(yǎng)分和酶活性的季節(jié)性變化和根際效應(yīng)[J].桂林理工大學(xué)學(xué)報(bào),2020,40(1):209-217. PAN F J, WANG K L, ZHANG W, et al. Seasonal changes and rhizosphere effects of soil nutrients and enzymatic activities in two vegetation successions of Karst ecosystem[J]. Journal of Guilin University of Technology,2020,40(1):209-217.
[40] 王小平,肖肖,唐天文,等.連香樹人工林根系分泌物輸入季節(jié)性變化及其驅(qū)動(dòng)的根際微生物特性研究[J].植物研究, 2018,38(1):47-55. WANG X P, XIAO X, TANG T W, et al. Seasonal changes of the input of root exudates and its driving characteristics of rhizosphere microbe in a Cercidiphyllum japonicum Sieb. plantation[J]. Bulletin of Botanical Research,2018,38(1):47-55.
[41] GEEKIYANAGE N, GOODALE U M, CAO K F, et al. Plant ecology of tropical and subtropical Karst ecosystems[J]. Biotropica, 2019,51(5):626-640.
[42] 吳姝瑾,梁寬,樊燕,等.石灰?guī)r山地不同生境淡竹的養(yǎng)分特征及其生理適應(yīng)[J].林業(yè)科學(xué)研究,2022,35(2):180-186. WU S J, LIANG K, FAN Y, et al. Nutrient characteristics and physiological adaptation of Phyllostachys glauca at different habitats in limestone mountains[J]. Forest Research,2022,35(2): 180-186.
[43] HE N P, LI Y, LIU C C, et al. Plant trait networks: improved resolution of the dimensionality of adaptation[J]. Trends in Ecology Evolution,2020,35(10):908-918.
[本文編校:謝榮秀]