摘要:
在三相分離器前進行預分水是確保老油田采出液含水體積分數(shù)持續(xù)增加現(xiàn)狀下,油氣集輸系統(tǒng)穩(wěn)定的最經(jīng)濟措施。圍繞快速、多分水的目標,采用室內(nèi)試驗和數(shù)值模擬相結合的方法,分析入口含水體積分數(shù)對預分水用管式離心機分離性能的影響規(guī)律,確定其極限水出口分流比;探討管式離心機在極限水出口分流比工況下,分離性能崩潰點隨操作參數(shù)變化的分布規(guī)律,進而確定該工況下轉速和流量的最佳匹配關系。研究結果表明:隨入口含水體積分數(shù)的增加,管式離心機水出口含油質(zhì)量濃度緩慢降低,分水率逐漸增加;當入口含水體積分數(shù)為80%時,極限水出口分流比為70%(此時分水率為88%);影響水出口分流比增加的關鍵原因為油水界面隨水出口分流比的增加而不斷向水出口方向移動,進而導致水出口含油質(zhì)量濃度持續(xù)上升;基于熵權-Topsis算法計算設計處理量下的經(jīng)濟轉速為600 r/min。研究結果可為采出液預分水用管式離心機的優(yōu)化和性能改進提供指導。
關鍵詞:
油井采出液;管式離心機;預分水;極限分流比;熵權-Topsis;操作參數(shù)
中圖分類號:TE977
文獻標識碼:A
202403009
Ultimate Diversion Ratio and Optimal Operating
Parameters of Tubular Centrifuge
Ren Qiang1,2 An Shenfa3 Chen Jiaqing1,2 Ji Yipeng1,2 Luan Zhiyong3 Yu Hai1,2 Sun Fengxu1,2
(1.School of Mechanical Engineering,Beijing Institute of Petrochemical Technology;2.Beijing Key Laboratory for Critical Technology and Equipment of Deep-Water Oil amp; Gas Pipeline;3.Research Institute of Petroleum Engineering,Sinopec Shengli Oilfield Company)
The water cut of produced fluid in mature fields continues to increase.In this situation,the preliminary diversion before three-phase separator is the most economical measure to ensure the stability of the oil and gas gathering and transportation systems.In this paper,for purpose of fast and more water diversion,laboratory experiment and numerical simulation were combined to analyze how the volume fraction of water at inlet affects the separation performance of preliminary diversion tubular centrifuge,and determine its ultimate water outlet diversion ratio.Then,the variation of the separation performance collapse point of tubular centrifuge with the operating parameters under the condition of ultimate water outlet diversion ratio was investigated,and the optimal matching relationship between rotation speed and flow rate under this condition was finally determined.The research results show that as the volume fraction of water at inlet increases,the oil mass concentration at water outlet of tubular centrifuge slowly decreases,and the diversion ratio gradually increases.When the volume fraction of water at inlet is 80%,the ultimate water outlet diversion ratio is 70% (at this time,the diversion ratio is 88%).The key reason for the increase in water outlet diversion ratio is that the oil/water contact continuously moves towards the water outlet with the increase of water outlet diversion ratio,thereby leading to a continuous increase in oil mass concentration at water outlet.Based on the entropy weight -Topsis algorithm,the economic rotation speed under the designed treatment capacity is calculated to be 600 r/min.The research results provide guidance for the optimization and performance improvement of tubular centrifuges used for preliminary diversion of produced fluid.
produced fluid of oil well;tubular centrifuge;preliminary diversion;ultimate diversion ratio;entropy weight -Topsis;operating parameter
0 引 言
國內(nèi)外大部分油田已經(jīng)進入高含水期甚至特高含水期,增加油井產(chǎn)液量是穩(wěn)定原油產(chǎn)量、降低開采成本的有效措施。生產(chǎn)水量的急劇增加給傳統(tǒng)集輸處理工程帶來了諸多新問題和新挑戰(zhàn)[1-4],主要體現(xiàn)在:三相分離器油出口含水體積分數(shù)和水出口含油質(zhì)量濃度雙增加[5-6]。油相含水體積分數(shù)增加不僅會造成油氣集輸系統(tǒng)加熱能耗上升,還會導致電脫水設備運行不穩(wěn)定[7];而水出口含油質(zhì)量濃度增加則會導致已經(jīng)不堪重負的水系統(tǒng)進一步惡化。因此,在三相分離器前進行預分水,恢復三相分離器到投運時的工況,可有效降低油系統(tǒng)處理能耗,減少水系統(tǒng)負荷,在原系統(tǒng)流程不變的情況下解決高含水帶來的新問題[8]。以進站液量3 800 m3/d為例,將含水原油升溫20 ℃,分水率每提高10%,加熱費用每年就可節(jié)約45萬元[9]。美國FMC Technologies公司的管式預分水器的最高分水率為60%,水出口的含油質(zhì)量濃度小于1 000 mg/L[10]。阿曼石油開發(fā)公司將2個切向入口水力旋流器串聯(lián)進行預分水,當采出液含水體積分數(shù)為79%時,2級綜合分水率可達75%,但水出口含油質(zhì)量濃度達到5 000 mg/L[11]??傮w而言,在保障預分水設備水出口含油質(zhì)量濃度滿足標準要求的前提下,現(xiàn)有預分水設備分水率很難超過75%,進一步提高其分水率是預分水設備研究的重要方向之一。
離心機通過高速旋轉的轉子或轉鼓產(chǎn)生強離心力場完成油水分離,分水率遠高于水力旋流器。分水率可達99%的碟式離心機轉速高、故障頻繁、碟片間隙小易污堵,且碟片間清洗困難,難以滿足油田生產(chǎn)需要[12-13]。管式離心機結構簡單、維護間隔長且不會發(fā)生污堵,更適用于油田的預分水作業(yè)。美國橡樹嶺實驗室的管式離心機預分水試驗結果表明,其水出口的含油質(zhì)量濃度可降至200 mg/L[14-15]。歐盟Hoverspill項目采用管式離心機完成溢油撇出物的預分水,當入口含水體積分數(shù)為98%時,水出口含油質(zhì)量濃度可降至30 mg/L;入口含水體積分數(shù)為60%時,水出口含油質(zhì)量濃度可降至1 000 mg/L,分離效率達到99%[16]。然而,缺少關于預分水用管式離心機極限分流比與最佳操作參數(shù)匹配關系的研究。
圍繞提高預分水用管式離心機的分水率與最佳操作參數(shù)匹配關系,本文采用試驗和數(shù)值模擬相結合的方法,分析入口含水體積分數(shù)對分離性能的影響,探究極限水出口分流比以及影響水出口分流比增加的關鍵因素;研究極限水出口分流比工況下管式離心機分離性能崩潰點發(fā)生時操作參數(shù)的分布規(guī)律,并利用熵權-Topsis算法確定最經(jīng)濟轉速。研究結果可為采出液預分水用管式離心機的優(yōu)化和性能改進提供指導。
1 結構及工作原理
管式離心機由切向入口、轉筒、葉片、環(huán)形溢流堰板、切向油出口和切向水出口等組成(見圖1a)。日本廣島大學的試驗研究結果表明,4葉片時其分離性能最佳[17-18]。采用4葉片結構,則轉筒內(nèi)空間被葉片分割成4個獨立腔體。工作時,油水混合物經(jīng)切向入口進入轉筒內(nèi)的獨立腔體,并隨之高速旋轉。旋轉流體產(chǎn)生的離心力使高密度水相移動到轉筒外環(huán),低密度油相匯聚到轉筒內(nèi)側,在自下而上的流動過程中油水兩相逐漸分離,在溢流堰板控制下從各自出口流出。轉筒內(nèi)任意徑向位置r處的壓力pr表示為:
pr=ρω22g(r2-r2o)+po(1)
式中:ρ為混合液密度,kg/m3;ω為旋轉角速度,rad/s;g為重力加速度,m/s2;ro為油相徑向位置,m;po為油相出口壓力,MPa。
油水兩相界面通過環(huán)形溢流堰板調(diào)控,如圖1b所示。假設油水兩相完全分離,則油水界面半徑re處的壓力pe表示為:
pe=ρoω22g(r2e-r2o)+po=ρwω22g(r2e-r2w)+pw(2)
式中:ρo為油相密度,kg/m3;ρw為水相密度,kg/m3;rw為水相徑向位置,m;pw為水相出口壓力,MPa。
2 試驗方法與數(shù)值模擬模型
2.1 室內(nèi)試驗工藝流程
管式離心機室內(nèi)試驗工藝流程如圖2所示。利用計量泵進行油相定量泵送,用離心泵+閥門控制水相的流量和壓力;通過安裝在管路內(nèi)的SK型靜態(tài)混合器完成油水兩相的在線混合。當入口含水體積分數(shù)為80%時,入口油滴粒徑分布隨入口流量的變化規(guī)律如圖3所示(油滴粒徑用Mastersizer 3000型激光粒度儀測定)。由圖3可見,隨著入口流量Qi的增加,入口油滴粒徑逐漸減小,入口流量由0.6 m3/h增加到1.4 m3/h時,入口油滴粒徑減小74%。
管式離心機由變頻調(diào)速電動機驅(qū)動,調(diào)速范圍0~1 400 r/min。利用入口和出口閥門手動調(diào)節(jié)分流比。水出口分流比和油出口分流比分別定義為:
Fw=QuQi×100%(3)
Fo=QoQi×100%(4)
式中:Fw為水出口分流比,%;Qu為水出口流量,m3/h;Fo為油出口分流比,%;Qo為油出口流量,m3/h。
水出口樣品經(jīng)STC-302型自動液液萃取儀器萃取后,在CVH型TOG/TPH分析儀上測量含油質(zhì)量濃度。
2.2 數(shù)值模擬方法
2.2.1 物理模型與網(wǎng)格劃分
采用SolidWorks軟件繪制管式離心機流體域的物理模型,如圖4a所示。在Fluent Meshing模塊中完成多面體網(wǎng)格劃分,轉筒中心截面定義為Z0,轉筒入口截面定義為Z1,轉筒出口截面定義為Z2。整體及Z0截面上網(wǎng)格分布如圖4b所示。
2.2.2 數(shù)學模型及邊界條件
運用ANSYS Fluent 2020軟件開展數(shù)值模擬。管式離心機內(nèi)流場為高速旋轉流場,流動狀態(tài)為湍流,因此采用RSM湍流模型模擬更為精準[19-21]。選擇多參考系模型(MRF)對旋轉域進行計算。其中:水相為連續(xù)相,密度為998 kg/m3,黏度為1 mPa·s;根據(jù)實驗室實測值,油相密度設置為850 kg/m3,黏度為40 mPa·s。選用Eulerian多相流模型進行油水兩相分離過程的計算,該模型能夠精準地研究轉筒內(nèi)兩相流動特性及其分離性能[22-24]。設置速度入口、自由出流,采用QUICK(Quadratic upstream interpolation for convective kinetics)格式離散方程對流項以減小擴散誤差;采用SIMPLE(Semi-implicit method for pressure linked equations)方法耦合壓力與速度。選用瞬態(tài)計算進行模擬,時間步長設為0.01 s。以水出口設置含油質(zhì)量濃度趨于恒定,且誤差小于1×10-5作為收斂依據(jù)。
網(wǎng)格數(shù)量獨立性驗證結果表明,當網(wǎng)格數(shù)超過43萬時,Z1截面切向速度分布隨網(wǎng)格數(shù)量增加變化的誤差率不超過1.1%,模擬中按此網(wǎng)格數(shù)量劃分物理模型。
2.3 評價方法
預分水分離器的分離效率一般超過99%,因此以水出口含油質(zhì)量濃度、油出口含水體積分數(shù)和分水率等3個指標作為預分水用管式離心機分離性能評價指標。分水率S定義為:
S=Qu(1-Wu)Qi(1-Wi)×100%(5)
式中:Wi為入口含油體積分數(shù),%;Wu為水出口含油體積分數(shù),%。
3 結果與討論
3.1 入口含水體積分數(shù)對分離性能的影響
入口流量為1.0 m3/h、轉速為1 000 r/min、水出口分流比為40%~80%時,管式離心機水出口含油質(zhì)量濃度和分水率隨入口含水體積分數(shù)變化規(guī)律的數(shù)值模擬和試驗結果如圖5所示。由圖5可見:水出口含油質(zhì)量濃度隨著入口含水體積分數(shù)的增加緩慢降低,水出口含油質(zhì)量濃度數(shù)值模擬值和試驗值平均誤差為12.84%;當入口含水體積分數(shù)為70%,水出口分流比為40%時,水出口含油質(zhì)量濃度為1 074 mg/L,由式(5)可算出此時的分水率為57.08%;當入口含水體積分數(shù)為90%,水出口分流比為80%時,水出口含油質(zhì)量濃度為479 mg/L,分水率為88%。
3.2 水出口分流比對分離性能的影響
由式(5)可知,當入口流量和入口含水體積分數(shù)不變時,分水率主要受水出口含油體積分數(shù)和水出口流量影響,高分水率實現(xiàn)的方法就是在保證水出口含油質(zhì)量濃度的同時,提高水出口分流比。因此,通過探討極限水出口分流比確定管式離心機的最高分水率。選擇水出口含油質(zhì)量濃度拐點處(入口含水體積分數(shù)為80%)工況進行極限水出口分流比分析。當入口流量設置為1.0 m3/h、轉速設置為1 000 r/min時,管式離心機分離性能隨水出口分流比變化規(guī)律的數(shù)值模擬和試驗結果如圖6所示。
由圖6可見:水出口含油質(zhì)量濃度隨著水出口分流比的增加先緩慢增加,拐點出現(xiàn)在水出口分流比為70%(分水率達88%)時,水出口含油質(zhì)量濃度為1 145 mg/L;當水出口分流比為75%時,水出口含油質(zhì)量濃度迅速增加至85 000 mg/L;油出口含水體積分數(shù)隨著水出口分流比的增加先快速降低后急速增加,油出口含水體積分數(shù)最低值亦出現(xiàn)在水出口分流比為70%時,最低為37%;當水出口分流比增加至75%時,油出口含水體積分數(shù)急速增加到55%,由式(5)可算出分水率反而有所降低,降至85%,油出口含水體積分數(shù)數(shù)值模擬值和試驗值平均誤差為5.1%。
由模擬得到的不同水出口分流比下,轉筒出口處Z2截面上油相分布如圖7所示。由圖7可見,隨著水出口分流比的增加,油水界面逐漸外移。忽略重力影響,水出口流體的伯努利方程可表示為:
pw+12ρv2w=c(6)
式中:vw為水相切向速度,m/s;c為常量。
由式(6)可知,水出口流速增加,溢流堰板處水相快速排出,水出口壓力pw降低。而由式(2)可知,隨水出口壓力降低油水界面半徑re增加。當水出口分流比增加至75%時,轉筒內(nèi)油水界面外移至水出口附近,導致轉筒內(nèi)流場紊亂,油水界面失控,分離效率下降。由此可見,水出口分流比增加導致油水界面外移是阻礙水出口分流比無法進一步提高的關鍵。
3.3 極限分流比下轉速和流量的最佳匹配
3.3.1 正交試驗分析
由試驗和數(shù)值模擬可知,當入口含水體積分數(shù)為80%時,極限水出口分流比為70%,此時分水率最大,達到88%。根據(jù)《海上油氣處理系統(tǒng)規(guī)范》[25],預分水器應盡可能地除去油中游離水,同時使分出的游離水中含油質(zhì)量濃度降至2 000 mg/L以下。以水出口含油質(zhì)量濃度高于2 000 mg/L為崩潰點的判斷依據(jù),繪制極限水出口分流比下的崩潰點分布,如圖8所示。
對正常運行區(qū)各點進行線性擬合,得到轉速(y)與入口流量(x)匹配關系的表達式為:
y=67+666x(7)
3.3.2 經(jīng)濟運行參數(shù)計算
為獲得最佳轉速流量組合,采用熵權-Topsis算法,以降低轉速、水出口含油質(zhì)量濃度和提高入口流量為目標,進行轉速和入口流量的優(yōu)選。熵權-Topsis算法是在Topsis法中利用熵權法確定各指標的權重并進行綜合評價分析[26-27]。
熵權-Topsis計算結果表明,轉速600 r/min、入口流量1.2 m3/h為最佳的轉速流量組合,在該工況下,分水率為88%,水出口含油質(zhì)量濃度為1 546 mg/L。
4 結 論
(1)當油出口分流比和入口含油比值不變時,隨著入口含水體積分數(shù)的增加,水出口含油質(zhì)量濃度逐漸降低,油出口含水體積分數(shù)基本保持不變,分水率逐漸增加;當入口含水體積分數(shù)為90%時,分水率達88%。
(2)當入口含水體積分數(shù)不變時,轉筒內(nèi)油水界面隨水出口分流比的增加而逐漸向水出口移動,進而導致水出口含油質(zhì)量濃度隨分水率的增加而增加;當入口含水體積分數(shù)為80%時,極限水出口分流比為70%,水出口含油質(zhì)量濃度為1 145 mg/L,分水率達88%,油出口含水體積分數(shù)為37%。
(3)繪制了極限水出口分流比工況下性能崩潰點的轉速和入口流量分布圖譜,確定了極限水出口分流比工況下操作參數(shù)的匹配關系;并用熵權-Topsis算法確定的經(jīng)濟入口流量和轉速分別為1.2 m3/h和600 r/min。
參考文獻
[1] 崔傳智,李松,楊勇,等.特高含水期油藏平面分區(qū)調(diào)控方法[J].石油學報,2018,39(10):1155-1161.
CUI C Z,LI S,YANG Y,et al.Planar zoning regulation and control method of reservoir at ultra-high water cut stage[J].Acta Petrolei Sinica,2018,39(10):1155-1161.
[2] 陳家慶,王強強,肖建洪,等.高含水油井采出液預分水技術發(fā)展現(xiàn)狀與展望[J].石油學報,2020,41(11):1434-1444.
CHEN J Q,WANG Q Q,XIAO J H,et al.Development status and prospect of water pre-separation technology for produced liquid in high water-cut oil well[J].Acta Petrolei Sinica,2020,41(11):1434-1444.
[3] 田洋陽,崔之健,孫明龍,等.高含水采出液T形管分離器的流場數(shù)值模擬[J].石油機械,2021,49(3):132-138.
TIAN Y Y,CUI Z J,SUN M L,et al.Numerical simulation of flow field in T-junction separator of produced liquid with high water content[J].China Petroleum Machinery,2021,49(3):132-138.
[4] 陳家慶,劉濤,王春升,等.海上油氣田采出水處理技術的現(xiàn)狀與展望[J].石油機械,2021,49(7):66-76.
CHEN J Q,LIU T,WANG C S,et al.Development status and prospect of produced water treatment technology for offshore oil amp; gas field[J].China Petroleum Machinery,2021,49(7):66-76.
[5] 唐曉旭,張勇,王秀軍,等.電場強化油水分離技術在油田采出液中的應用研究[J].工業(yè)水處理,2022,42(3):168-171,177.
TANG X X,ZHANG Y,WANG X J,et al.Application research of electric field enhanced oil-water separation in oilfield produced liquid[J].Industrial Water Treatment,2022,42(3):168-171,177.
[6] 張健,陳家慶,王秀軍,等.海上油田聚合物驅(qū)采出液高效處理一體化模式與關鍵技術[J].石油學報(石油加工),2023,39(4):809-819.
ZHANG J,CHEN J Q,WANG X J,et al.Integrated mode and critical technologies for efficient treatment of polymer-flooding produced fluid in offshore oilfield[J].Acta Petrolei Sinica (Petroleum Processing Section),2023,39(4):809-819.
[7] 羅小明,任靜,呂宇玲,等.基于分水效果評價的柱狀旋流分離器性能研究[J].工程熱物理學報,2021,42(10):2605-2614.
LUO X M,REN J,LYU Y L,et al.Study on characteristics of cylindrical cyclone separator based on the evaluation of water separation effect[J].Journal of Engineering Thermophysics,2021,42(10):2605-2614.
[8] 楊蕾,宋奇,郭鵬,等.高含水油田預分水技術現(xiàn)狀及發(fā)展趨勢[J].天然氣與石油,2018,36(5):25-29.
YANG L,SONG Q,GUO P,et al.Present situation and development tendency of water pre-separation technology in high water cut oilfield[J].Natural Gas and Oil,2018,36(5):25-29.
[9] 王玉江.原油預分水工藝試驗及應用[J].油氣田地面工程,1999,18(3):33-35.
WANG Y J.Tecyhnology test and application to crude prsesparating water[J].Oil-Gas Field Surface Engineering,1999,18(3):33-35.
[10] NNABUIHE L.Novel compact oil/water separator tested in nimr[C]∥SPE Middle East Oil Show.Manama,Bahrain:SPE,2001:SPE 68150-MS.
[11] BJORKHAUG M,JOHANNESEN B,EIDSMO G S.Flow induced inline separation (FIIS) De-watering tests at the Gullfaks field[C]∥SPE Annual Technical Conference and Exhibition.Denver,Colorado:SPE,2011:SPE 146688-MS.
[12] 王玉江,崔景亭.DRY-500碟片式離心機的原油脫水試驗[J].石油機械,1996,24(10):52-55.
WANG Y J,CUI J T.Test of crude oil dehydration with butterfly centrifiuge[J].China Petroleum Machinery,1996,24(10):52-55.
[13] 劉富山,崔磊,張虹.離心機在蓬萊19-3油田上的應用[J].石油天然氣學報,2010(5):3.
LIU F S,CUI L,ZHANG H.Application of centrifuge in Penglai 19-3 oilfield[J].Journal of Oil and Gas Technology,2010(5):3.
[14] KLASSON K T,TAYLOR P A,WALKER J F,Jr,et al.Investigation of a centrifugal separator for in-well oil water separation[J].Petroleum Science and Technology,2004,22(9/10):1143-1159.
[15] KLASSON K T,TAYLOR P A,WALKER J F,Jr,et al.Modification of a centrifugal separator for in-well oil-water separation[J].Separation Science and Technology,2005,40(1/2/3):453-462.
[16] MAJ G,LAURENT M,MASTRANGELI M,et al.TURBYLEC:development and experimental validation of an innovative centrifugal oil-water separator[J].International Oil Spill Conference Proceedings,2014,2014:634-648.
[17] YAMAMOTO T,WATANABE N,F(xiàn)UKUI K,et al.Effect of inner structure of centrifugal separator on particle classification performance[J].Powder Technology,2009,192(3):268-272.
[18] YAMAMOTO T,SHINYA T,F(xiàn)UKUI K,et al.Classification of particles by centrifugal separator and analysis of the fluid behavior[J].Advanced Powder Technology,2011,22(2):294-299.
[19] 趙慶鑫,劉愛玲,于佳龍,等.管式離心機固液相分離效果的數(shù)值模擬[J].遼寧科技大學學報,2022,45(3):188-192.
ZHAO Q X,LIU A L,YU J L,et al.Numerical simulation on solid-liquid phase separation of tubular centrifuge[J].Journal of University of Science and Technology Liaoning,2022,45(3):188-192.
[20] 張宇恒,袁惠新,付雙成,等.油品脫水用碟式離心機的流場及分離性能[J].石油學報(石油加工),2019,35(2):275-282.
ZHANG Y H,YUAN H X,F(xiàn)U S C,et al.Flow field and separation performance of disc centrifuge for oil dewatering[J].Acta Petrolei Sinica (Petroleum Processing Section),2019,35(2):275-282.
[21] 邢雷,苗春雨,蔣明虎,等.基于響應曲面法的水力聚結器結構參數(shù)優(yōu)化[J].石油機械,2023,51(11):116-123.
XING L,MIAO C Y,JIANG M H,et al.Optimization on structural parameters of hydraulic coalescer based on response surface method[J].China Petroleum Machinery,2023,51(11):116-123.
[22] 潘威丞,陳家慶,姬宜朋,等.管式靜電旋流分離器的設計及內(nèi)部流場研究[J].石油機械,2019,47(11):74-80.
PAN W C,CHEN J Q,JI Y P,et al.Structure design and internal flow field study of tubular electrostatic cyclone separator[J].China Petroleum Machinery,2019,47(11):74-80.
[23] 朱國瑞,郝澤基,吳將天,等.碟式離心機分離性能試驗及數(shù)值模擬研究[J].天津大學學報(自然科學與工程技術版),2023,56(6):579-587.
ZHU G R,HAO Z J,WU J T,et al.Experimental and numerical simulation on the separation performance of disk stack centrifuge[J].Journal of Tianjin University Science and Technology,2023,56(6):579-587.
[24] 劉義剛,馬駿,何亞其,等.粒徑重構旋流器油水分離特性研究[J].石油機械,2020,48(10):90-97.
LIU Y G,MA J,HE Y Q,et al.Study on the oil-water separation performance of the droplet size reconstruction hydrocyclone[J].China Petroleum Machinery,2020,48(10):90-97.
[25] 中國船級社.海上油氣處理系統(tǒng)規(guī)范:標準編號缺失[S].北京:[出版者不詳],2020.
China Classification Society.Specification for offshore oil and gas processing system:標準編號缺失[S].Beijing:[s.n.].2020.
[26] 高升,孫會薈,劉偉.基于熵權TOPSIS模型的海洋經(jīng)濟系統(tǒng)脆弱性評價與障礙度分析[J].生態(tài)經(jīng)濟,2021,37(10):77-83.
GAO S,SUN H H,LIU W.Vulnerability assessment and obstacle degree analysis of marine economic system based on entropy weight TOPSIS model[J].Ecological Economy,2021,37(10):77-83.
[27] 彭秋萍,萬莉莉,張?zhí)熨n,等.機場環(huán)境承載力評價與預測方法研究[J].航空計算技術,2021,51(2):64-68.
PENG Q P,WAN L L,ZHANG T C,et al.Research on evaluation and prediction method of airport environmental carrying capacity[J].Aeronautical Computing Technique,2021,51(2):64-68.
第一任強,生于1997年,現(xiàn)為在讀碩士研究生,研究方向為油水處理技術。地址:(102617)北京市大興區(qū)。email:583722240@qq.com。
通信作者:姬宜朋。email:jiyipeng@bipt.edu.cn。2024-03-032024-08-09王剛慶