亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于神經(jīng)網(wǎng)絡(luò)的非線性多智能體系統(tǒng)自適應(yīng)脈沖控制

        2025-03-07 00:00:00羅振發(fā)
        自動(dòng)化與信息工程 2025年1期

        摘要:針對(duì)狀態(tài)不可測(cè)和存在外部未知擾動(dòng)的非線性多智能體系統(tǒng)的一致跟蹤問(wèn)題,提出一種基于神經(jīng)網(wǎng)絡(luò)的分布式自適應(yīng)脈沖控制方案。首先,構(gòu)建復(fù)合擾動(dòng)觀測(cè)器,解決系統(tǒng)狀態(tài)不可測(cè)與外部未知擾動(dòng)耦合作用下的系統(tǒng)狀態(tài)感知問(wèn)題;然后,通過(guò)自適應(yīng)脈沖更新律,實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)權(quán)值參數(shù)的快速估計(jì),提升系統(tǒng)的瞬態(tài)性能;接著,結(jié)合脈沖動(dòng)態(tài)系統(tǒng)的Lyapunov穩(wěn)定性理論,證明了閉環(huán)系統(tǒng)的一致最終有界性;最后,通過(guò)多單臂機(jī)械手系統(tǒng)的仿真實(shí)驗(yàn),驗(yàn)證了該方案的有效性及優(yōu)越性。

        關(guān)鍵詞:非線性多智能體;徑向基函數(shù)神經(jīng)網(wǎng)絡(luò);自適應(yīng)控制;脈沖控制;觀測(cè)器

        中圖分類號(hào):TP13; TP183;"O231.2""""文獻(xiàn)標(biāo)志碼:A """"""文章編號(hào):1674-2605(2025)01-0003-10

        DOI:10.3969/j.issn.1674-2605.2025.01.003""""""""nbsp;""""""""""""開(kāi)放獲取

        Adaptive Pulse Control of Nonlinear Multi-agent Systems """""""""""""""Based on Neural Networks

        LUO Zhenfa

        (Guangdong University of Technology, Guangzhou 510006,"China)

        Abstract:"A distributed adaptive pulse control scheme based on neural networks is proposed for the consistent tracking problem of nonlinear multi-agent systems with unmeasurable states and external unknown disturbances. Firstly, construct a composite disturbance observer to solve the problem of system state awareness under the coupling of unmeasurable system states and external unknown disturbances. Then, by using an adaptive pulse update law, the neural network weight parameters can be quickly estimated to improve the transient performance of the system. Furthermore, based on the Lyapunov stability theory of pulse dynamic systems, it is proved that all signals in the closed-loop system are uniformly ultimately bounded. Finally, the effectiveness and superiority of the proposed scheme were verified through simulation experiments of a multi arm robotic arm system.

        Keywords"nonlinear multi-agent system; radial basis function neural network; adaptive control; pulse control; observer

        0 引言

        多智能體系統(tǒng)通過(guò)多個(gè)子系統(tǒng)之間的協(xié)同合作來(lái)完成各類復(fù)雜任務(wù),廣泛應(yīng)用于機(jī)器人、航天器和無(wú)人機(jī)等領(lǐng)域[1-3]。一致跟蹤控制作為多智能體系統(tǒng)協(xié)同合作的基本問(wèn)題之一,吸引了大批學(xué)者開(kāi)展研究,并取得了一定成果[4-6]。但這些研究大多集中于線性多智能體系統(tǒng)。對(duì)于非線性多智能體系統(tǒng),特別是不確定非線性多智能體系統(tǒng),其一致跟蹤控制沒(méi)有得到充分研究。

        隨著人工智能技術(shù)的快速發(fā)展,神經(jīng)網(wǎng)絡(luò)因具有良好的非線性逼近能力,被廣泛應(yīng)用于不確定非線性系統(tǒng)的自適應(yīng)控制設(shè)計(jì)中。文獻(xiàn)[7]針對(duì)高階非線性多智能體系統(tǒng),提出一種基于觀測(cè)器的自適應(yīng)神經(jīng)網(wǎng)絡(luò)一致跟蹤控制策略,解決了系統(tǒng)狀態(tài)不可測(cè)的問(wèn)題。文獻(xiàn)[8]討論了不確定非線性系統(tǒng)的自適應(yīng)神經(jīng)網(wǎng)絡(luò)輸出反饋控制問(wèn)題,通過(guò)其設(shè)計(jì)的干擾觀測(cè)器,避免了未知擾動(dòng)的影響。文獻(xiàn)[9]提出一種基于最小學(xué)習(xí)參數(shù)的分布式多智能體系統(tǒng)的自適應(yīng)神經(jīng)網(wǎng)絡(luò)一致跟蹤控制協(xié)議,有效減少了在線學(xué)習(xí)的參數(shù)量。在自適應(yīng)神經(jīng)網(wǎng)絡(luò)控制設(shè)計(jì)中,神經(jīng)網(wǎng)絡(luò)權(quán)值參數(shù)的估計(jì)十分重要,快速的自適應(yīng)權(quán)值參數(shù)估計(jì),可以改善系統(tǒng)的瞬態(tài)性能,獲得更好的控制效果。為此,文獻(xiàn)[10-11]設(shè)計(jì)了一種預(yù)估器來(lái)代替?zhèn)鹘y(tǒng)的動(dòng)態(tài)面誤差,由于預(yù)估誤差具有額外的可調(diào)參數(shù),加快了神經(jīng)網(wǎng)絡(luò)權(quán)值參數(shù)的估計(jì)速率,但額外的預(yù)估器使系統(tǒng)控制結(jié)構(gòu)更加復(fù)雜,并增加了計(jì)算負(fù)擔(dān)。因此,為了獲得更好的瞬態(tài)性能,仍需進(jìn)一步研究自適應(yīng)神經(jīng)網(wǎng)絡(luò)控制。

        脈沖控制可以提高系統(tǒng)的控制性能,具有控制動(dòng)作快、結(jié)構(gòu)簡(jiǎn)單、魯棒性強(qiáng)等特點(diǎn),在實(shí)際系統(tǒng)工程中得到廣泛的研究與應(yīng)用。文獻(xiàn)[12]設(shè)計(jì)了脈沖反饋控制律,對(duì)給定的參考信號(hào)具有較好的跟蹤效果。文獻(xiàn)[13]引入脈沖觀測(cè)器,通過(guò)合理利用原始輸出來(lái)改善跟蹤性能。文獻(xiàn)[14]設(shè)計(jì)了自適應(yīng)脈沖反饋控制方案,有效提高了系統(tǒng)的同步性能。將脈沖控制與自適應(yīng)神經(jīng)網(wǎng)絡(luò)控制相結(jié)合,可獲得更好的系統(tǒng)瞬態(tài)性能,這對(duì)控制理論的研究和應(yīng)用具有重要意義。

        本文針對(duì)狀態(tài)不可測(cè)和存在外部未知擾動(dòng)的非線性多智能體系統(tǒng),設(shè)計(jì)一種基于神經(jīng)網(wǎng)絡(luò)的分布式自適應(yīng)脈沖控制方案,以實(shí)現(xiàn)多智能體系統(tǒng)的一致跟蹤控制。首先,構(gòu)建復(fù)合擾動(dòng)觀測(cè)器,同時(shí)考慮了外部擾動(dòng)和神經(jīng)網(wǎng)絡(luò)逼近誤差,提高了系統(tǒng)的控制性能;然后,提出一種自適應(yīng)脈沖更新律,實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)權(quán)值參數(shù)的快速估計(jì);接著,基于反步遞推方法,設(shè)計(jì)自適應(yīng)脈沖控制器;最后,建立一個(gè)脈沖動(dòng)態(tài)系統(tǒng),利用擴(kuò)展的Lyapunov穩(wěn)定性理論,證明了閉環(huán)系統(tǒng)的一致最終有界性。

        1 相關(guān)內(nèi)容

        1.1 圖論知識(shí)

        1.2 問(wèn)題描述

        1.3 RBF神經(jīng)網(wǎng)絡(luò)

        1.4 脈沖動(dòng)態(tài)系統(tǒng)

        2 方案設(shè)計(jì)

        首先,設(shè)計(jì)復(fù)合擾動(dòng)觀測(cè)器,用于處理系統(tǒng)不可測(cè)狀態(tài)與外部未知擾動(dòng);然后,基于反步遞推方法設(shè)計(jì)自適應(yīng)脈沖控制器?;谏窠?jīng)網(wǎng)絡(luò)的分布式自適應(yīng)脈沖控制方案設(shè)計(jì)示意圖如圖1所示。

        2.1 復(fù)合擾動(dòng)觀測(cè)器

        本文設(shè)計(jì)的自適應(yīng)脈沖更新律,可在不產(chǎn)生高頻振蕩信號(hào)的前提下,快速自適應(yīng)估計(jì)RBF神經(jīng)網(wǎng)絡(luò)的權(quán)值參數(shù),從而提高多智能體系統(tǒng)的狀態(tài)觀測(cè)速率,改善系統(tǒng)瞬態(tài)性能。

        2.2 自適應(yīng)脈沖控制器

        3 穩(wěn)定性分析

        首先,基于神經(jīng)網(wǎng)絡(luò)的分布式自適應(yīng)脈沖控制方案建立一個(gè)脈沖動(dòng)態(tài)系統(tǒng),并給出主要的穩(wěn)定性結(jié)果;然后,分別分析脈沖間隔動(dòng)態(tài)和脈沖動(dòng)態(tài);最后,給出閉環(huán)系統(tǒng)的穩(wěn)定性證明。

        4 仿真驗(yàn)證

        通過(guò)多單臂機(jī)械手系統(tǒng)的仿真實(shí)驗(yàn),驗(yàn)證本文提出的基于神經(jīng)網(wǎng)絡(luò)的分布式自適應(yīng)脈沖控制方案的有效性,并與文獻(xiàn)[25]方案進(jìn)行對(duì)比實(shí)驗(yàn),驗(yàn)證本文方案的優(yōu)越性。

        在MATLAB平臺(tái)上,利用本文提出的基于神經(jīng)網(wǎng)絡(luò)的分布式自適應(yīng)脈沖控制方案對(duì)上述多單臂機(jī)械手系統(tǒng)進(jìn)行仿真,結(jié)果如圖3~9所示。其中,圖8、9為本文方案與文獻(xiàn)[25]方案的仿真效果對(duì)比圖。

        由圖8、9可以看出,在相同的設(shè)計(jì)參數(shù)下,本文方案相較于文獻(xiàn)[25]方案具有更快速的自適應(yīng)能力,可快速估計(jì)神經(jīng)網(wǎng)絡(luò)權(quán)值參數(shù),從而提高狀態(tài)觀測(cè)速率,進(jìn)一步改善系統(tǒng)的瞬態(tài)性能。

        5 結(jié)論

        本文針對(duì)狀態(tài)不可測(cè)和存在外部未知擾動(dòng)的非線性多智能體系統(tǒng),提出一種基于神經(jīng)網(wǎng)絡(luò)的分布式自適應(yīng)脈沖控制方案,以解決系統(tǒng)的一致跟蹤控制問(wèn)題。本文提出的復(fù)合擾動(dòng)觀測(cè)器同時(shí)考慮了外部擾動(dòng)和神經(jīng)網(wǎng)絡(luò)逼近誤差,提高了系統(tǒng)的控制性能;自適應(yīng)脈沖更新律快速實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)權(quán)值參數(shù)的收斂,改善了閉環(huán)系統(tǒng)的瞬態(tài)性能;在脈沖動(dòng)態(tài)系統(tǒng)中,通過(guò)擴(kuò)展的Lyapunov穩(wěn)定性理論證明了閉環(huán)系統(tǒng)的一致最終有界性。通過(guò)多單臂機(jī)械手系統(tǒng)的仿真對(duì)比實(shí)驗(yàn),驗(yàn)證了本文方案的有效性和優(yōu)越性。但本文方案對(duì)于其他類型的系統(tǒng),如隨機(jī)非線性系統(tǒng)、分?jǐn)?shù)階系統(tǒng)、切換非線性系統(tǒng),是否具有普適性還有待進(jìn)一步驗(yàn)證。同時(shí),本文只考慮了系統(tǒng)狀態(tài)不可測(cè)和存在外部擾動(dòng)的情況,對(duì)于存在約束、控制增益未知的系統(tǒng)未進(jìn)行研究,后續(xù)開(kāi)展擴(kuò)展研究十分必要。

        ?The author(s) 2024. This is an open access article under the CC BY-NC-ND 4.0 License (https://creativecommons.org/licenses/ by-nc-nd/4.0/)

        參考文獻(xiàn)

        [1] DU H, WEN G, CHENG Y, et al. Distributed finite-time cooperative control of multiple high-order nonholonomic mo-bile robots[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016,28(12):2998-3006.

        [2] DU H, LI S. Attitude synchronization for flexible spacecraft with communication delays[J]. IEEE Transactions on Automatic Control, 2016,61(11):3625-3630.

        [3] DONG X, HUA Y, ZHOU Y, et al. Theory and experiment on formation-containment control of multiple multirotor un-manned aerial vehicle systems[J]. IEEE Transactions on Auto-mation Science and Engineering, 2018,16(1):229-240.

        [4] WANG X, WANG H, LI C, et al. Consensus seeking in multiagent systems with Markovian switching topology under aperiodic sampled data[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018,50(12):5189-5200.

        [5] WANG L, XIAO F. Finite-time consensus problems for networks of dynamic agents[J]. IEEE Transactions on Auto-matic Control, 2010,55(4):950-955.

        [6] YU W, ZHENG W X, CHEN G, et al. Second-order consensus in multi-agent dynamical systems with sampled position data[J]. Automatica, 2011,47(7):1496-1503.

        [7] CHEN C L P, WEN G X, LIU Y J, et al. Observer-based adaptive backstepping consensus tracking control for high-order nonlinear semi-strict-feedback multiagent systems[J]. IEEE Transactions on Cybernetics, 2015,46(7):1591-1601.

        [8] LIAN Y, XIA J, PARK J H, et al. Disturbance observer-based adaptive neural network output feedback control for uncertain nonlinear systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022,34(10):7260-7270.

        [9] SHANG Y, CHEN B, LIN C. Consensus tracking control for distributed nonlinear multiagent systems via adaptive neural backstepping approach[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018,50(7):2436-2444.

        [10] PENG Z, WANG D, WANG J. Predictor-based neural dynamic surface control for uncertain nonlinear systems in strict-feedback form[J]. IEEE Transactions on Neural Net-works and Learning Systems, 2016,28(9):2156-2167.

        [11] YANG Y, LIU Q, YUE D, et al. Predictor-based neural dynamic surface control for bipartite tracking of a class of nonlinear multiagent systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021,33(4):1791-1802.

        [12] TUMA T, PANTAZI A, LYGEROS J, et al. Nanopositioning with impulsive state multiplication: A hybrid control approach [J]. IEEE Transactions on Control Systems Technology, 2012, 21(4):1352-1364.

        [13] YU H, CHEN T. Event-triggered tracking control with filtered outputs and impulsive observers[J]. IEEE Transactions on Cybernetics, 2020,52(6):4981-4992.

        [14] ZHU D, WANG R, LIU C, et al. Synchronization of chaotic-oscillation permanent magnet synchronous generators networks via adaptive impulsive control[J]. IEEE Transactions on Circuits"and Systems II: Express Briefs, 2019,67(10):2194-2198.

        [15] ZHOU Q, DU P, LI H, et al. Adaptive fixed-time control of error-constrained pure-feedback interconnected nonlinear sys-tems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020,51(10):6369-6380.

        [16] SUI S, TONG S. Finite-time fuzzy adaptive PPC for nonstrict-feedback nonlinear MIMO systems[J]. IEEE Transactions on Cybernetics, 2022,53(2):732-742.

        [17] CHEN D, LIU X, YU W, et al. Neural-network based adaptive self-triggered consensus of nonlinear multi-agent systems with sensor saturation[J]. IEEE Transactions on Network Science and Engineering, 2021,8(2):1531-1541.

        [18] LU S, CHEN M, LIU Y, et al. Adaptive NN tracking control for uncertain MIMO nonlinear system with time-varying state constraints and disturbances[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022,34(10):7309-7323.

        [19] ZHANG Y, SUN J, LIANG H, et al. Event-triggered adaptive tracking control for multiagent systems with unknown distur-bances[J]. IEEE Transactions on Cybernetics, 2018,50(3):890-901.

        [20] WANG X, WANG H, HUANG T, et al. Neural-network-based adaptive tracking control for nonlinear multiagent systems: The observer case[J]. IEEE Transactions on Cybernetics, 2021,"53(1):138-150.

        [21] SUN Y, CHEN B, LIN C, et al. Adaptive neural control for a class of stochastic nonlinear systems by backstepping ap-proach[J]. Information Sciences, 2016,369:748-764.

        [22] HADDAD W M, CHELLABOINA V S, NERSESOV S G. Impulsive and hybrid dynamical systems: stability, dissipa-tivity, and control[M]. Princeton University Press, 2006.

        [23] KHALIL HK. Nonlinear systems third edition[M]. Upper Saddle River, NJ: Prentice Hall,"2002.

        [24] CHEN B, LIU X, LIU K, et al. Direct adaptive fuzzy control of nonlinear strict-feedback systems[J]. Automatica, 2009,45(6): 1530-1535.

        [25] CHEN M, GE S S. Adaptive neural output feedback control of uncertain nonlinear systems with unknown hysteresis using disturbance observer[J]. IEEE Transactions on Industrial Electronics, 2015,62(12):7706-7716.

        作者簡(jiǎn)介:

        羅振發(fā),男,1999年生,碩士研究生,主要研究方向:自適應(yīng)控制、神經(jīng)網(wǎng)絡(luò)。E-mail:"m18379124404@163.com

        免费看黄在线永久观看| 亚洲av无码不卡| 欧美一级三级在线观看| 久久成人黄色免费网站| 国产精品亚洲А∨天堂免下载| 中文字幕日本女优在线观看| 一本色道久久亚洲精品| 国产毛片av一区二区| 18禁止进入1000部高潮网站| 免费观看的av毛片的网站| 国产小毛片| 九九99久久精品在免费线97| 国产91精品丝袜美腿在线| 手机在线播放av网址| 国产日产精品一区二区三区四区的特点 | 18精品久久久无码午夜福利 | 久久国产精99精产国高潮| 国产亚洲av一线观看| 国产午夜片无码区在线播放| 夜夜嗨av一区二区三区| 久久综合色鬼| 国产黄三级三级三级三级一区二区| 亚洲乱码av中文一区二区| 国产sm调教视频在线观看| 久久天堂av色综合| 高清国产亚洲精品自在久久| 成人午夜福利视频后入| 麻豆av传媒蜜桃天美传媒| av毛片一区二区少妇颜射| 亚洲一区二区在线观看免费视频| 久久婷婷五月综合97色一本一本 | 久久精品国内一区二区三区| 天堂中文资源在线地址| 国产粉嫩嫩00在线正在播放| 丰满人妻被公侵犯的视频| 无码中文字幕日韩专区| 熟妇人妻av中文字幕老熟妇| 成人久久免费视频| 亚洲码无人客一区二区三区| 91久久偷偷做嫩模影院| 国产内射爽爽大片视频社区在线|