摘要: 目的 探討胸腺基質(zhì)淋巴細(xì)胞生成素(TSLP)在對乙酰氨基酚(APAP)誘導(dǎo)的急性肝損傷小鼠模型中的作用及其機制。方法 16只野生型(WT)雄性 C57BL/6J小鼠被隨機分為 2組,分別為 control組和 APAP 組,每組 8只;APAP 組按照400 mg/kg的劑量腹腔注射APAP溶液建模,control組注射等體積生理鹽水,6 h后進(jìn)行取材。全自動化學(xué)分析儀檢測血清ALT 及 AST,實時定量 PCR 方法檢測肝組織炎癥因子 TNF-α 和 IL-6的 mRNA 表達(dá),試劑盒檢測肝組織勻漿中谷胱甘肽(GSH)含量,實時定量PCR、Western Blot方法檢測TSLP的轉(zhuǎn)錄和蛋白水平的表達(dá)。另取22只WT雄性C57BL/6J小鼠,隨機分為 3 組,分別為 control 組(n=8)、APAP 組(n=8)和 APAP+rTSLP 組(n=6),APAP+rTSLP 組先腹腔注射 rTSLP 溶液,同時control組、APAP組注射溶劑PBS;30 min后APAP+rTSLP組和APAP組注射APAP溶液,control組注射等體積生理鹽水。檢測 3 組小鼠血清 ALT 及 AST;通過 HE 染色觀察小鼠肝臟的病理變化;試劑盒檢測肝組織勻漿中氧化應(yīng)激指標(biāo)丙二醛(MDA)、超氧化物歧化酶(SOD)水平;Western Blot方法檢測自噬相關(guān)蛋白LC3Ⅰ/Ⅱ、Beclin1、P62,以及核因子E2相關(guān)因子2(Nrf2)、蛋白激酶B(Akt)、磷酸化-Akt (p-Akt)、哺乳動物雷帕霉素靶蛋白(mTOR)、磷酸化-mTOR(p-mTOR)等分子的蛋白表達(dá)。此外,取16只WT雄性C57BL/6J小鼠和16只沉默TSLP受體(TSLPR ?/? )小鼠,分為WT小鼠control組、WT小鼠APAP組、TSLPR ?/? 小鼠control組和TSLPR ?/? 小鼠APAP組,每組8只,WT小鼠APAP組和TSLPR ?/? 小鼠APAP組按照400 mg/kg的劑量腹腔注射APAP溶液建模,WT小鼠control組和TSLPR ?/? 小鼠control組注射等體積生理鹽水。檢測4組小鼠血清ALT、AST以及肝組織的MDA含量;Western Blot方法檢測LC3Ⅰ/Ⅱ、Akt、p-Akt的蛋白表達(dá)。計量資料兩組間比較采用成組t檢驗;多組間比較采用單因素方差分析,進(jìn)一步兩兩比較采用LSD-t檢驗。結(jié)果 APAP誘導(dǎo)急性肝損傷小鼠建模成功后,肝臟TSLP的mRNA和蛋白表達(dá)水平較control組均升高(P值均lt;0. 01)。在應(yīng)用rTSLP的研究中,相比于control組,APAP組的ALT、AST明顯升高(P值均lt;0. 001),肝組織HE染色呈現(xiàn)沿中央靜脈放射狀壞死,氧化應(yīng)激指標(biāo)SOD、Nrf2蛋白表達(dá)下降,MDA水平上升(P值均lt;0. 01);而APAP+rTSLP組較APAP組,ALT、AST下降,肝組織壞死面積減小,SOD、Nrf2蛋白表達(dá)升高,MDA下降(P值均lt;0. 05);APAP+rTSLP組與control組相比,LC3Ⅰ/Ⅱ、Beclin1、P62、p-Akt、p-mTOR蛋白表達(dá)差異均有統(tǒng)計學(xué)意義(P值均lt;0. 01)。在應(yīng)用TSLPR ?/? 小鼠的研究中,建模后,TSLPR ?/? 小鼠相較于WT小鼠,ALT、AST、MDA升高,LC3Ⅰ/Ⅱ、p-Akt蛋白表達(dá)下降(P值均lt;0. 01)。結(jié)論 TSLP能夠增加自噬,降低氧化應(yīng)激,從而改善過量APAP引起的急性肝損傷,并且其作用機制可能與PI3K/Akt信號通路的激活和mTOR的抑制有關(guān)。
關(guān)鍵詞: 胸腺基質(zhì)淋巴細(xì)胞生成素; 醋氨酚; 化學(xué)性與藥物性肝損傷; 小鼠, 近交C57BL
基金項目: 廣西壯族自治區(qū)教育廳自然科學(xué)研究項目(2023KY0117); 廣西自然科學(xué)基金(2015GXNSFAA139156)
Mechanism of action of thymic stromal lymphopoietin in a mouse model of acetaminophen-induced acute liver injuryCHEN Wenshang, YIN Mingjing, ZHU Jijin
Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, ChinaCorresponding author: ZHU Jijin, zhujijin63@vip.sina.com (ORCID: 0000-0001-6419-1350)
Abstract: Objective To investigate the role and mechanism of thymic stromal lymphopoietin (TSLP) in a mouse model ofacetaminophen (APAP)-induced acute liver injury. Methods A total of 16 wild-type (WT) male C57BL/6J mice were randomlydivided into control group and APAP group, with 8 mice in each group, and the mice in the APAP group were given intraperitonealinjection of APAP solution at a dose of 400 mg/kg to establish an animal model, while those in the control group were giveninjection of an equal volume of normal saline, with samples collected after 6 hours. An automatic chemical analyzer was used tomeasure the serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST); quantitative real-time PCRwas used to measure the mRNA expression levels of the inflammatory factors tumor necrosis factor-α (TNF-α) and interleukin-6(IL-6) in liver tissue; the kit was used to measure the content of glutathione (GSH) in liver tissue homogenate; quantitative real-time PCR and Western blot were used to measure the transcriptional level and protein expression level of TSLP. Furthermore, 22WT male C57BL/6J mice were randomly divided into control group with 8 mice, APAP group with 8 mice, and APAP+recombination TSLP (rTSLP) group with 6 mice; the mice in the APAP+rTSLP group were given intraperitoneal injection of rTSLPsolution, while those in the control group and the APAP group were given injection of the solvent PBS; after 30 minutes, the micein the APAP+rTSLP group and the APAP group were given injection of APAP solution, while those in the control group were giveninjection of an equal volume of normal saline. The serum levels of ALT and AST were measured; HE staining was used to observethe pathological changes of the liver; kits were used to measure the levels of the oxidative stress indices malondialdehyde (MDA)and superoxide dismutase (SOD) in liver tissue homogenate; Western blot was used to measure the expression levels of theautophagy-related proteins LC3Ⅰ/Ⅱ, Beclin1, and P62 and the molecules such as nuclear factor erythroid 2-related factor 2(Nrf2), protein kinase B (Akt), phosphorylated Akt (p-Akt), mammalian target of rapamycin (mTOR), and phosphorylatedmTOR (p-mTOR). In addition, 16 WT male C57BL/6J mice and 16 TSLP receptor-silenced (TSLPR ?/? ) mice were divided intoWT mouse control group, WT mouse APAP group, TSLPR ?/? mouse control group, and TSLPR ?/? mouse APAP group, with 8 mice ineach group; the mice in the WT mouse APAP group and the TSLPR ?/? mouse APAP group were used for modeling by intraperitonealinjection of APAP solution at a dose of 400 mg/kg, and those in the WT mouse control group and the TSLPR ?/? mouse control groupwere given injection of an equal volume of normal saline. The serum levels of ALT and AST and the content of MDA in liver tissuewere measured for these four groups, and Western blot was used to measure the protein expression levels of LC3Ⅰ/Ⅱ, Akt, and p-Akt. The independent-samples t test was used for comparison of continuous data between two groups; a one-way analysis of variancewas used for comparison between multiple groups, and the least significant difference t-test was used for further comparisonbetween two groups. Results After the mouse model of APAP-induced acute liver injury was established successfully, there weresignificant increases in the mRNA and protein expression levels of TSLP compared with the control group (both Plt;0.01). In thestudy of rTSLP, compared with the control group, the APAP group had significant increases in ALT and AST (both Plt;0.001) andradial necrosis along the central vein observed by HE staining of liver tissue, as well as significant reductions in the proteinexpression levels of the oxidative stress indices SOD and Nrf2 and a significant increase in the level of MDA (all Plt;0.01);compared with the APAP group, the APAP+rTSLP group had significant reductions in ALT and AST, a significant reduction innecrotic area of liver tissue, significant increases in the protein expression levels of SOD and Nrf2, and a significant reduction inMDA (all Plt;0.05); there were significant differences in the protein expression levels of LC3Ⅰ/Ⅱ, Beclin1, P62, p-Akt, and p-mTOR between the APAP+rTSLP group and the control group (all Plt;0.01). In the study of TSLPR -/- mice, compared with the WTmice after modeling, the TSLPR ?/? mice had significant increases in the levels of ALT, AST, and MDA and significant reductionsin the expression levels of LC3Ⅰ/Ⅱ and p-Akt (all Plt;0.05). Conclusion TSLP can increase autophagy, reduce oxidative stress,and thus improve acute liver injury induced by APAP overdose, possibly by activating the PI3K/Akt signaling pathway andinhibiting mTOR.
Key words: Thymic Stromal Lymphopoietin; Acetaminophen; Chemical and Drug Induced Liver Injury; Mice, Inbred C57BLResearch funding: Natural Science Research Project of the Education Department of Guangxi Zhuang Autonomous Region(2023KY0117); Natural Science Foundation of Guangxi Province (2015GXNSFAA139156)
對乙酰氨基酚(acetaminophen, APAP)是最常見的非處方解熱鎮(zhèn)痛藥物,然而,其過量使用是導(dǎo)致急性肝損傷和急性肝衰竭最重要的原因,尤其在西方國家[1-2] ,且尚無特異的治療手段。目前對于APAP誘導(dǎo)肝損傷的發(fā)病機制和治療的認(rèn)識有限[3-4] ,故進(jìn)一步探究新的分子機制和治療靶點尤為重要。胸腺基質(zhì)淋巴細(xì)胞生成素(thymic stromal lymphopoietin, TSLP)是一種由4條短鏈α螺旋束組成的Ⅰ型IL-2家族細(xì)胞因子,與IL-7具有同源性,其在免疫調(diào)節(jié)和促炎調(diào)節(jié)等方面具有重要作用[5] 。TSLP 通過結(jié)合由 IL-7 受體 α 鏈和 TSLP 受體(thymic stromal lymphopoietin receptor, TSLPR)鏈組成的受體復(fù)合物促發(fā)下游信號[6]。研究[7]表明,TSLP在肝臟疾病中具有重要作用,包括良性肝病、肝腫瘤等。TSLP通過PI3K/Akt信號通路保護(hù)肝臟缺血再灌注損傷,其機制是TSLP促進(jìn)自噬的激活[8] ;自噬在APAP誘導(dǎo)的肝損傷中可清除APAP代謝過程中產(chǎn)生的中間毒性產(chǎn)物和受損的細(xì)胞器,從而起到保護(hù)作用[9]。然而,TSLP在APAP引起的肝毒性中的作用機制目前尚不明確。因此,本研究旨在探究TSLP在APAP誘導(dǎo)的急性肝損傷中的作用及其機制,希望能夠為未來的臨床診療提供新的靶點。
1 材料與方法
1. 1 實驗動物 54只野生型(WT)雄性C57BL/6J小鼠分別購于長沙天勤生物公司[動物生產(chǎn)許可證編號:SCKX(湘)2019-0014]和北京維通利華實驗動物技術(shù)有限公司[動物生產(chǎn)許可證編號:SCXK(京)2016-0006]。16只TSLPR基因全敲除(TSLPR ?/? )雄性C57BL/6J小鼠購于賽業(yè)(蘇州)生物科技有限公司[動物生產(chǎn)許可證編號:SCXK(蘇)2020-0006],用于實驗的小鼠均為純合子雌、雄小鼠繁殖得到的8~10周齡1代小鼠。全部小鼠被飼養(yǎng)于廣西醫(yī)科大學(xué)動物實驗中心[動物使用許可證編號:SYXK(桂)2020-0004]。所有小鼠在進(jìn)行實驗操作前需提前一天禁食過夜(16 h)。
1. 2 主要藥品和試劑 APAP購于美國MedChemexpress生物科技公司。外源重組小鼠 TSLP(recombinationmouse TSLP, rTSLP)蛋白購于美國 Ramp;D Systems 公司(貨號555-TS-101)。一抗:TSLP(貨號PA5-20321)購于美國 Invitrogen 公司;GAPDH(貨號 GB11002)、β-actin(貨號GB11001)和P62(貨號GB11239)購于武漢賽維爾生物科技有限公司;LC3(貨號WL01506)、Beclin1(貨號WL02508)、Akt(貨號 WL0003b)、p-Akt(磷酸化 Akt,Ser473)(貨號 WLP001a)、哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)(貨號 WL02477)、p-mTOR(磷酸化 mTOR,Ser2448)(貨號 WL03694)購于沈陽萬類生物科技有限公司;核因子 E2 相關(guān)因子 2(nuclear factor-erythroid 2-related factor 2, Nrf2)(貨 號D221053)購于上海生工生物工程公司。山羊抗兔二抗(貨號ab6702)購于英國Abcam公司。超氧化物歧化酶(superoxide dismutase, SOD)(貨號A001-3-2)、谷胱甘肽(glutathione, GSH)(貨號A006-2-1)、丙二醛(malondialdehyde,MDA)(貨號A003-1-2)檢測試劑盒均訂購于南京建成生物工程研究所。
1. 3 動物分組與處理
1. 3. 1 驗證小鼠肝組織 TSLP表達(dá) 采用隨機數(shù)字表法,將16只WT小鼠隨機分為control組和APAP組,每組8只。APAP組小鼠腹腔注射以生理鹽水為溶劑的APAP溶液,劑量為400 mg/kg;control組小鼠則注射等體積生理鹽水。
1. 3. 2 分析 TSLP 的功能 實驗分為兩部分。第一部分:采用隨機數(shù)字表法,將22只WT小鼠隨機分為3組,分別為control組、APAP組和APAP+rTSLP組,其中control組和APAP組各8只小鼠,APAP+rTSLP組6只小鼠。APAP+rTSLP 組小鼠先腹腔注射無菌 PBS 溶解的 rTSLP 溶液(2 μg/只),而 control組和 APAP組注射 PBS;30 min后,APAP+rTSLP 組和 APAP 組注射 400 mg/kg 劑量的 APAP溶液,control組小鼠則注射等體積生理鹽水。第二部分:采用隨機數(shù)字表法,將16只WT小鼠和16只TSLPR ?/? 小鼠分為 4 組,分別為 WT 小鼠 control 組、WT 小鼠 APAP組、TSLPR ?/? 小鼠control組和TSLPR ?/? 小鼠APAP組,每組8只。WT小鼠APAP組和TSLPR ?/? 小鼠APAP組按照400 mg/kg劑量腹腔注射APAP溶液,WT小鼠control組和 TSLPR ?/? 小鼠 control組則注射等體積生理鹽水。以上所有小鼠應(yīng)用APAP或生理鹽水6 h后,在麻醉下被解剖胸腹腔,用心臟采血法采集血液后收集肝臟。
1. 4 血清樣本 采集的小鼠血液靜置離心后提取血清,在本院檢驗科通過全自動化學(xué)分析儀檢測小鼠血清ALT、AST水平。
1. 5 肝組織病理學(xué) 留取部分新鮮肝組織并用含4%多聚甲醛的固定液浸泡過夜,用于 HE染色,經(jīng)乙醇脫水、二甲苯透明、石蠟包埋、切片(片厚5 μm)。常規(guī)HE染色、中性樹膠封片后,光鏡下觀察肝組織的病理表現(xiàn)。應(yīng)用Image J軟件量化肝組織的壞死面積。
1. 6 實時定量PCR 采用Trizol法提取RNA,將所有提取的RNA樣品濃度定量在1 000 ng/μL,逆轉(zhuǎn)錄為cDNA,之后進(jìn)行擴增反應(yīng),選取 GAPDH 作為內(nèi)參基因,通過2 ???Ct 方法計算相應(yīng)基因的相對表達(dá)水平。相關(guān)引物信息見表1。
1. 7 Western Blot檢測 利用PIRA組織裂解液提取肝組織總蛋白,采用BCA法測定蛋白水平。每個樣本分別取50 μg蛋白,用12%聚丙烯酰胺凝膠電泳,然后轉(zhuǎn)移至PVDF膜。用5%脫脂牛奶室溫下封閉PVDF膜1 h,然后分別置于相應(yīng)的一抗溶液中,4 ℃下孵育過夜。所有抗體稀釋濃度均為1∶1 000。次日,TBST緩沖液洗膜5次后,將膜置于辣根過氧化物酶結(jié)合的二抗中,室溫下孵育1 h。采用化學(xué)發(fā)光凝膠成像系統(tǒng)(美國ProteinSimple公司)掃描,然后應(yīng)用Image J軟件評估和量化蛋白條帶。
1. 8 氧化應(yīng)激相關(guān)指標(biāo)的檢測 按照說明書操作,使用相應(yīng)的試劑盒檢測小鼠肝組織中 GSH、MDA、SOD水平。
1. 9 統(tǒng)計學(xué)方法 采用 GraphPad Prism 9. 0軟件進(jìn)行統(tǒng)計學(xué)分析。計量資料以 x ˉ ±s表示,兩組間比較采用成組t檢驗;多組間比較采用單因素方差分析,進(jìn)一步兩兩比較采用LSD-t檢驗。Plt;0. 05為差異有統(tǒng)計學(xué)意義。
2 結(jié)果
2. 1 過量APAP對小鼠肝功能、肝臟炎癥及TSLP表達(dá)的影響 分組方法如1. 3. 1節(jié)所述。與control組相比,APAP組肝損傷標(biāo)志物血清 ALT、AST和肝組織炎癥因子IL-6、TNF-α的表達(dá)明顯升高,而肝組織GSH含量明顯降低(P值均lt;0. 001);在建模成功的基礎(chǔ)上,小鼠肝組織的TSLP蛋白和mRNA表達(dá)較control組顯著升高(P值均lt;0. 01)(圖1)。
2. 2 rTSLP對 APAP 作用小鼠的血清肝酶和肝組織病理的影響 分組方法如 1. 3. 2 節(jié)第一部分實驗所述。
APAP 組血清 ALT、AST 較 control 組升高,APAP+rTSLP組血清ALT、AST較APAP組降低,差異均有統(tǒng)計學(xué)意義(P值均lt;0. 05)(圖2a、b)。在過量APAP的作用下,小鼠肝組織HE染色表現(xiàn)為沿著中央靜脈放射狀壞死,而在應(yīng)用APAP前給予rTSLP能夠明顯改善上述病理損傷(Plt;0. 01)(圖2c)。
2. 3 rTSLP對小鼠肝臟氧化應(yīng)激的影響 分組方法如1. 3. 2節(jié)第一部分實驗所述。相比于control組,APAP組小鼠肝臟MDA水平升高,SOD和Nrf2水平下降;與APAP組比較,APAP+rTSLP 組 MDA水平降低,SOD和 Nrf2水平上升,差異均有統(tǒng)計學(xué)意義(P值均lt;0. 05)(圖3)。
2. 4 rTSLP對小鼠自噬發(fā)生的影響 分組方法如1. 3. 2節(jié)第一部分實驗所述。LC3 Ⅰ/Ⅱ、Beclin1、P62是表明自噬發(fā)生的重要蛋白。APAP+rTSLP 組與 control 組相比,LC3 Ⅰ/Ⅱ、Beclin1、P62的表達(dá)差異均有統(tǒng)計學(xué)意義(P值均lt;0. 01)(圖4)。
2. 5 rTSLP對小鼠肝臟PI3K/Akt信號通路和mTOR信號通路活化的影響 分組方法如 1. 3. 2 節(jié)第一部分實驗所述。APAP+rTSLP 組與 control 組相比,p-Akt/Akt 和 p-mTOR/mTOR差異均有統(tǒng)計學(xué)意義(P值均lt;0. 01)(圖5)。
2. 6 TSLPR ?/? 小鼠與WT小鼠建模后的比較 分組方法如1. 3. 2節(jié)第二部分實驗所述。相比于WT小鼠APAP組,TSLPR -/- 小鼠APAP組ALT、AST、MDA水平均明顯升高,自噬蛋白LC3 Ⅰ/Ⅱ表達(dá)顯著降低(P值均lt;0. 01);就PI3K/Akt信號通路而言,Akt活化程度更低(Plt;0. 01)(圖6)。
3 討論
TSLP主要由上皮細(xì)胞分泌,其在炎癥、自身免疫性疾病、腫瘤中具有非常重要的作用。雖然TSLP是過敏性因子,但有研究[10] 發(fā)現(xiàn),TSLP在許多非過敏性疾病的病理生理過程中亦發(fā)揮了作用。
TSLP在肝臟中表達(dá)豐富,尤其是肝細(xì)胞,在HCV感染導(dǎo)致慢性丙型肝炎伴冷球蛋白血癥患者的肝臟中,TSLP由肝細(xì)胞和角質(zhì)細(xì)胞分泌,并且其促進(jìn)疾病的進(jìn)展[11] 。Li等 [8] 對TSLP在肝臟缺血再灌注損傷中的作用進(jìn)行了研究,初步檢測到rTSLP的應(yīng)用可能會降低APAP誘導(dǎo)急性肝損傷小鼠的血清ALT水平,但其作用機制尚未得知。刀豆球蛋白 A(Concanavalin A, ConA)也是一種常見的導(dǎo)致肝損傷的藥物,在其誘導(dǎo)的肝損傷中,TSLP/TSLPR信號可加重肝毒性[12]。ConA與APAP誘導(dǎo)的肝損傷均為藥物誘導(dǎo)的肝臟無菌性炎癥,但TSLP在兩者中所起的作用卻截然相反,為此,本研究對TSLP在APAP 引起的肝毒性中的作用予以進(jìn)一步探討。在ConA誘導(dǎo)的肝損傷中,TSLP和IL-4在肝臟可能相互作用形成前饋的炎性級聯(lián)反應(yīng),從而促進(jìn)嗜酸性粒細(xì)胞在肝臟的分布,并且TSLP通過作用于不同亞型的粒細(xì)胞促進(jìn)輔助性T淋巴細(xì)胞2應(yīng)答而調(diào)節(jié)肝損傷[12] 。TSLP在過量APAP誘導(dǎo)的肝損傷小鼠中起到保護(hù)作用,主要是因為 TSLP 對自噬的進(jìn)一步誘導(dǎo)。氧化應(yīng)激損傷是APAP肝毒性的中心機制,而自噬在APAP誘導(dǎo)的急性肝損傷中作為保護(hù)機制,可清除細(xì)胞內(nèi)受損的細(xì)胞器和導(dǎo)致細(xì)胞損傷的有害物質(zhì),從而改善細(xì)胞組織的氧化應(yīng)激程度,保護(hù)肝臟免受APAP引起的氧化應(yīng)激損傷[13]。
Nrf2是機體重要的抗氧化保護(hù)機制分子,參與藥物代謝解毒[14] 。在過量APAP導(dǎo)致的肝損傷中,Nrf2有助于降低 APAP 代謝過程的高反應(yīng)性中間代謝物的毒性[15-16] ,因此能夠活化Nrf2的激動劑,這也許會成為保護(hù)肝細(xì)胞免受 APAP損傷的潛在靶點[17] 。Nrf2為轉(zhuǎn)錄因子,其下游包括醌氧化還原酶1、血紅素加氧酶1等,因此這些分子組成也被稱為Nrf2抗氧化應(yīng)答元件[18] 。在本研究中,rTSLP蛋白能夠提升應(yīng)用過量 APAP注射的小鼠肝組織 Nrf2 的表達(dá),改善氧化應(yīng)激程度,因此rTSLP可提升APAP誘導(dǎo)的急性肝損傷小鼠模型的抗氧化能力。
mTOR蛋白是磷酸肌醇3激酶相關(guān)激酶家族的一個進(jìn)化保守的絲氨酸/蘇氨酸(Ser/Thr)激酶,其包括兩個不同的信號復(fù)合物,即mTOR復(fù)合物(mTORC)1和mTORC2,mTOR通過調(diào)節(jié)自噬相關(guān)蛋白和溶酶體生物合成,在自噬過程中發(fā)揮負(fù)調(diào)節(jié)作用[19] 。本研究結(jié)果亦顯示,APAP+rTSLP組的自噬發(fā)生相較于control組明顯增加,而p-mTOR的表達(dá)降低。
TSLP能夠誘導(dǎo)Akt磷酸化而影響細(xì)胞凋亡、增殖、生長和生存。PI3K/Akt信號通路在APAP誘導(dǎo)的肝損傷中是一種保護(hù)性的信號通路[20] 。有研究 [8] 證明,TSLP能磷酸化活化Akt,與自噬的誘導(dǎo)相關(guān)。本研究顯示,在過量APAP誘導(dǎo)的肝毒性中,就PI3K/Akt信號通路而言,腹腔注射rTSLP蛋白的小鼠肝組織自噬發(fā)生和p-Akt表達(dá)較APAP小鼠有升高趨勢;沉默了TSLPR基因的小鼠相較于 WT小鼠而言,在建模后肝組織的 p-Akt表達(dá)下調(diào),此時,表征自噬發(fā)生的蛋白LC3 Ⅰ/Ⅱ水平亦降低。
然而,PI3K/Akt信號通路和mTOR信號通路在APAP肝損傷中的關(guān)系還有待進(jìn)一步驗證。已有多項研究[21-22]表明,PI3K/Akt信號通路活化時能夠促進(jìn)mTOR的磷酸化,PI3K/Akt信號磷酸化增強時,能夠使mTOR的磷酸化水平升高,自噬發(fā)生水平下降,而本研究表明,APAP+rTSLP組小鼠肝臟中自噬發(fā)生較control組增加,同時p-Akt表達(dá)升高,而p-mTOR的表達(dá)降低,這與之前的研究不一致。因此,在過量APAP誘導(dǎo)的急性肝損傷小鼠中,PI3K/Akt對于mTOR的作用可能不是主要的,并不能影響自噬的發(fā)生,該信號通路可能有其他作用機制,例如增加重要的抗氧化因子Nrf2的表達(dá)[23],其中的機制還有待進(jìn)一步探究。
綜上所述,本研究通過小鼠在體實驗表明TSLP能夠增加自噬,降低氧化應(yīng)激,從而改善過量APAP引起的急性肝損傷,并且其作用機制可能與PI3K/Akt信號通路的激活和mTOR的抑制相關(guān),為進(jìn)一步發(fā)現(xiàn)APAP誘導(dǎo)肝損傷的診療靶點提供了理論基礎(chǔ),也擴展了關(guān)于TSLP在肝臟無菌性炎癥領(lǐng)域的認(rèn)識。
倫理學(xué)聲明: 本研究方案于2021年2月1日經(jīng)由廣西醫(yī)科大學(xué)動物實驗中心實驗動物倫理委員會審批,批號:202005022,符合實驗室動物管理與使用準(zhǔn)則。
利益沖突聲明: 本文不存在任何利益沖突。
作者貢獻(xiàn)聲明: 陳文賞負(fù)責(zé)課題設(shè)計,資料分析,撰寫論文;尹明景參與收集數(shù)據(jù),修改論文;朱繼金負(fù)責(zé)擬定寫作思路,指導(dǎo)撰寫文章并最后定稿。
參考文獻(xiàn):
[1] GROENEVELD D, CLINE-FEDEWA H, BAKER KS, et al. Von Will?ebrand factor delays liver repair after acetaminophen-induced acuteliver injury in mice[J]. J Hepatol, 2020, 72(1): 146-155. DOI: 10.1016/j.jhep.2019.09.030.
[2] ZHANG R, ZHANG F. Analysis of clinical misdiagnosis of drug?in?duced liver injury induced by acetaminophen[J]. Clin Misdiagn Mis?ther, 2023, 36(5): 15-18. DOI: 10.3969/j.issn.1002-3429.2023.05.004.張蕊, 張芳. 對乙酰氨基酚致藥物性肝損傷臨床誤診分析[J]. 臨床誤診誤治, 2023, 36(5): 15-18. DOI: 10.3969/j.issn.1002-3429.2023. 05.004.
[3] RAMACHANDRAN A, JAESCHKE H. A mitochondrial journey throughacetaminophen hepatotoxicity[J]. Food Chem Toxicol, 2020, 140:111282. DOI: 10.1016/j.fct.2020.111282.
[4] CHEN WS, ZHU JJ, LI SL. C-Jun N-terminal kinase signaling path?way in acetaminophen-induced liver injury[J]. Chin Crit Care Med,2023, 35(11): 1223-1228. DOI: 10.3760/cma.j.cn121430-20221205-01060.陳文賞, 朱繼金, 李仕來. 對乙酰氨基酚致急性肝損傷中的c-Jun氨基末端激酶信號通路[J]. 中華危重病急救醫(yī)學(xué), 2023, 35(11): 1223-1228.DOI: 10.3760/cma.j.cn121430-20221205-01060.
[5] HE R, GEHA RS. Thymic stromal lymphopoietin[J]. Ann N Y AcadSci, 2010, 1183: 13-24. DOI: 10.1111/j.1749-6632.2009.05128.x.
[6] VARRICCHI G, PECORARO A, MARONE G, et al. Thymic stromallymphopoietin isoforms, inflammatory disorders, and cancer[J]. FrontImmunol, 2018, 9: 1595. DOI: 10.3389/fimmu.2018.01595.
[7] CHEN WS, ZHU JJ, LI SL. Role of thymic stromal lymphopoietin inliver diseases[J]. J Clin Hepatol, 2022, 38(5): 1175-1178. DOI: 10.3969/j.issn.1001-5256.2022.05.042.陳文賞, 朱繼金, 李仕來. 胸腺基質(zhì)淋巴細(xì)胞生成素在肝臟疾病中的作用[J]. 臨床肝膽病雜志, 2022, 38(5): 1175-1178. DOI: 10.3969/j.issn.1001-5256.2022.05.042.
[8] LI SL, YI ZJ, DENG MH, et al. TSLP protects against liver I/R injuryvia activation of the PI3K/Akt pathway[J]. JCI Insight, 2019, 4(22):e129013. DOI: 10.1172/jci.insight.129013.
[9] CHAO XJ, WANG H, JAESCHKE H, et al. Role and mechanisms of autophagy in acetaminophen-induced liver injury[J]. Liver Int, 2018,38(8): 1363-1374. DOI: 10.1111/liv.13866.
[10] YING GQ, ZHANG YL, TANG GQ, et al. Functions of thymic stromallymphopoietin in non-allergic diseases[J]. Cell Immunol, 2015, 295(2): 144-149. DOI: 10.1016/j.cellimm.2015.03.006.
[11] SANSONNO D, RUSSI S, SANSONNO S, et al. Thymic stromal lym?phopoietin in hepatitis C virus-related cryoglobulinemic vasculitis:Gene expression level and protein distribution[J]. Arthritis Res Ther,2015, 17(1): 62. DOI: 10.1186/s13075-015-0581-x.
[12] PROCTOR WR, CHAKRABORTY M, FULLERTON AM, et al. Thymicstromal lymphopoietin and interleukin-4 mediate the pathogenesisof halothane-induced liver injury in mice[J]. Hepatology, 2014, 60(5): 1741-1752. DOI: 10.1002/hep.27169.
[13] ZHONG CC, ZHAO T, HOGSTRAND C, et al. Copper (Cu) inducedchanges of lipid metabolism through oxidative stress-mediated au?tophagy and Nrf2/PPARγ pathways[J]. J Nutr Biochem, 2022, 100:108883. DOI: 10.1016/j.jnutbio.2021.108883.
[14] FAN XY, WANG LD, HUANG JB, et al. Pterostilbene reduces acet?aminophen-induced liver injury by activating the Nrf2 antioxidative de?fense system via the AMPK/Akt/GSK3β pathway[J]. Cell Physiol Bio?chem, 2018, 49(5): 1943-1958. DOI: 10.1159/000493655.
[15] CHAN K, HAN XD, KAN YW. An important function of Nrf2 in com?bating oxidative stress: Detoxification of acetaminophen[J]. ProcNatl Acad Sci U S A, 2001, 98(8): 4611-4616. DOI: 10.1073/pnas.081082098.
[16] ENOMOTO A, ITOH K, NAGAYOSHI E, et al. High sensitivity of Nrf2knockout mice to acetaminophen hepatotoxicity associated with de?creased expression of ARE-regulated drug metabolizing enzymesand antioxidant genes[J]. Toxicol Sci, 2001, 59(1): 169-177. DOI: 10.1093/toxsci/59.1.169.
[17] CHOWDHURY A, NABILA J, ADELUSI TEMITOPE I, et al. Currentetiological comprehension and therapeutic targets of acetaminophen-induced hepatotoxicity[J]. Pharmacol Res, 2020, 161: 105102. DOI:10.1016/j.phrs.2020.105102.
[18] YI ZJ, DENG MH, SCOTT MJ, et al. Immune-responsive gene 1/ita?conate activates nuclear factor erythroid 2-related factor 2 in hepato?cytes to protect against liver ischemia-reperfusion injury[J]. Hepa?tology, 2020, 72(4): 1394-1411. DOI: 10.1002/hep.31147.
[19] WANG XY, WEI ZQ, JIANG YF, et al. mTOR signaling: The interfacelinking cellular metabolism and hepatitis B virus replication[J]. VirolSin, 2021, 36(6): 1303-1314. DOI: 10.1007/s12250-021-00450-3.
[20] WANG Z, HAO WN, HU JN, et al. Maltol improves APAP-inducedhepatotoxicity by inhibiting oxidative stress and inflammation re?sponse via NF-κB and PI3K/Akt signal pathways[J]. Antioxidants(Basel), 2019, 8(9): 395. DOI: 10.3390/antiox8090395.
[21] YANG HQ, WANG H, LIU YB, et al. The PI3K/Akt/mTOR signalingpathway plays a role in regulating aconitine-induced autophagy inmouse liver[J]. Res Vet Sci, 2019, 124: 317-320. DOI: 10.1016/j.rvsc.2019.04.016.
[22] XIU AY, DING Q, LI Z, et al. Doxazosin attenuates liver fibrosis by in?hibiting autophagy in hepatic stellate cells via activation of the PI3K/Akt/mTOR signaling pathway[J]. Drug Des Devel Ther, 2021, 15:3643-3659. DOI: 10.2147/DDDT.S317701.
[23] PALLIYAGURU DL, CHARTOUMPEKIS DV, WAKABAYASHI N, et al.Withaferin A induces Nrf2-dependent protection against liver injury:Role of Keap1-independent mechanisms[J]. Free Radic Biol Med,2016, 101: 116-128. DOI: 10.1016/j.freeradbiomed.2016.10.003.
收稿日期:2024-05-23;錄用日期:2024-08-14
本文編輯:葛俊