亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        對蝦腸道微生物響應(yīng)部分環(huán)境脅迫的研究進展

        2025-02-23 00:00:00李海玥張懷東
        黑龍江水產(chǎn) 2025年1期

        摘" 要:對蝦在養(yǎng)殖過程中會遇到各種環(huán)境脅迫因素,包括重金屬污染、病原體感染及其他污染等。面對這些脅迫,除了對蝦自身外,其體內(nèi)的腸道微生物也會做出相應(yīng)響應(yīng)。腸道菌群不僅具有指示宿主健康狀況的作用,經(jīng)過調(diào)節(jié)后還可以提升對蝦免疫力、促進對蝦生長。對腸道菌群的研究還能加強對疾病的理解,從而制定更有效的對蝦病害防治手段。

        關(guān)鍵詞:腸道微生物;環(huán)境污染;對蝦養(yǎng)殖

        中圖分類號:S945.1文獻標志碼:A

        作為世界對蝦養(yǎng)殖第一大國,中國的水產(chǎn)養(yǎng)殖產(chǎn)量占世界水產(chǎn)養(yǎng)殖總產(chǎn)量的60%以上[1]。中國的對蝦養(yǎng)殖業(yè)占有十分重要的經(jīng)濟地位。近年來對蝦養(yǎng)殖規(guī)模擴大化,養(yǎng)殖環(huán)境逐步惡化,對蝦面臨的環(huán)境脅迫因素越來越多,養(yǎng)殖業(yè)損失加劇。對蝦的消化系統(tǒng)由消化道和消化腺組成。消化道包括前腸、中腸、后腸以及肛門;消化腺主要指肝胰腺。腸道不僅是對蝦重要的消化器官——能夠消化吸收營養(yǎng)物質(zhì)、與外界進行物質(zhì)交換,也是必不可少的免疫器官。腸道具有面積可觀的黏膜,上皮細胞彼此緊密連接,還能分泌豐富的生物活性物質(zhì)。除了這些結(jié)構(gòu)基礎(chǔ),腸道中還存在著與宿主互惠共生的大量微生物。腸道微生物與宿主的腸道環(huán)境構(gòu)成一個復(fù)雜的微生態(tài)系統(tǒng),對生物體各種生理狀態(tài)的調(diào)節(jié)起著至關(guān)重要的作用[2-3]。腸道免疫系統(tǒng)由三大屏障組成,包括腸黏膜細胞構(gòu)成的機械屏障、腸道免疫細胞及其分泌物構(gòu)成的免疫屏障和腸道正常菌群構(gòu)成的生物屏障[4]。有研究表明,腸道菌群與宿主對蝦的健康狀況息息相關(guān)[5-7]。

        1 重金屬污染

        腸道作為接觸重金屬的器官,腸道微生物在重金屬解毒中起著重要作用。LIU等報道利用腸道微生物可以減少重金屬毒性[8]?,F(xiàn)介紹鎘、鉛、鈷、銅等重金屬的影響。

        DUAN等人研究了鎘和鉛暴露對南美白對蝦腸道微生物群落的毒性作用,發(fā)現(xiàn)共有四十個細菌門的豐度發(fā)生了波動,鎘和鉛暴露改變了微生物多樣性,群落組成和代謝功能,進而誘導腸道微生物群變異[9]。LIU等人使用表面展示具有鎘結(jié)合潛力的肽的大腸桿菌,研究了對蝦體內(nèi)鎘積累的變化,發(fā)現(xiàn)實驗組和對照組的鎘元素敏感菌群數(shù)量有變化:在門水平上,對照組蝦腸道中的主要細菌群落是擬桿菌、變形桿菌、疣微菌和厚壁菌。鎘處理組的變形桿菌增加,擬桿菌減少。證明了該全細胞吸附劑能夠減輕鎘暴露引起的蝦腸道微生物群落結(jié)構(gòu)的變化[10]。CHEN等人研究了水性鈷對甲殼動物的危害,證明鈷脅迫會干擾南美白對蝦腸道微生物群的組成和功能。在組成上機會致病菌弧菌的豐度顯著增加,功能上氨基酸代謝、脂質(zhì)代謝和碳水化合物代謝顯著降低等[11]。QIAN等人研究了長期水性銅暴露對南美白對蝦的毒性,發(fā)現(xiàn)1 mg/L的Cu2+可以降低腸道微生物群和KEGG代謝途徑的豐度,抑制腸道微生物的氨基酸代謝功能[12]。

        鎘、鉛、鈷、銅等重金屬對南美白對蝦腸道菌群的影響類似,主要體現(xiàn)在多樣性和代謝功能的變化上。擬桿菌、變形桿菌、厚壁菌、放線菌和疣微菌是對蝦腸道中的優(yōu)勢菌,重金屬暴露后機會致病菌豐度顯著增加,有益菌群也有所變化。在代謝上,主要是氨基酸代謝、脂質(zhì)代謝和碳水化合物代謝等代謝途徑受到重金屬抑制。除此之外,有益細菌也會產(chǎn)生一些有利于對蝦生長發(fā)育的次生代謝物,如紅細菌科(Rhodobacteraceae)可以合成維生素B12[13]。

        2 病原體感染

        對蝦養(yǎng)殖中的常見病原有對蝦血細胞虹彩病毒、白斑綜合征病毒、傳染性皮下及造血組織壞死病毒、急性肝胰腺壞死病致病性副溶血弧菌、蝦肝腸胞蟲、對蝦偷死野田村病毒、桃拉綜合征病毒和黃頭病毒等。

        目前研究較多的是對蝦血細胞虹彩病毒、白斑綜合征病毒和蝦肝腸胞蟲等病原對對蝦腸道菌群的影響。HE等人發(fā)現(xiàn)對蝦血細胞虹彩病毒能與有害細菌(光桿菌和弧菌等)協(xié)同作用,促進Warburg效應(yīng)并誘導代謝重編程,引起繼發(fā)性細菌感染[14]。JATUYSPORN等人發(fā)現(xiàn),白斑綜合征病毒感染黑虎蝦后,門水平上變形桿菌顯著增加,屬水平上發(fā)光桿菌豐度顯著增加,種水平上美人魚發(fā)光桿菌(Photobacterium damselae )最多。免疫和免疫相關(guān)基因的轉(zhuǎn)移可以改變蝦腸道中的細菌組成,證明了宿主-微生物群相互作用在理解疾病方面的重要性[15]。LPEZ等人[16]發(fā)現(xiàn)蝦肝腸胞蟲感染南美白對蝦后,細菌假單胞菌屬(Pseudomonas)和真菌長西氏酵母(Naganishia)數(shù)量最多,不同的細菌和真菌屬可以在不同的疾病階段發(fā)現(xiàn),說明微生物豐度與疾病階段有關(guān)。慢性感染會逐漸惡化微生物群落及其功能,導致致病性和機會性微生物的暴發(fā)。CHANG等人對感染致病性和非致病性副溶血性弧菌(Vibrio parahaemolyticus,Vp)的南美白對蝦進行研究后發(fā)現(xiàn)[17]:短期內(nèi)只能引起急性肝胰腺壞死?。ˋcute hepatopancreatic necrosis disease,AHPND)的非致病性副溶血性弧菌(Vp)會影響蝦腸道菌群,使發(fā)光桿菌屬(Photobacterium)和弧菌屬(Vibrio)增加。長期則兩者都會使腸道菌群的生物多樣性下降。

        3 其他環(huán)境脅迫

        面對細菌等生物脅迫時,養(yǎng)殖戶常常會使用抗生素進行預(yù)防與治療。由于抗生素濫用,無論是養(yǎng)殖對蝦,還是野生對蝦,體內(nèi)都能檢測到一定的抗生素殘留。經(jīng)過食物鏈的富集,抗生素的殘留量會進一步增加,最終危害人體健康。目前,抗生素抗性基因在水產(chǎn)養(yǎng)殖生態(tài)系統(tǒng)中高度傳播[18-19],應(yīng)加以重視。南美白對蝦通常在低鹽度水中飼養(yǎng),低鹽度使對蝦更易患病,抗生素使用率隨之增加。因此,人工養(yǎng)殖的對蝦腸道微生物受到低鹽度和抗生素殘留兩方面的影響?;前访顾睾吐让顾爻S糜谒a(chǎn)養(yǎng)殖,CHEN等人對這兩種抗生素對南美白對蝦的影響進行了研究。研究發(fā)現(xiàn),與對照組相比,低鹽度組擬桿菌豐度較高,藍藻比例降低。低鹽度抗生素添加組的疣微菌豐度下降,潛在益生菌紅細菌科和假單胞菌減少,機會致病菌氣單胞菌增加[20]。長期低鹽度和抗生素共同暴露改變了腸道微生物群的多樣性,增加了機會性病原體,使對蝦的腸道屏障功能和消化功能受損。另一方面,在自然環(huán)境中,野生對蝦也會由于全球水循環(huán)遭受抗生素脅迫。

        環(huán)境污染為對蝦帶來了許多環(huán)境脅迫,除了重金屬污染與抗生素殘留外,還有塑料等污染。在對蝦養(yǎng)殖過程中,塑料薄膜和尼龍線等塑料制品隨處可見,這增加了微塑料暴露的機會。納米塑料短期暴露使對蝦腸道微生物特征發(fā)生顯著變化,但是在一段時間后該變化消失[21]。LI等人發(fā)現(xiàn)對蝦攝入的微塑料主要存在于腸道,微塑料暴露顯著增加了腸道微生物多樣性,對蝦生長速度下降[22]。ZHU等人[23]發(fā)現(xiàn)納米塑料作用后,弧菌屬, 發(fā)光桿菌屬(Photobacterium spp.), 黃色海水菌屬和不動桿菌屬(Acinetobacter spp.)豐度增加,亞硫酸桿菌屬(Sulfitobacter spp.)和假交替單胞菌屬(Pseudoalteromonas spp.)豐度減少。

        4 總結(jié)與展望

        健康對蝦的腸道微生物主要由擬桿菌、變形桿菌、疣微菌和厚壁菌等組成。在正常環(huán)境中,腸道菌群會隨著宿主蝦的生長發(fā)育發(fā)生變化,這一動態(tài)過程可以分為三個階段,改變喂食的日糧成分會影響宿主的體重[24]。在面對環(huán)境脅迫時,腸道菌群的動態(tài)波動會更加顯著。希瓦氏菌(Shewanella)、氣單胞菌和不動桿菌等是機會致病菌[20]。受到不利環(huán)境條件脅迫時,機會致病菌的豐度會增加,進而引起繼發(fā)性感染。在不同脅迫條件下,有益菌群的變化不同。有益菌群的有益之處主要在于其特殊的代謝功能。疣微菌(Verrucomicobia)可以降解多糖,幫助消化飼料纖維[25]。沈氏菌(Shimia)具有水解幾丁質(zhì)或殼聚糖并降解芳香族化合物的潛在代謝能力[26]。潘多拉菌(Pandoraea)能夠降解木質(zhì)素[27]。 除了這些原核微生物外,對蝦腸道菌群中還存在真核微生物。腸道真核生物群落的變化與消化酶活性呈正相關(guān),進而可以影響蝦生長性能[28]

        微生物組分與宿主的特定功能密切相關(guān),其調(diào)節(jié)已被用于改善蝦的健康、生長性能和抗病能力,以提高產(chǎn)量[16]。補充β-1,3-葡聚糖可以調(diào)節(jié)腸道菌群的穩(wěn)態(tài),抑制腸道炎癥反應(yīng),提高機體免疫功能和抗氧化能力[29]。補充益生菌可以調(diào)節(jié)免疫系統(tǒng),增加胃腸道穩(wěn)定性,分泌抗菌化合物,與病原體競爭以防止腸道粘連,競爭病原體生存所需的營養(yǎng)并產(chǎn)生抗毒素作用[30]。腸道菌群除了可以應(yīng)對環(huán)境脅迫外,還可以對環(huán)境脅迫起到指示作用。LU等人[31]利用腸道微生物設(shè)計了一個診斷模型,能夠準確診斷AHPND的初始、進展或死亡階段,準確率達到86.5%。除了文章中詳細提到的這些外,對蝦養(yǎng)殖過程中還會面臨溫度、溶解氧、氨氮、鹽度、饑餓等脅迫。對對蝦腸道菌群進行研究能夠更好地對抗這些脅迫,增加經(jīng)濟效益。

        參考文獻:

        [1]CHEN Minglong, JIN Meng, TAO Peiran, et al. Assessment of microplastics derived from mariculture in Xiangshan Bay, China[J].Environmental Pollution,2018,242(Pt B):1146-1156.

        [2]張家松,段亞飛,張真真,等.對蝦腸道微生物菌群的研究進展[J].南方水產(chǎn)科學,2015,11(6):114-119.

        [2]ZHANG Jiasong, DUAN Yafei, ZHANG Zhenzhen, et.al. Research progress of intestinal microbial flora in shrimp[J].South China Fisheries Science, 2015,11(6):114-119.

        [3]ZHANG Siyuan, SUN Xumei. Core Gut Microbiota of Shrimp Function as a Regulator to Maintain Immune Homeostasis in Response to WSSV Infection[J].Microbiology Spectrum,2022,10(2):e0246521.

        [4]鄭曉婷,段亞飛,董宏標,等.甲殼動物腸道免疫系統(tǒng)的研究進展[J].海洋湖沼通報,2016(3):83-90.

        [5]吳金鳳,熊金波,王欣,等.腸道菌群對凡納濱對蝦健康的指示作用[J].應(yīng)用生態(tài)學報,2016,27(2):611-621.

        [4]ZHENG Xiaoting, DUAN Yafei, DONG Hongbiao, et.al. Progress on Gut Mucosal Immunization of Crustacean[J].Transactions of Oceanology and Limnology,2016(3):83-90.

        [5]WU Jinfeng, XIONG Jinbo, WANG Xin, et.al. Intestinal bacterial community is indicative for the healthy status of Litopenaeus vannamei[J].Chinese Journal of Applied Ecology,2016, 27(2):611-621.

        [6]HUANG Fei, PAN Luqing, SONG Mengsi, et al. Microbiota assemblages of water, sediment, and intestine and their associations with environmental factors and shrimp physiological health[J]. Applied Microbiology and Biotechnology,2018,102(19): 8585-8598.

        [7]SUN Fulin, WANG Chunzhong, CHEN Lijuan, et al. The intestinal bacterial community of healthy and diseased animals and its association with the aquaculture environment[J].Applied Microbiology and Biotechnology,2020,104(2):775-783.

        [8]LIU Minrui, LU Xia, KHAN A ,et al. Reducing methylmercury accumulation in fish using Escherichia coli with surface-displayed methylmercury-binding peptides[J].Journal of Hazardous Materials,2019,367:35-42.

        [9]DUAN Yafei, WANG Yun, HUANG Jianhua, et al. Toxic effects of cadmium and lead exposure on intestinal histology, oxidative stress response, and microbial community of Pacific white shrimp Litopenaeus vannamei[J]. Marine Pollution Bulletin,2021,167:112220.

        [10]LIU Minrui, QI Xing-e, HAN Jiangyuan, et al.Reducing cadmium accumulation in shrimp using Escherichia coli with surface-displayed peptide[J].Ecotoxicology and Environmental Safety,2023,256:114858.

        [11]CHEN Chengzhuang, XU Chang, QIAN Dunwei, et al. Growth and health status of pacific white shrimp, Litopenaeus vannamei, exposed to chronic water born cobalt[J].Fish and Shellfish Immunology,2020,100:137-145.

        [12]QIAN Dunwei, XU Chang, CHEN Chengzhuang, et al. Toxic effect of chronic waterborne copper exposure on growth, immunity, anti-oxidative capacity and gut microbiota of Pacific white shrimp Litopenaeus vannamei[J]. Fish and Shellfish Immunology,2020,100:445-455.

        [13]XIONG Jinbo, DAI Wenfang, ZHU Jinyong, et al. The Underlying Ecological Processes of Gut Microbiota Among Cohabitating Retarded, Overgrown and Normal Shrimp[J].Microbial Ecology,2017,73(4):988-999.

        [14]HE Zihao, ZHONG Yunqi, LIAO Minze, et al. Integrated analysis of intestinal microbiota and metabolomic reveals that Decapod iridescent virus 1 (DIV1) infection induces secondary bacterial infection and metabolic reprogramming in Marsupenaeus japonicus[J].Frontiers in Immunology, 2022,13:982717.

        [15]JATUYSPORN T, LAOHAWUTTHICHAI P, ROMO J P O, et al. White spot syndrome virus impact on the expression of immune genes and gut microbiome of black tiger shrimp Penaeus monodon[J].Scientific Reports, 2023,13(1):996.

        [16]LPEZ C J A, CRUZ F R, DHAR A K. The emerging pathogen Enterocytozoon hepatopenaei drives a degenerative cyclic pattern in the hepatopancreas microbiome of the shrimp (Penaeus vannamei) [J].Scientific Reports,2022,12(1):14766.

        [17]CHANG Yiting, KO Haoting, WU Pinglun,et al. Gut microbiota of Pacific white shrimp (Litopenaeus vannamei) exhibits distinct responses to pathogenic and non-pathogenic Vibrio parahaemolyticus[J]. Microbiology Spectrum,2023,11(5):e0118023.

        [18]LU Jiaqi, ZHANG Xinxu, WANG Chaohua, et al. Responses of sediment resistome, virulence factors and potential pathogens to decades of antibiotics pollution in a shrimp aquafarm[J].Science of The Total Environment, 2021,794:148760.

        [19]SU Haochang, HU Xiaojuan, XU Wujie, et al. Metagenomic analysis of the abundances, diversity, and distribution of antibiotic resistance genes and their potential bacterial hosts in two types of shrimp-rearing farms in South China[J]. Ecotoxicology and Environmental Safety,2022,241:113801.

        [20]CHEN Yunsong, ZHOU Li, YU Qiuran, et al.Effects of Sulfamethoxazole and Florfenicol on Growth, Antioxidant Capacity, Immune Responses and Intestinal Microbiota in Pacific White Shrimp Litopenaeus vannamei at Low Salinity[J].Antibiotics,2023,12(3):575.

        [21]CHAE Y, KIM D, CHOI M J, et al. Impact of nano-sized plastic on the nutritional value and gut microbiota of whiteleg shrimp Litopenaeus vannamei via dietary exposure[J].Environment International,2019,130:104848.

        [22]LI Hongyu, CHEN Hongwei, WANG Jiao, et al. Influence of Microplastics on the Growth and the Intestinal Microbiota Composition of Brine Shrimp[J].Frontiers in microbiology,2021,12:717272.

        [23]ZHU Chenxi, LI Yiming, LIU Guoxing, et al. Effects of nanoplastics on the gut microbiota of Pacific white shrimp Litopenaeus vannamei[J].Peer J, 2024,12:e16743.

        [24]FAN Jiqiang, CHEN Limei, MAI Guoqin, et al. Dynamics of the gut microbiota in developmental stages of Litopenaeus vannamei reveal its association with body weight[J].Scientific Reports,2019,9(1):734.

        [25]CARDMAN Z, ARNOSTI C, DURBIN A, et al. Verrucomicrobia are candidates for polysaccharide-degrading bacterioplankton in an arctic fjord of Svalbard[J]. Applied and Environmental Microbiology,2014,80(12):3749-3756.

        [26]RODRIGO-TORRES L, PUJALTE M J, ARAHAL D R. Draft genome sequence of Shimia marina CECT 7688(T)[J].Marine Genomics,2016,28:83-86.

        [27]KUMAR M, MISHRA A, SINGH S S, et al. Expression and characterization of novel laccase gene from Pandoraea sp. ISTKB and its application[J].International Journal of Biological Macromolecules,2018,115:308-316.

        [28]DAI Wenfang, YU Weina, ZHANG Jinjie, et al. The gut eukaryotic microbiota influences the growth performance among cohabitating shrimp[J].Applied Microbiology and Biotechnology,2017,101(16):6447-6457.

        [29]SHEN Kaikai, BAO Lixin, LIU Muxin, et al. Dietary supplementation of β-1, 3-glucan improves the intestinal health of white shrimp (Litopenaeus vannamei) by modulating intestinal microbiota and inhibiting inflammatory response [J].Frontiers in Immunology,2023,14:1119902.

        [30]EL-SAADONY M T, SWELUM A A, ABO GHANIMA M M, et al. Shrimp production, the most important diseases that threaten it, and the role of probiotics in confronting these diseases: A review[J].Research in Veterinary Science,2022,144:126-140.

        [31]LU Jiaqi, MAO Jiangning, QI Xuejing, et al.The assembly of gut microbiota implicates shrimp acute hepatopancreas necrosis disease progression[J]. Applied Microbiology and Biotechnology,2023,107(24):7489-7500.

        Research progress on the response of the gut microbiota of shrimp to environmental stress

        LI Haiyue1, ZHANG Huaidong1,2

        (1.College of Life Science, Fujian Normal University, Fuzhou 350117, Fujian China; 2. National and Local Joint Engineering Research Center for Industrial Microbialana and Fermentation Technology, Fuzhou 350117, Fujian China)

        Abstract:Shrimp will encounter various environmental stress factors during the breeding process, including heavy metal pollution, pathogen infection and other pollution. In the face of these stresses, in addition to the shrimp itself, the intestinal microorganisms in its body will also respond accordingly. The intestinal flora not only has the function of indicating the health status of the host, but also can improve the immunity of shrimp and promote the growth of shrimp after adjustment. Research on intestinal flora can also enhance understanding of disease, leading to the development of more effective methods to control shrimp diseases.

        Keywords:intestinal microorganisms; environmental pollution; shrimp farming

        基金項目:福建省自然科學基金面上項目(2020J01181)。

        作者簡介:李海玥(2000-),女,福建寧古人,碩士研究生。研究方向:生物醫(yī)藥。E-mail:2637882038@qq.com。

        通信作者:張懷東(1982-),男,江蘇興化人,博士,副教授。研究方向:微生物生物轉(zhuǎn)化。E-mail:zhanghuaidong@fjnu.edu.cn。

        国产精品丝袜美女久久| 日韩中文字幕中文有码| 激情中文丁香激情综合| 亚洲综合偷自成人网第页色| 日韩精品少妇专区人妻系列| 成人麻豆视频免费观看| 玩弄丰满奶水的女邻居| 亚洲一二三区在线观看| 性感人妻一区二区三区| 国产一级二级三级在线观看av| 久久国产亚洲高清观看| 亚洲欧美另类激情综合区| 久久久久久99精品| 免费看黄片视频在线观看| 中文字幕亚洲综合久久| 亚洲精品综合一区二区三| 欧美综合图区亚洲综合图区| 亚洲精品一区二区三区在线观| 亚洲中文字幕久久精品品| 日本午夜精品理论片a级app发布| 亚洲精品国偷拍自产在线观看蜜臀| 人妻少妇看A偷人无码电影| av在线入口一区二区| 国产动作大片中文字幕| 国产精品国产三级农村妇女| 国产在线视频网站不卡| 国产一级内射视频在线观看| 国产卡一卡二卡三| 国产精品入口蜜桃人妻| 国产一区资源在线播放| 日韩精品久久久久久免费| 亚洲欧美日韩中文天堂| 91在线观看国产自拍| 草草影院发布页| 无码熟妇人妻av在线影片| 无码啪啪人妻| 宅男亚洲伊人久久大香线蕉| 亚洲av无码专区在线播放中文 | 亚洲成av人综合在线观看| 久久久精品2019免费观看| 东京热无码人妻中文字幕|