亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        胺基雙酚FeⅢ配合物催化環(huán)狀酸酐和環(huán)氧化物聚合制備聚酯

        2025-02-13 00:00:00宋昭崢李思漩李曉雙李鵬胡君航戴鑫蔣慶哲

        摘要:為解鐵系配合物中心金屬電子環(huán)境和空間結(jié)構(gòu)對(duì)催化聚合反應(yīng)的影響,通過(guò)改變胺基橋聯(lián)垂臂結(jié)構(gòu)和苯酚取代基,合成一系列以胺基雙酚為骨架的FeⅢ配合物,同時(shí)考察以胺基雙酚FeⅢ配合物為催化劑,雙(三苯基膦)氯化胺等物質(zhì)為助催化劑組成二元催化體系催化環(huán)狀酸酐和環(huán)氧化物聚合反應(yīng),分析其反應(yīng)機(jī)制。結(jié)果表明:胺基橋聯(lián)垂臂結(jié)構(gòu)為丁基時(shí),胺基雙酚FeⅢ配合物展現(xiàn)出較好的催化鄰苯二甲酸酐和環(huán)氧環(huán)己烷聚合性能,在110 ℃無(wú)溶劑下,轉(zhuǎn)化頻率可達(dá)到750 h-1,聚酯單元物質(zhì)的量分?jǐn)?shù)為98%,且對(duì)于不同種類環(huán)狀酸酐和環(huán)氧化物聚合展現(xiàn)出良好的催化活性;反應(yīng)速率和單體濃度呈一級(jí)動(dòng)力學(xué)反應(yīng),Ea為110.21 kJ/mol;二元催化體系為分子間鏈引發(fā),由于羧酸陰離子存在,抑制了配合物分子內(nèi)的鏈引發(fā)環(huán)節(jié),聚合產(chǎn)物中n(poly)較高,PA活化插入速度較快,CHO開(kāi)環(huán)速度較慢。

        關(guān)鍵詞:環(huán)狀酸酐; 環(huán)氧化物; 聚合; 胺基雙酚; 鐵系配合物

        中圖分類號(hào):TQ 32.4""" 文獻(xiàn)標(biāo)志碼:A

        引用格式:宋昭崢,李思漩,李曉雙,等.胺基雙酚FeⅢ配合物催化環(huán)狀酸酐和環(huán)氧化物聚合制備聚酯[J].中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2025,49(1):201-210.

        SONG Zhaozheng, LI Sixuan, LI Xiaoshuang, et al. Polymerization of cyclic anhydrides with epoxides catalyzed by amine-bis(phenolate) ironⅢ complexes[J].Journal of China University of Petroleum(Edition of Natural Science),2025,49(1):201-210.

        Polymerization of cyclic anhydrides with epoxides catalyzed by

        amine-bis(phenolate) ironⅢ complexes

        SONG Zhaozheng1, LI Sixuan2, LI Xiaoshuang1, LI Peng1, HU Junhang1, DAI Xin1, JIANG Qingzhe1,3

        (1.Engineering College, China University of Petroleum(Bejing), Karamay 834099, China;

        2.CNOOC Institute of Chemical amp; Advanced Materials, Beijing 102209, China;

        3.School of International Trade and Economics, University of International Business and Economics, Beijing 100029, China)

        Abstract: In order to investigate the effect of central metal electronic environment and spatial structure of iron complexes on catalytic polymerization reaction, a series of amine-bis(phenolate) ironⅢ complexes with substituents bearing pendent arm were synthesized by changing the amino bridged dangling arm structure and phenol substituent. Meanwhile, the binary catalytic system composed of amine-bis(phenolate) ironⅢ complexes as catalysts and bis(triphenylphosphine) amine chloride as co catalysts was studied to catalyze the polymerization of cyclic anhydrides and epoxides, and the reaction mechanism was analyzed as well. It is found that Amine-bis(phenolate) ironⅢ complexes exhibit better catalytic properties for the polymerization of phthalic anhydride and cyclohexene oxide when the amine-bridged structure is butyl. The turnover frequency could reach 750 h-1, and the content of polyester unit substances is 98% at 110 ℃ without solvent. Simultaneously, the binary catalytic system can also catalyze the polymerization of different kinds of cyclic anhydrides and epoxides with good catalytic activities. The reaction rate and monomer concentration exhibit first-order kinetic reactions with an activation energy Ea of 110.21 kJ/mol. The binary catalytic system is initiated by intermolecular chains. Due to the presence of carboxylic acid anions, the chain initiation within the complex molecules is inhibited, resulting in a higher n(poly) content in the polymerization product. The activation and insertion speed of PA is relatively faster, whereas the ring-opening speed of CHO is slower.

        Keywords: cyclic anhydrides; epoxides; polymerizaiton; amine-bis(phenolate); ironⅢ complexes

        收稿日期:2024-06-11

        基金項(xiàng)目:中石化勘探開(kāi)發(fā)研究院國(guó)家重點(diǎn)實(shí)驗(yàn)室項(xiàng)目(33550000-21-ZC0613-0059);國(guó)家自然科學(xué)基金項(xiàng)目(21776303)

        第一作者:宋昭崢(1970-),男,副研究員,博士,研究方向?yàn)樘嫁D(zhuǎn)化與評(píng)價(jià)、油氣加工和油田化學(xué)領(lǐng)域。E-mail:song@cup.edu.cn。

        通信作者:李思漩(1989-),女,工程師,博士,研究方向?yàn)樾虏牧吓c催化劑工程。E-mail:lisx9@cnooc.com.cn。

        文章編號(hào):1673-5005(2025)01-0201-10""" doi:10.3969/j.issn.1673-5005.2025.01.022

        環(huán)狀酸酐與環(huán)氧化物聚合成為逐步縮聚和環(huán)酯開(kāi)環(huán)聚合制備聚酯的第三種方式[1-3]。環(huán)狀酸酐和環(huán)氧化物聚合催化劑種類較多,其中金屬配合物(β-二亞胺鋅、金屬卟啉、Salen和胺基酚類等)[4-5]展現(xiàn)出卓越的催化效果。中心金屬作為金屬配合物催化劑的核心,其電子特性顯著影響催化性能,主要中心金屬包括鉻、錳、鈷、鋅和稀土類元素[6]等。雖然上述金屬配合物展現(xiàn)出高效的催化環(huán)狀酸酐與環(huán)氧化物聚合活性,但是以鉻、錳和鈷等金屬為中心的催化劑會(huì)導(dǎo)致聚酯中重金屬殘留[6],不利于聚酯產(chǎn)物的廣泛應(yīng)用;鋅和稀土類催化劑對(duì)空氣中的水分及氧氣較為敏感[7]。Nozaki等[8]和Merna等[9]相繼合成出卟啉鐵和Salen鐵配合物,成功實(shí)現(xiàn)戊二酸酐/環(huán)氧丙烷、鄰苯二甲酸酐/環(huán)氧環(huán)己烷聚合反應(yīng)。配體作為金屬配合物的骨架支撐,影響中心金屬的電子環(huán)境和空間結(jié)構(gòu)。多齒螯合胺基酚類配體可以通過(guò)Mannich縮合反應(yīng)得到,具有合成方法簡(jiǎn)單、制備條件溫和、骨架可調(diào)節(jié)性高和空間構(gòu)型更加靈活等特點(diǎn)[10]。Ryu等[11]合成胺基三酚鉻系配合物用于催化鄰苯二甲酸酐/環(huán)氧環(huán)己烷聚合反應(yīng),得到高選擇性(聚酯單元物質(zhì)的量分?jǐn)?shù)n(poly)大于99%)、低分散性的聚酯產(chǎn)物,催化劑的轉(zhuǎn)換頻率(TOF)高達(dá)380 h-1。Thumrongpatanaraks等[12]制備胺基雙酚錫系配合物,可用于催化多種環(huán)狀酸酐(鄰苯二甲酸酐、馬來(lái)酸酐和丁二酸酐等)/環(huán)氧化物(環(huán)氧丙烷、環(huán)氧環(huán)己烷和氧化苯乙烯)聚合反應(yīng),除環(huán)氧環(huán)己烷以外,均可獲得高選擇性、相對(duì)分子質(zhì)量較為集中的聚酯產(chǎn)物。因此通過(guò)改變垂臂結(jié)構(gòu)和苯酚取代基可以精準(zhǔn)調(diào)節(jié)中心金屬電子環(huán)境和空間結(jié)構(gòu),改善金屬配合物催化環(huán)狀酸酐和環(huán)氧化物聚合性能。將胺基酚類配體與鐵配位合成胺基酚類鐵系金屬配合物用于催化反應(yīng),既可以減少重金屬殘留等危害,同時(shí)易于調(diào)節(jié)催化活性等特點(diǎn)。關(guān)于胺基酚類鐵系配合物研究主要是對(duì)自身性質(zhì)的考察[13-14],并將該類配合物應(yīng)用于催化Kumada-Corriu交叉偶聯(lián)反應(yīng)(烷基、烯基或芳基鹵代物和格氏試劑)[15-19]。研究[20-21]表明,胺基酚類鐵系配合物在催化二氧化碳/環(huán)氧化物開(kāi)環(huán)合成環(huán)狀碳酸酯展現(xiàn)出相應(yīng)的催化活性。由于二氧化碳/環(huán)氧化物還可以開(kāi)環(huán)聚合制備聚碳酸酯,且與環(huán)狀酸酐/環(huán)氧化物聚合制備聚酯反應(yīng)相類似,因此胺基酚類鐵系配合物也可以用于催化環(huán)狀酸酐與環(huán)氧化物開(kāi)環(huán)聚合反應(yīng)[5,22-23]。Coates等[22]使用胺基三酚鐵系配合物和雙(三苯基膦)氯化胺(PPNCl)組成二元催化體系,成功催化環(huán)氧丙烷和環(huán)氧環(huán)己烷與6種三環(huán)酸酐交替聚合。Shi等[5]合成苯環(huán)鄰、間、對(duì)3種連接方式的雙金屬胺基三酚鐵系配合物,催化鄰苯二甲酸酐和環(huán)氧環(huán)己烷聚合活性順序?yàn)猷廹t;間gt;對(duì)。筆者設(shè)計(jì)兩種類型胺基雙酚配體,合成方法簡(jiǎn)單,一種是與胺基橋聯(lián)垂臂結(jié)構(gòu)中含有吸電子基團(tuán)(醇羥基、羧基)的配體,另一種為含有給電子基團(tuán)(烷烴類)的配體。分別與中心金屬鐵配位合成胺基雙酚FeⅢ配合物,將其應(yīng)用于環(huán)狀酸酐與環(huán)氧化物聚合反應(yīng)中,考察金屬中心電子環(huán)境和空間位阻對(duì)催化聚合反應(yīng)的影響,研究聚合反應(yīng)過(guò)程中助催化劑(cocat)種類及比例、反應(yīng)條件等因素和聚合反應(yīng)熱力學(xué)性質(zhì),并根據(jù)聚酯產(chǎn)物的端基結(jié)構(gòu)分析胺基酚類鐵系配合物催化環(huán)狀酸酐與環(huán)氧化物聚合反應(yīng)機(jī)制。

        1" 試" 驗(yàn)

        1.1" 試驗(yàn)試劑和儀器

        試劑:乙醇胺(質(zhì)量分?jǐn)?shù)為99%)、甘氨酸(質(zhì)量分?jǐn)?shù)為99%)、正丁胺(質(zhì)量分?jǐn)?shù)為99%)、三乙胺(質(zhì)量分?jǐn)?shù)為99%)、甲醛溶液(質(zhì)量分?jǐn)?shù)為36%)、2,4-二叔丁基酚(質(zhì)量分?jǐn)?shù)為97%)、2-叔丁基對(duì)甲酚(質(zhì)量分?jǐn)?shù)為99%)和2,4-二甲基酚(質(zhì)量分?jǐn)?shù)為98%),均為分析純,阿拉丁試劑公司;鄰苯二甲酸酐(PA,質(zhì)量分?jǐn)?shù)為99%)、降冰片烯二酸酐(NA,質(zhì)量分?jǐn)?shù)為99%)和丁二酸酐(SA,質(zhì)量分?jǐn)?shù)為98%),均為分析純,麥克林試劑公司,使用前通過(guò)重結(jié)晶處理;環(huán)氧環(huán)己烷(CHO,質(zhì)量分?jǐn)?shù)為98%)、環(huán)氧丙烷(PO,質(zhì)量分?jǐn)?shù)為99%)和環(huán)氧氯丙烷(ECH,質(zhì)量分?jǐn)?shù)為99.5%),均為分析純,阿拉丁試劑公司,使用前經(jīng)氫化鈣(CaH2)干燥24 h,在氬氣保護(hù)下回流蒸出儲(chǔ)存和使用;雙(三苯基膦)氯化胺(PPNCl,質(zhì)量分?jǐn)?shù)為98%)、四丁基氯化銨(TBAC,質(zhì)量分?jǐn)?shù)為98%)、四丁基溴化銨(TBAB,質(zhì)量分?jǐn)?shù)為99%)、4-二甲氨基吡啶(DMAP,質(zhì)量分?jǐn)?shù)為98%)和1,5,7-三氮雜二環(huán)(TBD,質(zhì)量分?jǐn)?shù)為97%),安耐吉化工有限公司;其他試劑均為常規(guī)試劑,分析純,使用前未經(jīng)處理。

        儀器:德國(guó)Bruker Avance III 500 MHz核磁共振波譜儀對(duì)合成的配體進(jìn)行核磁共振氫譜(1H NMR)和核磁共振碳譜(13C NMR),以氘代氯仿(CDCl3)為溶劑,四甲基硅烷(TMS)為內(nèi)標(biāo);德國(guó)Elementar vario EL cube型元素分析儀用于測(cè)定胺基雙酚FeⅢ配合物的C、H和N元素含量。

        通過(guò)德國(guó)Bruker ultraflextreme儀器測(cè)定PA/CHO聚酯的基質(zhì)輔助激光解吸電離飛行時(shí)間質(zhì)譜(MALDI-TOF MS),將質(zhì)量濃度為2.5 mg/mL的樣品水懸浮液點(diǎn)在MALDI靶上,立即與20 mg/mL的2,5-二羥基苯甲酸(DHB)在體積比500∶1的乙腈和三氟乙酸中混合,待液滴干燥后用激光轟擊。

        1.2" 催化劑的制備

        1.2.1" 胺基雙酚配體的合成

        酚FeⅢ配合物結(jié)構(gòu)式見(jiàn)圖1。

        C32H51NO3(配體L1)。在Ar保護(hù)下,將2,4-二叔丁基酚(4.12 g,20 mmol)加入到甲醇(10 mL)溶液中攪拌至溶解,將甲醛溶液(1.5 mL,20 mmol)、乙醇胺(0.6 mL,10 mmol)分別緩慢加入到上述甲醇溶液中,70 ℃恒溫回流攪拌,反應(yīng)過(guò)程中會(huì)有白色沉淀生成,采用薄層色譜法(TLC)監(jiān)測(cè)反應(yīng)進(jìn)程至結(jié)束。將沉淀物過(guò)濾得到淺黃色粗產(chǎn)物,用二氯甲烷和乙腈對(duì)粗產(chǎn)物進(jìn)行重結(jié)晶得到白色固體(1.39 g,產(chǎn)率為56%)。1H NMR(500 MHz,CDCl3) δ8.41(s,2H),7.22(d,2H),6.90(d,2H),3.89(t,2H),3.78(s,4H),2.75(t,2H),1.40(s,18H),1.28(s,18H); 13C NMR(126 MHz,CDCl3) δ152.63,141.14,136.09,125.03,123.59,121.57,60.98,57.72,53.47,34.92,34.16,31.69,29.67。其中δ為化學(xué)位移,10-6;s、d和t分別代表單峰、雙峰和三重峰。

        C32H49NO4(配體L2)。與配體L1合成方法相同,產(chǎn)率為51%。1H NMR(500 MHz,CDCl3) δ7.25(d,2H),6.90(d,2H),3.79(s,4H,),3.46(s,2H),1.38(s,18H),1.27(s,18H); 13C NMR(126 MHz,CDCl3) δ 173.98,152.45,141.79,136.65,125.53,124.64,119.62,57.31,54.20,34.88,34.19,31.65,29.79。

        C34H55NO2(配體L3.1)。與配體L1合成方法相同,產(chǎn)率為56%。1H NMR(500 MHz,CDCl3) δ7.22(d,2H),6.92(d,2H),3.68(s,4H),2.54(t,2H),1.62(m,4H),1.41(s,18H),1.28(s,18H),0.84(t,3H); 13C NMR(126 MHz,CDCl3) δ152.38,141.48,136.02,125.07,123.46,121.70,57.22,53.17,34.86,34.17,31.63,29.69,28.22,20.43,13.84。其中m代表多重峰。

        C28H43NO2(配體L3.2)。與配體L1合成方法相同,產(chǎn)率為67%。1H NMR(500 MHz,CDCl3) δ7.02(s,2H),6.74(s,2H),3.64(s,4H),2.52(m,2H),2.26(s,6H),1.58(m,2H),1.41(s,18H),1.28(m,2H),0.85(t,3H); 13C NMR(126 MHz,CDCl3) δ152.47,136.74,128.87,128.06,127.24,122.42,57.02,53.18,34.56,29.62,28.38,20.78,20.45,13.85。

        C22H31NO2(配體L3.3)。與配體L1合成方法相同,產(chǎn)率為52%。1H NMR(500 MHz,CDCl3) δ6.86(s,2H),6.72(s,2H),3.67(s,4H),2.51(m,2H),2.22(s,6H),2.21(s,6H),1.59(m,2H),1.28(m,2H),0.86(m,3H); 13C NMR(126 MHz,CDCl3) δ151.93,130.87,128.48,128.38,124.46,121.74,55.94,52.82,28.07,20.46,20.42,15.84,13.89。

        1.2.2" 配合物的合成

        C32H48ClFeNO3(配合物C1)。在Ar保護(hù)下,將無(wú)水氯化鐵(FeCl3,0.08 g,0.5 mmol)甲醇溶液(10 mL)、三乙胺(0.14 mL,1 mmol)依次緩慢加入配體L1(0.25 g,0.5 mmol)甲醇(5 mL)溶液中,70 ℃恒溫回流攪拌。反應(yīng)結(jié)束后,通過(guò)旋轉(zhuǎn)蒸發(fā)儀去除甲醇溶劑,加入四氫呋喃,硅藻土過(guò)濾去除三乙胺鹽酸鹽,旋蒸去除四氫呋喃溶劑,甲醇重結(jié)晶得到黑色固體(1.39 g,產(chǎn)率為71%)。元素質(zhì)量分?jǐn)?shù)(%):C32H48ClFeNO3理論值C 65.59,H 8.26,N 2.39; 實(shí)測(cè)值C 65.38,H 8.05,N 2.41。

        C32H46ClFeNO4(配合C2)。與配合物C1合成方法相同,產(chǎn)率為76%。元素質(zhì)量分?jǐn)?shù)(%):C32H46ClFeNO4理論值C 64.06,H 7.73,N 2.33; 實(shí)測(cè)值C 64.23,H 7.81,N 2.31

        C34H53ClFeNO2(配合物C3.1)。合成方法同配合物C1,產(chǎn)率為81%。HRMS(m/z) Monoclear [M-Cl]+∶[C34H53FeNO2-Cl]+理論值563.342 0,實(shí)測(cè)值 563.343 4; 元素質(zhì)量分?jǐn)?shù)(%):C34H53ClFeNO2理論值C 68.16,H 8.92,N 2.34;實(shí)測(cè)值C 69.42,H 9.22,N 2.32。其中m/z為質(zhì)荷比。

        C28H41ClFeNO2(配合物C3.2)。與配合物C1合成方法相同,產(chǎn)率為87%。元素質(zhì)量分?jǐn)?shù)(%):C28H41ClFeNO2理論值C 65.31,H 8.03,N 2.72;實(shí)測(cè)值C 65.14,H 8.11,N 2.74。

        C22H29ClFeNO2(配合物C3.3)。與配合物C1合成方法相同,產(chǎn)率為83%。元素質(zhì)量分?jǐn)?shù)(%):C22H29ClFeNO2理論值C 61.34,H 6.79,N 3.25; 實(shí)測(cè)值C 61.54,H 6.67,N 3.23。

        1.3" 環(huán)狀酸酐與環(huán)氧化物聚合反應(yīng)

        按比例依次稱取胺基雙酚FeⅢ配合物、助催化劑和環(huán)狀酸酐置于反應(yīng)管。通過(guò)Schlenk技術(shù)置換氬氣3次后注射加入環(huán)氧化物,密封反應(yīng)管放入設(shè)定溫度的油浴鍋攪拌。反應(yīng)結(jié)束取出密封反應(yīng)管,取50 μL反應(yīng)液裝于核磁管中,用于1H NMR檢測(cè),確定環(huán)狀酸酐轉(zhuǎn)化率。將少量CH2Cl2加入到剩余反應(yīng)液中進(jìn)行稀釋,將稀釋過(guò)后的反應(yīng)液逐滴加入到含有1 mol/L鹽酸的甲醇溶液中產(chǎn)生白色沉淀,靜置過(guò)濾后40 ℃真空干燥12 h得到聚酯。

        2" 結(jié)果分析

        2.1" 環(huán)狀酸酐與環(huán)氧化物開(kāi)環(huán)聚合

        根據(jù)文獻(xiàn)[24]可知,在環(huán)狀酸酐與環(huán)氧化物開(kāi)環(huán)聚合過(guò)程中,添加甲苯溶劑可以有效避免聚醚的產(chǎn)生,因此以甲苯為溶劑,甲苯和CHO體積比(V甲苯∶VCHO)為4∶1,反應(yīng)溫度100 ℃,胺基雙酚FeⅢ配合物分別和助催化劑PPNCl組成二元催化體系,催化PA和CHO開(kāi)環(huán)聚合,催化性能如表1所示。

        當(dāng)胺基橋聯(lián)垂臂結(jié)構(gòu)含有醇羥基或羧基(C1或C2),反應(yīng)1.5 h時(shí)PA轉(zhuǎn)化率僅為32%~36%(1#、 2#);當(dāng)胺基橋聯(lián)垂臂結(jié)構(gòu)為丁基(C3.1)時(shí),催化劑展現(xiàn)出良好的催化性能,反應(yīng)1.5 h時(shí)PA轉(zhuǎn)化率達(dá)到70%(3#)。胺基雙酚配體和FeⅢ配位時(shí),含吸電子基團(tuán)(醇羥基、羧基等)的配合物會(huì)形成鐵氧鍵(Fe—O),降低FeⅢ中心的電子云密度導(dǎo)致路易斯酸性變強(qiáng),同時(shí)由于Fe—O的形成,導(dǎo)致FeⅢ中心的空間位阻變大,不利于PA的插入。配體苯酚取代基影響中心金屬Fe電子環(huán)境和空間位阻,改變苯環(huán)上酚羥基鄰位和對(duì)位取代基制備配合物C3.2(R1 = tBu,R2 = Me)和C3.3(R1 = R2 = Me),催化PA和CHO聚合活性雖然有所降低(4#、 5#),但也遠(yuǎn)高于C1和C2配合物。因此通過(guò)改變胺基橋聯(lián)垂臂結(jié)構(gòu)及苯酚取代基,調(diào)節(jié)胺基雙酚FeⅢ配合物電子環(huán)境和空間結(jié)構(gòu),可以顯著改善胺基雙酚FeⅢ配合物催化PA和CHO開(kāi)環(huán)聚合性能。

        助催化劑在環(huán)狀酸酐與環(huán)氧化物聚合反應(yīng)中影響顯著,因此以配合物C3.1為代表催化PA與CHO開(kāi)環(huán)聚合反應(yīng)1.5 h,深入考察助催化劑種類(季銨鹽類PPNCl、TBAC和TBAB,有機(jī)堿類DMAP和TBD)對(duì)該反應(yīng)催化性能影響。由表1可知(6#),在無(wú)助催化劑條件下,配合物C3.1催化PA與CHO聚合轉(zhuǎn)化率僅為23%,且n(poly)僅為24%;只添加助催化劑PPNCl催化PA與CHO聚合,轉(zhuǎn)化率為31%(7#)。使用配合物C3.1和其他助催化劑時(shí),PA轉(zhuǎn)化率可達(dá)到44%~53%(8#~11#)。因此C3.1/PPNCl組成二元催化體系展現(xiàn)出卓越的催化性能,PPNCl中氮原子周圍空間位阻較大,有效地削弱陽(yáng)離子(PPN+)和陰離子(Cl-)的靜電引力,因此Cl-更易離去,利于聚合反應(yīng)的發(fā)生;對(duì)于四丁基鹵化銨來(lái)說(shuō),Br-擁有較大的離子半徑,易離去且親核性能更強(qiáng),因此助催化劑TBAB效果優(yōu)于TBAC;在有機(jī)堿作為助催化劑體系中,DMAP較好的配位能力和較小的空間位阻,也展現(xiàn)出良好的催化性能,尤其是在n(poly)方面。上述聚合結(jié)果有效證明了助催化劑在環(huán)狀酸酐與環(huán)氧化物聚合反應(yīng)中重要作用[12,25-26]。此外,同比例降低C3.1/PPNCl當(dāng)量,PA轉(zhuǎn)化率明顯下降,但n(poly)未發(fā)生改變(12#、 13#)。等比例配合物和助催化劑組成二元催化體系時(shí)可以協(xié)同催化,顯著提高PA轉(zhuǎn)化率,有效減少聚醚的產(chǎn)生。但單一的增加配合物或PPNCl含量,打破二者等比例協(xié)同催化,雖然PA轉(zhuǎn)化率有所增加,但n(poly)均略有降低(14#、15#)。

        C3.1配合物催化PA與CHO聚合不同反應(yīng)時(shí)間結(jié)果見(jiàn)圖2。反應(yīng)初期PA轉(zhuǎn)化率隨著反應(yīng)時(shí)間的延長(zhǎng)逐漸增加,n(poly)可達(dá)到99%;反應(yīng)后期溶液中CHO比例降低,反應(yīng)體系變得粘稠,導(dǎo)致PA轉(zhuǎn)化率增加速度明顯變慢,n(poly)略有降低,當(dāng)反應(yīng)時(shí)間為3 h時(shí),轉(zhuǎn)化率可達(dá)到99%,n(poly)為94%。根據(jù)相關(guān)文獻(xiàn)[27-29]可知,聚合反應(yīng)初期存在誘導(dǎo)階段,F(xiàn)eⅢ活性中心催化PA轉(zhuǎn)化頻率(TOF)呈先增加后降低,即TOF呈拋物線趨勢(shì),當(dāng)反應(yīng)1.5 h時(shí),TOF達(dá)到最大117 h-1。

        by C3.1 complex

        根據(jù)上述聚合結(jié)果可知,甲苯溶劑可以有效避免聚醚產(chǎn)生,因此考察有無(wú)甲苯溶劑情況下,PA與CHO在不同反應(yīng)溫度下聚合反應(yīng)(圖3)。當(dāng)甲苯作為溶劑時(shí),80 ℃反應(yīng)1.5 h,PA轉(zhuǎn)化率僅為19%(圖3(a)),n(poly)為90%(圖3(b)),有少量聚醚生成。隨著反應(yīng)溫度的升高,PA轉(zhuǎn)化率和n(poly)均明顯增加,當(dāng)在110 ℃反應(yīng)1.5 h時(shí),PA轉(zhuǎn)化率可達(dá)到92%,n(poly)為98%。以過(guò)量CHO作為溶劑,80 ℃反應(yīng)0.5 h時(shí),PA轉(zhuǎn)化率為24%(圖3(a)),較高CHO濃度導(dǎo)致聚醚含量的增加(n(poly)僅為82%);升高反應(yīng)溫度,PA轉(zhuǎn)化率和n(poly)均有所增加,當(dāng)反應(yīng)溫度為110 ℃,反應(yīng)0.33 h,PA就可以達(dá)到完全轉(zhuǎn)化。通過(guò)TOF值可以了解FeⅢ活性中心轉(zhuǎn)化PA效率,由圖3(c)可以看出,在甲苯溶劑下TOF值由反應(yīng)溫度80 ℃時(shí)的32 h-1增加至110 ℃時(shí)152 h-1;無(wú)溶劑下TOF值由118 h-1增加至750 h-1。一方面添加溶劑可以有效抑制聚醚的生成,但催化活性受到顯著影響,可以通過(guò)延長(zhǎng)反應(yīng)時(shí)間和升高反應(yīng)溫度達(dá)到原料的完全轉(zhuǎn)化;另一方面升高溫度可以減少反應(yīng)誘導(dǎo)期時(shí)間[27],提高反應(yīng)速率,利于聚合反應(yīng)的進(jìn)行。

        除催化CHO與PA聚合外,將C3.1/PPNCl催化體系用于催化其他環(huán)狀酸酐與環(huán)氧化物聚合反應(yīng)(表2)。由于PO沸點(diǎn)較低,避免反應(yīng)過(guò)程中揮發(fā)帶來(lái)的試驗(yàn)誤差,聚合反應(yīng)溫度降至80 ℃,導(dǎo)致環(huán)狀酸酐與PO聚合反應(yīng)時(shí)間明顯增加。由表2可以看出,C3.1/PPNCl催化體系展現(xiàn)出更好的兼容性與延展性,且除SA與CHO聚合以外,所有n(poly)可達(dá)到98%。根據(jù)TOF值可知,所有PA與環(huán)氧化物聚合反應(yīng)均高于NA與環(huán)氧化物高于SA與環(huán)氧化物聚合反應(yīng)。由于環(huán)狀酸酐與PO反應(yīng)溫度較低,聚合反應(yīng)速率較慢,該系列反應(yīng)TOF值也較低。

        2.2" PA與CHO聚合熱力學(xué)性質(zhì)

        為進(jìn)一步了解胺基雙酚FeⅢ配合物/PPNCl組成的二元催化體系催化環(huán)狀酸酐與環(huán)氧化物聚合特性,選取C3.1配合物和PPNCl助催化劑,在固定催化體系濃度([PA]∶[CHO]∶[Fe]∶[PPNCl] = 250∶250∶1∶1)條件下,研究了該二元催化體系熱力學(xué)性質(zhì)(圖4)。在聚合溫度為80~110 ℃下進(jìn)行不同反應(yīng)時(shí)間的若干組試驗(yàn)(圖4(a))。對(duì)ln(M0/Mt)和時(shí)間進(jìn)行作圖發(fā)現(xiàn)二者呈線性關(guān)系(圖4(b)),表明反應(yīng)速率和單體濃度呈一級(jí)動(dòng)力學(xué)反應(yīng),這和許多文獻(xiàn)報(bào)道相一致[30-34]。

        通過(guò)公式可以計(jì)算出相應(yīng)的反應(yīng)速率常數(shù)k,根據(jù)Arrhenius公式[35],對(duì)lnk和1 000/T進(jìn)行作圖(圖4(c)),得到斜率為-Ea/R,通過(guò)計(jì)算得出PA與CHO聚合反應(yīng)的表觀活化能(Ea)為110.21 kJ/mol。

        2.3" PA與CHO聚合反應(yīng)機(jī)制

        通過(guò)對(duì)PA與CHO聚合產(chǎn)物進(jìn)行MALDI-TOF MS表征,可以分析聚酯分子鏈端基結(jié)構(gòu),了解聚合反應(yīng)機(jī)制。圖5為PA/CHO聚酯基質(zhì)輔助激光解吸電離飛行時(shí)間質(zhì)譜(表1中3#)。由圖5看出,聚酯含有5種序列峰,表明不止一種聚合物分子鏈的形成。每種序列峰質(zhì)核比(m/z)相差間隔為246,即一個(gè)鄰苯二甲酸環(huán)己烯酯重復(fù)單元[PA-CHO]。其中A、B和C序列峰表明陰離子Cl-作為引發(fā)劑去攻擊CHO[36-41],B和C序列峰兩端均為Cl-,表明存在分子間或分子內(nèi)酯交換副反應(yīng)的發(fā)生[25,42];D序列峰表明聚合物中存在鄰苯二甲酸引發(fā)的聚合物分子鏈,即體系中存在PA水解產(chǎn)物鄰苯二甲酸,進(jìn)而引發(fā)聚合反應(yīng)[43-45];此外在圖中發(fā)現(xiàn)強(qiáng)度較低的E序列峰,推算出該系列峰是以環(huán)己烯醇或環(huán)己醇為端基,表明聚合過(guò)程中發(fā)生MPVO副反應(yīng)[46],該種現(xiàn)象也出現(xiàn)在β-二亞胺鋅和其他胺基酚類鐵系配合物催化PA或CO2與CHO聚合反應(yīng)中,MPVO反應(yīng)生成的環(huán)己烯醇或環(huán)己醇可以引發(fā)鏈轉(zhuǎn)移反應(yīng)[5]。

        聚合反應(yīng)主要包括鏈引發(fā)、PA與CHO聚合鏈增長(zhǎng)以及催化劑和助催化劑的恢復(fù)鏈終止3個(gè)環(huán)節(jié)[47-50]。單金屬活化環(huán)氧化物開(kāi)環(huán)主要以分子內(nèi)和分子間兩種鏈引發(fā)方式[5],根據(jù)聚合反應(yīng)結(jié)果可以看出,C3.1配合物可以通過(guò)分子內(nèi)鏈引發(fā)單獨(dú)活化CHO,但C3.1配合物和開(kāi)環(huán)后的金屬醇鹽均不能活化PA開(kāi)環(huán)插入聚合物鏈,只能繼續(xù)親核攻擊相鄰的CHO開(kāi)環(huán)插入,因此聚合產(chǎn)物主要以聚醚為主(表1中6#);助催化劑PPNCl可以單獨(dú)催化PA與CHO聚合,且產(chǎn)物主要為聚酯(表1中7#),表明在反應(yīng)過(guò)程中PA可以被活化插入到聚合物鏈中。結(jié)合MALDI-TOF MS表征結(jié)果,提出配合物C3.1/PPNCl二元催化體系催化PA與CHO聚合反應(yīng)機(jī)制見(jiàn)圖6。胺基雙酚FeⅢ配合物中的路易斯酸性位點(diǎn)活化CHO形成Fe—O配位,PPNCl中Cl-親核攻擊PA開(kāi)環(huán)形成羧酸陰離子,對(duì)形成Fe—O配位的CHO進(jìn)行親核攻擊,導(dǎo)致CHO開(kāi)環(huán)形成金屬醇鹽,然后PA與CHO依次配位插入形成聚鄰苯二甲酸環(huán)己烯酯鏈,完成鏈增長(zhǎng)階段[51]。C3.1/PPNCl組成的二元催化體系為分子間鏈引發(fā),由于羧酸陰離子存在,抑制了配合物分子內(nèi)的鏈引發(fā)環(huán)節(jié),因此聚合產(chǎn)物中n(poly)較高。在該反應(yīng)過(guò)程中,PA活化插入速度較快,CHO開(kāi)環(huán)速度較慢為該反應(yīng)的控速步驟,C3.1/PPNCl催化PA與CHO聚合活性較單獨(dú)PPNCl催化有顯著提高[37]。

        3" 結(jié)" 論

        (1)胺基橋聯(lián)垂臂結(jié)構(gòu)為丁基、苯酚2、4位取代為叔丁基的FeⅢ配合物C3.1具有較小的空間位阻;助催化劑陰陽(yáng)離子的靜電引力、離子半徑等因素顯著影響催化活性,C3.1/PPNCl組成的二元催化體系展現(xiàn)出較好的環(huán)狀酸酐(PA、NA和SA)和環(huán)氧化物(CHO、PO和ECH)分別聚合活性,且在溶劑條件下制備的n(poly)較高,選擇性較好。

        (2)隨著反應(yīng)溫度的升高,反應(yīng)時(shí)間顯著降低,轉(zhuǎn)化率和n(poly)均顯著提升,在110 ℃無(wú)溶劑下,轉(zhuǎn)化頻率可達(dá)到750 h-1,n(poly)為98%。

        (3)C3.1/PPNCl催化PA與CHO聚合反應(yīng)中,反應(yīng)速率和單體濃度呈一級(jí)動(dòng)力學(xué)反應(yīng),反應(yīng)活化能Ea為110.21 kJ/mol;二元催化體系為分子間鏈引發(fā),由于羧酸陰離子存在,抑制了配合物分子內(nèi)的鏈引發(fā)環(huán)節(jié),聚合產(chǎn)物中n(poly)較高。PA活化插入速度較快,CHO開(kāi)環(huán)速度較慢為該反應(yīng)的控速步驟。

        參考文獻(xiàn):

        [1]" FISCHER R F. Polyesters from epoxides and anhydrides [J]. Industrial and Engineering Chemistry, 1960,52(4):321-323.

        [2]" ZHANG J, WANG L, LIU S, et al. Phosphazene/Lewis acids as highly efficient cooperative catalyst for synthesis of high-molecular-weight polyesters by ring-opening alternating copolymerization of epoxide and anhydride [J]. Journal of Polymer Science, 2020,58(6):803-810.

        [3]" 孫金聲,朱躍成,白英睿,等.改性熱固性樹(shù)脂研究進(jìn)展及其在鉆井液領(lǐng)域應(yīng)用前景[J].中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,46(2):60-75.

        SUN Jinsheng, ZHU Yuecheng, BAI Yingrui, et al. Research progress of modified thermosetting resin and its application prospects in field of drilling fluids [J]. Journal of China University of Petroleum(Edition of Natural Science), 2022,46(2):60-75.

        [4]" LONGO J M, SANFORD M J, COATES G W. Ring-opening copolymerization of epoxides and cyclic anhydrides with discrete metal complexes: structure-property relationships [J]. Chemical Reviews, 2016,116(24):15167-15197.

        [5]" SHI Z, JIANG Q, SONG Z, et al. Dinuclear iron(Ⅲ) complexes bearing phenylene-bridged bis(amino triphenolate) ligands as catalysts for the copolymerization of cyclohexene oxide with carbon dioxide or phthalic anhydride [J]. Polymer Chemistry, 2018,9(38):4733-4743.

        [6]" ANDREA K A, BUTLER E D, BROWN T R, et al. Iron complexes for cyclic carbonate and polycarbonate formation: selectivity control from ligand design and metal-center geometry [J]. Inorganic Chemistry, 2019,58(16):11231-11240.

        [7]" WEISS C J, MARKS T J. Synthesis and characterization of amine bridged bis(phenolate) lanthanide aryloxides and their application in the polymerization of lactide [J]. Dalton Transactions, 2010,39(29):6832-6840.

        [8]" ROBERT C, OHKAWARA T, NOZAKI K. Manganese-corrole complexes as versatile catalysts for the ring-opening homo- and co-polymerization of epoxide [J]. Chemistry A: European Journal, 2014,20(16):4789-4795.

        [9]" MUNDIL R, HOSTALEK Z, SEDENKOVA I, et al. Alternating ring-opening copolymerization of cyclohexene oxide with phthalic anhydride catalyzed by iron(Ⅲ) salen complexes [J]. Macromolecular Research, 2015,23(2):161-166.

        [10]" ANDERSON T S, KOZAK C M. Ring-opening polymerization of epoxides and ring-opening copolymerization of CO2 with epoxides by a zinc amino-bis(phenolate) catalyst [J]. European Polymer Journal, 2019,120:109237.

        [11]" RYU H K, BAE D Y, LIM H, et al. Ring-opening copolymerization of cyclic epoxide and anhydride using a five-coordinate chromium complex with a sterically demanding amino triphenolate ligand [J]. Polymer Chemistry, 2020,11(22):3756-3761.

        [12]" THUMRONGPATANARAKS W, PONGPANIT T, CHUMSAENG P, et al. Ring-opening copolymerization of cyclic anhydrides and epoxides by bis(amidinate)tin(Ⅱ) complex via binary catalyst system [J]. Chemistry Select, 2022,7(12):e202104450.

        [13]" HASAN K, FOWLER C, KWONG P, et al. Synthesis and structure of iron(Ⅲ) diamine-bis(phenolate) complexes [J]. Dalton Transactions, 2008(22):2991-2998.

        [14]" DEAN R K, FOWLER C I, HASAN K, et al. Magnetic, electrochemical and spectroscopic properties of iron(Ⅲ) amine-bis(phenolate) halide complexes [J]. Dalton Transactions, 2012,41(16):4806-4816.

        [15]" CHOWDHURY R R, CRANE A K, FOWLER C, et al. Iron(Ⅲ) amine-bis(phenolate) complexes as catalysts for the coupling of alkyl halides with aryl Grignard reagents [J]. Chemical Communications, 2008,19(1):94-96.

        [16]" HASAN K, DAWE L N, KOZAK C M. Synthesis, structure, and C-C cross-coupling activity of(amine)bis(phenolato)iron(acac) complexes [J]. European Journal of Inorganic Chemistry, 2011,2011(29):4610-4621.

        [17]" RECKLING A M, MARTIN D, DAWE L N, et al. Structure and C-C cross-coupling reactivity of iron(Ⅲ) complexes of halogenated amine-bis(phenolate) ligands [J]. Journal of Organometallic Chemistry, 2011,696(3):787-794.

        [18]" QIAN X, DAWE L N, KOZAK C M. Catalytic alkylation of aryl grignard reagents by iron(Ⅲ) amine-bis(phenolate) complexes [J]. Dalton Transactions, 2011,40(4):933-943.

        [19]" CHARD E F, DAWE L N, KOZAK C M. Coupling of benzyl halides with aryl Grignard reagents catalyzed by iron(Ⅲ) amine-bis(phenolate) complexes [J]. Journal of Organometallic Chemistry, 2013,737:32-39.

        [20]" WHITEOAK C J, GJOKA B, MARTIN E, et al. Reactivity control in iron(Ⅲ) amino triphenolate complexes: comparison of monomeric and dimeric complexes [J]. Inorganic Chemistry, 2012,51(20):10639-10649.

        [21]" WHITEOAK C J, MARTIN E, BELMONTE M M, et al. An efficient iron catalyst for the synthesis of five- and six-membered organic carbonates under mild conditions [J]. Advanced Synthesis amp; Catalysis, 2012,354(2/3):469-476.

        [22]" SANFORD M J, PENA CARRODEGUAS L, VAN ZEE N J, et al. Alternating copolymerization of propylene oxide and cyclohexene oxide with tricyclic anhydrides: access to partially renewable aliphatic polyesters with high glass transition temperatures [J]. Macromolecules, 2016,49(17):6394-6400.

        [23]" PEA CARRODEGUAS L, MARTíN C, KLEIJ A W. Semiaromatic polyesters derived from renewable terpene oxides with high glass transitions [J]. Macromolecules, 2017,50(14):5337-5345.

        [24]" MARTINEZ DE SARASA BUCHACA M, DE LA CRUZ-MARTINEZ F, MARTINEZ J, et al. Alternating copolymerization of epoxides and anhydrides catalyzed by aluminum complexes [J]. ACS Omega, 2018,3(12):17581-17589.

        [25]" ABEL B A, LIDSTON C A L, COATES G W. Mechanism-inspired design of bifunctional catalysts for the alternating ring-opening copolymerization of epoxides and cyclic anhydrides [J]. Journal of the American Chemical Society, 2019,141(32):12760-12769.

        [26]" BLOECHER N, FRANK K, BONDO M, et al. Copolymerization of propylene oxide and CO2 catalyzed by dinuclear salcy-CoCl complex [J]. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2019,35(7):805-817.

        [27]" SHI D, LI L, WEN Y, et al. Ring-opening copolymerization of epoxycyclohexane and phthalic anhydride catalyzed by the asymmetric salen-CrCl complex [J]. Polymer International, 2020,69(5):513-518.

        [28]" LI Y N, LIU Y, YANG H H, et al. Intramolecular partners in asymmetric catalysis copolymerization: highly enantioselective and controllable at enhanced temperatures and low loadings [J]. Angewandte Chemie International Edition, 2022,61(22):e202202585.

        [29]" ISNARD F, SANTULLI F, COZZOLINO M, et al. Tetracoordinate aluminum complexes bearing phenoxy-based ligands as catalysts for epoxide/anhydride copolymerization: some mechanistic insights [J]. Catalysis Science amp; Technology, 2019,9(12):3090-3098.

        [30]" DARENSBOURG D J, POLAND R R, ESCOBEDO C. Kinetic studies of the alternating copolymerization of cyclic acid anhydrides and epoxides, and the terpolymerization of cyclic acid anhydrides, epoxides, and CO2 catalyzed by(salen)CrⅢCl [J]. Macromolecules, 2012,45(5):2242-2248.

        [31]" DIMENT W T, GREGORY G L, KERR R W F, et al. Catalytic synergy using Al(Ⅲ) and group 1 metals to accelerate epoxide and anhydride ring-opening copolymerizations [J]. ACS Catalysis, 2021,11(20):12532-12542.

        [32]" FIESER M E, SANFORD M J, MITCHELL L A, et al. Mechanistic insights into the alternating copolymerization of epoxides and cyclic anhydrides using a(salph)AlCl and iminium salt catalytic system [J]. Journal of the American Chemical Society, 2017,139(42):15222-15231.

        [33]" HAN B, ZHANG L, YANG M, et al. Highly cis/trans-stereoselective(ONSO)CrCl-catalyzed ring-opening copolymerization of norbornene anhydrides and epoxides [J]. Macromolecules, 2016,49(17):6232-6239.

        [34]" 付云芝,陳笑霖,姚帥琪.尖端Pt負(fù)載納米Au棒的制備及其催化還原4-硝基苯酚[J].中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2024,48(1):176-181.

        FU Yunzhi, CHEN Xiaolin, YAO Shuaiqi.Preparation of Pt-loadedon Au nanorod and its catalytic reduction of 4-nitrophenol [J]. Journal of China University of Petroleum(Edition of Natural Science), 2024,48(1):176-181.

        [35]" 沈靜靜,劉德新,SARSENBEKULY B,等.β-環(huán)糊精對(duì)兩親聚合物黏度與分子量測(cè)定的影響[J].油田化學(xué),2024,41(1):131-137.

        SHEN Jingjing, LIU Dexin, SARSENBEKULY B, et al. Effect of β-ccyclodextrin on the viscosity of amphiphilic polymers and the determination of molecular weight[J]. Oilfield Chemistry, 2024,41(1):131-137.

        [36]" CUI L, REN B H, LU X B. Trinuclear salphen-chromium(Ⅲ)chloride complexes as catalysts for the alternating copolymerization of epoxides and cyclic anhydrides [J]. Journal of Polymer Science, 2021,59(16):1821-1828.

        [37]" XIE R, ZHANG Y Y, YANG G W, et al. Record productivity and unprecedented molecular weight for ring-opening copolymerization of epoxides and cyclic anhydrides enabled by organoboron catalysts [J]. Angewandte Chemie International Edition, 2021,60(35):19253-19261.

        [38]" DE LA CRUZ-MARTINEZ F, MARTINEZ DE SARASA BUCHACA M, DEL CAMPO-BALGUERIAS A, et al. Ring-opening copolymerization of cyclohexene oxide and cyclic anhydrides catalyzed by bimetallic scorpionate zinc catalysts [J]. Polymers, 2021,13(10):1651.

        [39]" DAI W T, TSAI C Y, SU Y C, et al. Ionic cobalt complexes derived from an amine-bis(benzotriazole phenolate) ligand as bifunctional catalysts for copolymerization of epoxides and anhydrides [J]. Polymer, 2021,228:123928.

        [40]" KUMMARI A, PAPPURU S, CHAKRABORTY D. Fully alternating and regioselective ring-opening copolymerization of phthalic anhydride with epoxides using highly active metal-free Lewis pairs as a catalyst [J]. Polymer Chemistry, 2018,9(29):4052-4062.

        [41]" ZHOU Y, DUAN R, LI X, et al. Preparation and thermal properties of polycarbonates/esters catalyzed by using dinuclear salph-Al from ring-opening polymerization of epoxide monomers [J]. Chemistry an Asian Journal, 2017,12(24):3135-3140.

        [42]" VAN ZEE N J, SANFORD M J, COATES G W. Electronic effects of aluminum complexes in the copolymerization of propylene oxide with tricyclic anhydrides: access to well-defined, functionalizable aliphatic polyesters [J]. Journal of the American Chemical Society, 2016,138(8):2755-2761.

        [43]" LIN L, LIANG J, XU Y, et al. Fully alternating sustainable polyesters from epoxides and cyclic anhydrides: economical and metal-free dual catalysis [J]. Green Chemistry, 2019,21(9):2469-2477.

        [44]" HOSTALEK Z, TRHLIKOVA O, WALTEROVA Z, et al. Alternating copolymerization of epoxides with anhydrides initiated by organic bases [J]. European Polymer Journal, 2017,88:433-447.

        [45]" ZHU X, KOU X. Organic bases and protic acids as binary catalysts for ring-opening alternating copolymerization of epoxides and cycle anhydrides [J]. Chemical Papers, 2022,76(4):2145-2152.

        [46]" VAN MEERENDONK W J, DUCHATEAU R, KONING C E, et al. Unexpected side reactions and chain transfer for zinc-catalyzed copolymerization of cyclohexene oxide and carbon dioxide [J]. Macromolecules, 2005,38(17):7306-7313.

        [47]" 祝威,李明軒,韓霞基,等.基于壓裂廢水處理的三元兩性聚合物絮凝劑的合成及性能[J].中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,44(2):151-157.

        ZHU Wei, LI Mingxuan, HAN Xiaji, et al.Synthesis and performance of amphoteric terpolymer flocculant based on fracturing wastewater treatment [J]. Journal of China University of Petroleum( Edition of Natural Science),2020,44(2):151-157.

        [48]" 丁廷稷,王瑞和,徐加放,等.新型溫敏共聚物P(NVCL-co-DMAM)的研制及其對(duì)水基鉆井液低溫流變性調(diào)控[J].中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2021,45(6):87-94.

        DING Tingji, WANG Ruihe, XU Jiafang, et al.Synthesis and evaluation of a temperature-sensitive copolymer P(NVCL-co-DMAM) for its application in controlling low-temperature rheology of water-based drilling fluid [J]. Journal of China University of Petroleum(Edition of Natural Science), 2021,45(6):87-94.

        [49]" 王滿學(xué),何靜,趙小平,等.納米SiO2對(duì)聚合物FRSP-1乳液黏度特性影響[J].西南石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,44(2):168-176.

        WANG Manxue, HE Jing, ZHAO Xiaoping, et al. Effect of nano-silica on the viscosity characteristics of polymer FRSP-1 solution[J]. Journal of Southwest Petroleum University(Science amp; Technology Edition), 2022,44(2):168-176.

        [50]" 楊洋,賀小萱,時(shí)娟,等.高穩(wěn)定性殼聚糖凝膠堵劑的制備與成膠性能評(píng)價(jià)[J].油田化學(xué),2023,40(2):284-290.

        YANG Yang, HE Xiaoxuan, SHI Juan, et al.Preparation and gelation behavior evaluation of ultra-stable chitosan gel plugging agent[J]. Oilfield Chemistry, 2023,40(2):284-290.

        [51]" SI G, ZHANG L, HAN B, et al. Novel chromium complexes with a [OSSO]-type bis(phenolato) dianionic ligand mediate the alternating ring-opening copolymerization of epoxides and phthalic anhydride[J]. Polymer Chemistry, 2015,6(35):6372-6377.

        (編輯" 劉為清)

        人妻被黑人粗大的猛烈进出| 亚洲av无一区二区三区| 国产一区二区三区四区三区| 国产精品免费观看久久| 国产乱人伦AV在线麻豆A| 农村国产毛片一区二区三区女| 加勒比精品视频在线播放| 国产精品理论片| 国产成人亚洲精品91专区手机| 自拍视频国产在线观看| 亚洲精品在线免费视频| 国产白嫩护士被弄高潮| 亚洲无毛片| 在线日本高清日本免费| 国产黄污网站在线观看| 天天夜碰日日摸日日澡| 日本丰满妇人成熟免费中文字幕| 精品午夜中文字幕熟女| 男人国产av天堂www麻豆| 无码粉嫩虎白一线天在线观看| 亚洲嫩草影院久久精品| 亚洲一区二区三区成人网| 蜜臀av色欲a片无码精品一区| 国产精品美女久久久久久久| 亚洲黄片高清在线观看| 久久精品亚州中文字幕| 熟女少妇在线视频播放| 久久精品国产亚洲5555| 凹凸世界视频a一二三| 在办公室被c到呻吟的动态图| 亚洲成在人线av| 国产三级精品三级在线观看粤语| av在线免费观看网站免费| 欧美成人免费全部| 在线观看一区二区女同| 日韩av水蜜桃一区二区三区| 综合色区亚洲熟妇另类| 国产成人精品三级91在线影院| 亚洲黄色大片在线观看| 日本顶级metart裸体全部| 亚洲日韩精品国产一区二区三区|