亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        配肥注肥用蠕動(dòng)泵滑靴結(jié)構(gòu)優(yōu)化和性能試驗(yàn)

        2025-02-11 00:00:00劉青松劉俊萍王鑫建溫興斌

        摘要: 基于蠕動(dòng)泵配肥注肥一體化裝置,針對(duì)蠕動(dòng)泵在工作過(guò)程中由回流現(xiàn)象導(dǎo)致裝置配肥注肥精度降低的問(wèn)題,對(duì)蠕動(dòng)泵中滑靴結(jié)構(gòu)進(jìn)行優(yōu)化,并開(kāi)展水力性能試驗(yàn),以揭示關(guān)鍵結(jié)構(gòu)參數(shù)對(duì)配肥流量、泵管溫度、瞬時(shí)流量、回流系數(shù)的影響規(guī)律.研究結(jié)果表明:在相同蠕動(dòng)泵轉(zhuǎn)速條件下,隨著滑靴半徑增大,配肥流量逐漸減小,而泵管溫度逐漸增大,在半徑為37.5 mm時(shí)達(dá)到最大值,為51.3 ℃,平均回流系數(shù)先減小再增大,在半徑為30.0 mm時(shí)達(dá)到最小值,為0.56;在相同滑靴半徑條件下,隨著蠕動(dòng)泵轉(zhuǎn)速增大,配肥流量逐漸增大,瞬時(shí)流量呈先增大再減小的趨勢(shì),泵管溫度先急劇上升,后趨于穩(wěn)定,而回流系數(shù)呈先減小后增大再減小的趨勢(shì);采用綜合評(píng)分法和熵權(quán)法進(jìn)行分析,獲得最優(yōu)滑靴半徑為30.0 mm,灌溉系統(tǒng)工作中蠕動(dòng)泵轉(zhuǎn)速為30 r/min.研究結(jié)果可為水肥一體化裝置提高施肥精準(zhǔn)性提供一定依據(jù).

        關(guān)鍵詞: 蠕動(dòng)泵;水肥一體化;水力性能;滑靴半徑;綜合評(píng)分法

        中圖分類號(hào): S275.5 文獻(xiàn)標(biāo)志碼: A 文章編號(hào): 1674-8530(2025)01-0024-07

        DOI:10.3969/j.issn.1674-8530.22.0264

        劉青松,劉俊萍,王鑫建,等. 配肥注肥用蠕動(dòng)泵滑靴結(jié)構(gòu)優(yōu)化和性能試驗(yàn)[J]. 排灌機(jī)械工程學(xué)報(bào),2025,43(1):24-30.

        LIU Qingsong, LIU Junping, WANG Xinjian,et al. Structure optimization and performance testing of slipper shoe of peristaltic pump for fertilizer dispensing and injection[J]. Journal of drainage and irrigation machinery engineering(JDIME), 2025, 43(1): 24-30. (in Chinese)

        Structure optimization and performance testing of slipper shoe of

        peristaltic pump for fertilizer dispensing and injection

        LIU Qingsong, LIU Junping*, WANG Xinjian, WEN Xingbin

        (National Research Center of Pumps, Jiangsu University, Zhenjiang, Jiangsu 212013, China)

        Abstract: Based on the integrated device of peristaltic pump for preparing and injecting fertilizer, the problem of reduced precision in fertilizer dispensing and injection caused by reflux phenomenon during the operation of peristaltic pump was studied. The structure of slipper in peristaltic pump for the problem that the precision of fertilizer distribution and injection was carried out, the hydraulic performance was tested to reveal the influence law of key structural parameters on fertilizer distribution flow, pump pipe temperature, instantaneous flow and reverse flow coefficient. The results show that under the same pump speed conditions, with the increase of slipper radius, the flow rate of fertilizer distribution decreases gradually, while the temperature of pump tube gradually increases. At the radius of 37.5 mm, the maximum value of 51.3 ℃ is reached, and the average reverse flow coefficient decreases first and then increases, reaching a minimum value of 0.56 at a radius of 30.0 mm. Under the same slipper radius conditions, with the increase of the rotation speed, the fertilizer distribution mixing flow rate increases gradually, and the instantaneous flow rate shows a trend of first increasing and then decreasing. The temperature of the pump tube rises sharply at first and then tends to be stabilize, while the reverse flow coefficient shows a trend of first decreasing and then increasing and then decreasing. The optimal radius of slipper is calculated as 30.0 mm by means of comprehensive score method and entropy weight method. In the end, it is suggested that the 30 r/min speed of peristaltic pump should be set in irrigation system. The experimental results can provide ideas for the research on improving the precision of fertilization in the integrated device of water and fertilizer.

        Key words: peristaltic pump;integration of water and fertilizer;hydraulic performance;slipper radius;comprehensive scoring method

        水肥一體化技術(shù)可有效解決水資源短缺以及化肥利用率低等問(wèn)題[1-2].施肥裝置安裝在系統(tǒng)的首部或灌水器前端,其性能的優(yōu)劣直接影響灌溉與施肥的質(zhì)量.目前常見(jiàn)的施肥裝置主要有文丘里施肥器、壓差施肥罐、智能水肥一體機(jī)以及比例施肥泵等[3-4].文丘里施肥器與壓差施肥罐造價(jià)便宜、使用方便,但施肥精度較低;智能水肥一體機(jī)與比例施肥泵雖然施肥精準(zhǔn)、施肥濃度可調(diào),但智能水肥一體機(jī)結(jié)構(gòu)較為復(fù)雜且維護(hù)不便,而比例施肥泵對(duì)水質(zhì)的要求較高.文中采用蠕動(dòng)泵作為施肥裝置,蠕動(dòng)泵對(duì)水質(zhì)要求不高,且肥液只與泵管接觸,可實(shí)現(xiàn)配肥注肥一體化等優(yōu)點(diǎn).同時(shí),蠕動(dòng)泵維護(hù)方便、精度高,在水肥一體化應(yīng)用領(lǐng)域具有良好的應(yīng)用前景[5-6].

        蠕動(dòng)泵在農(nóng)業(yè)領(lǐng)域已有諸多應(yīng)用.FERRARI等[7]采用多通道蠕動(dòng)泵為各個(gè)有機(jī)廢物衍生堆肥容器提供穩(wěn)定的氣流.MNICA等[8]開(kāi)發(fā)了一種非破壞性耕作系統(tǒng),利用蠕動(dòng)泵精確輸送營(yíng)養(yǎng)液,研究了植物的動(dòng)態(tài)菌根和非菌根玉米幼苗對(duì)磷的吸收效果.XIE等[9]設(shè)計(jì)了一種將有機(jī)固體肥轉(zhuǎn)換為富含硝酸鹽液體肥的生物反應(yīng)器,采用蠕動(dòng)泵為反應(yīng)器提供原料,并與水完成化學(xué)反應(yīng).黃語(yǔ)燕等[10]設(shè)計(jì)了一種水肥一體化施肥系統(tǒng),通過(guò)蠕動(dòng)泵吸取肥料,按設(shè)定比例將肥料與水混合實(shí)現(xiàn)水肥一體化.徐燦等[11]設(shè)計(jì)了一種水肥一體化裝備,采用蠕動(dòng)泵將母液按照設(shè)定的混合比例注入灌溉管道,以實(shí)現(xiàn)水肥一體化自動(dòng)施肥.孫竹等[12]設(shè)計(jì)了一種采用蠕動(dòng)泵進(jìn)行動(dòng)態(tài)定比例混藥的系統(tǒng),大大提高了混藥的穩(wěn)定性.上述研究中,蠕動(dòng)泵主要實(shí)現(xiàn)單一注肥功能,而沒(méi)有考慮蠕動(dòng)泵結(jié)構(gòu)對(duì)配肥注肥精度的影響.

        文中基于蠕動(dòng)泵配肥注肥一體化裝置,針對(duì)蠕動(dòng)泵在工作過(guò)程中由回流現(xiàn)象導(dǎo)致裝置配肥注肥精度降低的問(wèn)題,對(duì)蠕動(dòng)泵關(guān)鍵結(jié)構(gòu)進(jìn)行優(yōu)化,并開(kāi)展水力性能試驗(yàn),以揭示關(guān)鍵結(jié)構(gòu)參數(shù)對(duì)配肥流量、泵管溫度、瞬時(shí)流量、回流系數(shù)的影響規(guī)律,并獲得最優(yōu)結(jié)構(gòu)參數(shù)值,為水肥一體化裝置提高施肥精準(zhǔn)性研究提供思路.

        1 材料與方法

        1.1 新型水肥一體化裝置

        新型水肥一體化裝置主要包括配肥混肥系統(tǒng)和注肥系統(tǒng)2個(gè)部分,如圖1所示.在配肥混肥系統(tǒng)中,分別開(kāi)通電磁閥A,B,C,啟動(dòng)蠕動(dòng)泵正轉(zhuǎn)將肥液桶中肥液輸送至混肥桶中,其中通過(guò)控制電磁閥開(kāi)通時(shí)間控制輸送肥液量,攪拌均勻完成定比例配肥.在注肥系統(tǒng)中,啟動(dòng)蠕動(dòng)泵反轉(zhuǎn)將混肥桶配比完成的混合液注入外接管路,完成水肥一體化噴灑.

        蠕動(dòng)泵主要分為滾輪式蠕動(dòng)泵與滑靴式蠕動(dòng)泵,其中滑靴式蠕動(dòng)泵依靠滑靴擠壓軟管,滑靴和轉(zhuǎn)子之間連接牢靠,能承受較大的壓力,故滑靴式蠕動(dòng)泵的出口壓力更高,更適用于水肥一體化系統(tǒng).文中選取的20型蠕動(dòng)泵(泵管內(nèi)徑20 mm、外徑60 mm,最大揚(yáng)程120 m),該蠕動(dòng)泵主要由電動(dòng)機(jī)、泵殼、轉(zhuǎn)子、滑靴、泵管等部件組成,如圖2所示.

        泵管緊貼在泵殼上,滑靴固定在轉(zhuǎn)子上,在電動(dòng)機(jī)帶動(dòng)下旋轉(zhuǎn)擠壓泵管,泵管發(fā)生形變產(chǎn)生局部真空,將液體吸入泵管中完成輸送.當(dāng)滑靴釋放泵管時(shí),泵管恢復(fù)變形會(huì)使得部分液體回流至泵管的變形區(qū)域,液體回流將影響配肥注肥精度.

        1.2 試驗(yàn)設(shè)計(jì)與方法

        1.2.1 蠕動(dòng)泵結(jié)構(gòu)方案

        采用四滑靴結(jié)構(gòu)蠕動(dòng)泵進(jìn)行試驗(yàn),四滑靴結(jié)構(gòu)蠕動(dòng)泵相比于其他結(jié)構(gòu)的蠕動(dòng)泵具有更大的流量和更小的回流[13].文中對(duì)滑靴半徑進(jìn)行優(yōu)化,考慮結(jié)構(gòu)限制和滑靴半徑對(duì)泵管摩擦阻力的影響,設(shè)計(jì)滑靴半徑分別取R=27.5,30.0,32.5,35.0,37.5 mm,如圖3所示.

        1.2.2 測(cè)量參數(shù)

        為反映蠕動(dòng)泵配肥注肥一體化裝置在工作過(guò)程中的精準(zhǔn)性,試驗(yàn)測(cè)量了配肥流量、泵管溫度、瞬時(shí)流量以及回流系數(shù)等參數(shù).試驗(yàn)系統(tǒng)如圖4所示.

        采用定時(shí)計(jì)體積法測(cè)量配肥流量.與其他輸送介質(zhì)相比,肥液與常溫清水的黏度差別較?。ǚ室汉统厍逅酿ざ确謩e為2.20×10-3,1.01×10-3 Pa·s),文中以常溫清水作為輸送介質(zhì),蠕動(dòng)泵運(yùn)行穩(wěn)定后,記錄5 min將量杯1(精度0.1 L)泵送至量杯2的體積,電動(dòng)機(jī)變頻器(精度0.1 Hz)以10.0 Hz為間隔調(diào)節(jié)直至頻率增大至90.0 Hz.同時(shí),在試驗(yàn)過(guò)程中采用轉(zhuǎn)速儀(AR非接觸式測(cè)速儀)測(cè)量轉(zhuǎn)速,每組測(cè)量3次,取平均值.

        蠕動(dòng)泵在90.0 Hz時(shí)的最大轉(zhuǎn)速下運(yùn)行,以5 min為時(shí)間間隔,采用測(cè)溫儀(型號(hào)希瑪AT-380,精度±2 ℃)測(cè)量泵管溫度直至穩(wěn)定,每組測(cè)量3次,取平均值.

        蠕動(dòng)泵在運(yùn)行過(guò)程中存在脈動(dòng)回流,使得蠕動(dòng)泵管內(nèi)液體出現(xiàn)“傳輸-回流-傳輸”現(xiàn)象.采用稱重傳感器(大洋平膜盒式荷重傳感器DYMH-105)記錄蠕動(dòng)泵出口液體的質(zhì)量變化.電動(dòng)機(jī)變頻器以10.0 Hz為間隔調(diào)節(jié)直至頻率增大至90.0 Hz,當(dāng)蠕動(dòng)泵運(yùn)行穩(wěn)定后,測(cè)量出口液體質(zhì)量,并通過(guò)計(jì)算機(jī)輸出質(zhì)量隨時(shí)間變化的曲線.瞬時(shí)流量[14]為

        Q=3 600m2-m1ρt,(1)

        式中:Q為瞬時(shí)流量;m2為當(dāng)前清水質(zhì)量;m1為前1.0 s時(shí)的清水質(zhì)量;ρ為清水密度;t為蠕動(dòng)泵運(yùn)行時(shí)間.

        采用回流系數(shù)評(píng)價(jià)蠕動(dòng)泵的回流程度,即

        η=QhQs+Qh,(2)

        式中:η為回流系數(shù);Qh為蠕動(dòng)泵運(yùn)行中回流流量;Qs為蠕動(dòng)泵實(shí)際流量.

        2 結(jié)果與分析

        2.1 滑靴半徑對(duì)配肥流量的影響

        圖5為不同滑靴半徑R時(shí)蠕動(dòng)泵配肥流量Q與轉(zhuǎn)速n的變化關(guān)系.

        由圖5可以看出:當(dāng)轉(zhuǎn)速為10 r/min時(shí),不同滑靴半徑的蠕動(dòng)泵配肥流量基本不變,說(shuō)明在低轉(zhuǎn)速時(shí),滑靴半徑對(duì)配肥流量的影響較?。粡霓D(zhuǎn)速20 r/min開(kāi)始,蠕動(dòng)泵配肥流量開(kāi)始隨滑靴半徑的變化而變化,當(dāng)滑靴半徑為27.5 mm時(shí),配肥流量最大;當(dāng)滑靴半徑為32.5 mm時(shí),配肥流量的變化幅度為-7.80%~-4.10%;當(dāng)滑靴半徑為37.5 mm時(shí),配肥流量最小,配肥流量的變化幅度為-7.87%~0.90%.

        由此可以看出,隨著滑靴半徑的增大,相同轉(zhuǎn)速時(shí)的配肥流量呈逐漸減小的變化趨勢(shì).這可能是由于隨著滑靴半徑的增加,泵管受2個(gè)滑靴擠壓產(chǎn)生的液體體積逐漸減少.在任一滑靴結(jié)構(gòu)下,配肥流量隨著轉(zhuǎn)速增大而增大.當(dāng)轉(zhuǎn)速為50 r/min時(shí),配肥流量的增大量最大,最大值為70.0~85.6 L/h.這可能是由于蠕動(dòng)泵在轉(zhuǎn)速為50 r/min時(shí)的回流量較少,使得配肥流量的增大量較大.

        2.2 滑靴半徑對(duì)泵管溫度的影響

        泵管溫度反映了泵管受滑靴擠壓受損的程度,圖6為不同滑靴半徑時(shí)蠕動(dòng)泵泵管溫度T隨時(shí)間t的變化關(guān)系.

        由圖6可以看出:整體上,當(dāng)滑靴半徑一定時(shí),隨著時(shí)間的增加,泵管溫度呈逐漸增大的趨勢(shì);在0~20 min時(shí),滑靴擠壓泵管產(chǎn)生的熱量傳導(dǎo)在泵管上,使得泵管溫度在短時(shí)間內(nèi)迅速上升;在運(yùn)行平穩(wěn)后,滑靴擠壓泵管產(chǎn)生熱量的速度與熱量向周圍環(huán)境傳遞的速度趨于平衡,使得泵管的溫度趨于穩(wěn)定;在轉(zhuǎn)速一定時(shí),隨著滑靴半徑的增大,泵管的溫度逐漸增大,其中R=37.5 mm時(shí)泵管溫度達(dá)到最大值,為51.3 ℃.這可能是由于滑靴半徑增大導(dǎo)致泵管與滑靴的接觸面積增大,轉(zhuǎn)動(dòng)阻力增大,泵管的磨損程度增大,產(chǎn)生的熱量增多.

        2.3 滑靴半徑對(duì)回流系數(shù)的影響

        受限于蠕動(dòng)泵結(jié)構(gòu),蠕動(dòng)泵在運(yùn)行時(shí)產(chǎn)生回流現(xiàn)象,對(duì)配肥注肥精度造成影響.圖7為不同轉(zhuǎn)速下,不同滑靴半徑時(shí)蠕動(dòng)泵的回流系數(shù)η.

        由圖7可以看出:不同滑靴半徑時(shí),蠕動(dòng)泵回流系數(shù)均隨轉(zhuǎn)速增大呈先減小后增大再減小的趨勢(shì),并在轉(zhuǎn)速為50 r/min時(shí)略有降低;在轉(zhuǎn)速為0~30 r/min時(shí),提高轉(zhuǎn)速增大了滑靴擠壓軟管的頻率,使得回流量減少,回流系數(shù)降低,蠕動(dòng)泵在轉(zhuǎn)速為30 r/min時(shí)回流系數(shù)最??;在轉(zhuǎn)速為30~70 r/min時(shí),隨著轉(zhuǎn)速提高,滑靴離開(kāi)泵管的速度增大,液體回流量增大,使得回流系數(shù)變大;隨著轉(zhuǎn)速的持續(xù)提高,在轉(zhuǎn)速為70~90 r/min時(shí),回流系數(shù)開(kāi)始下降,這主要是因?yàn)檗D(zhuǎn)速過(guò)大,導(dǎo)致液體回流的時(shí)間過(guò)短,從而使得回流量減少.

        圖8為不同滑靴半徑時(shí)蠕動(dòng)泵的平均回流系數(shù)η曲線.

        由圖8可以看出:隨著滑靴半徑增大,平均回流系數(shù)呈先減小后增大的趨勢(shì),當(dāng)滑靴半徑為37.5 mm時(shí),平均回流系數(shù)最大,為0.70;當(dāng)滑靴半徑為30.0 mm時(shí),平均回流系數(shù)最小,為0.56.這可能是由于滑靴半徑變大時(shí),泵管內(nèi)的接觸面積也隨之增大,泵管恢復(fù)變形時(shí)使得更多的液體回流至變形區(qū)域,導(dǎo)致回流量增加,回流系數(shù)增大.當(dāng)滑靴半徑過(guò)小時(shí),為了保證泵管完全閉合,泵管內(nèi)的接觸面積變小,使得泵管變形過(guò)大,從而回流量增加,回流系數(shù)增大.

        2.4 轉(zhuǎn)速對(duì)瞬時(shí)流量的影響

        圖9為滑靴半徑R=30.0 mm時(shí),不同轉(zhuǎn)速下蠕動(dòng)泵瞬時(shí)流量變化曲線,可以看出:轉(zhuǎn)速對(duì)蠕動(dòng)泵瞬時(shí)流量有較大影響,在轉(zhuǎn)速為10 r/min時(shí),瞬時(shí)流量的周期較長(zhǎng),單位時(shí)間內(nèi)回流的頻率也較高,這可能是由于蠕動(dòng)泵具有容積泵的特性,轉(zhuǎn)速較低延長(zhǎng)了泵送周期,滑靴釋放軟管的時(shí)間較短,導(dǎo)致單位時(shí)間內(nèi)流體回流的頻率也較高;在轉(zhuǎn)速大于20 r/min后,單位時(shí)間內(nèi)瞬時(shí)流量的變化也逐漸變大;隨著轉(zhuǎn)速持續(xù)增大,瞬時(shí)流量呈先增大后減小的變化趨勢(shì),當(dāng)轉(zhuǎn)速為70 r/min時(shí),最大瞬時(shí)流量為100.7 L/h,隨后開(kāi)始下降,下降幅度為29.7%~42.8%;在轉(zhuǎn)速為80~90 r/min時(shí),單位時(shí)間內(nèi)雖然最大瞬時(shí)流量小于70 r/min時(shí),但其累計(jì)流量高于70 r/min時(shí)的流量.

        2.5 水力性能綜合評(píng)價(jià)

        采用歸一化法對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理[15],并對(duì)試驗(yàn)結(jié)果采用綜合評(píng)分法進(jìn)行分析選優(yōu)[16].正向指標(biāo)為

        xij=yij-min yijmax yij-min yij,(3)

        負(fù)向指標(biāo)為

        xij=max yij-yijmax yij-min yij,(4)

        各項(xiàng)綜合評(píng)分為

        Si=∑mi=1wjxij,(5)

        以上式中:xij為數(shù)據(jù)標(biāo)準(zhǔn)化處理后的數(shù)值;xij為試驗(yàn)數(shù)據(jù);max yij為每個(gè)指標(biāo)的最大值;min yij為每個(gè)指標(biāo)的最小值;Si為綜合評(píng)價(jià)的綜合值;wj為各項(xiàng)指標(biāo)的權(quán)重.

        流量為正向指標(biāo),泵管溫度與回流系數(shù)為負(fù)向指標(biāo).選擇客觀性與適應(yīng)性較強(qiáng)的熵權(quán)法進(jìn)行權(quán)重賦值[17-18],配肥流量、泵管溫度、平均回流系數(shù)的權(quán)重值分別為0.319,0.353,0.327.Si值越大,即表示綜合評(píng)分越高,結(jié)果越優(yōu).

        將試驗(yàn)數(shù)據(jù)與權(quán)重值分別代入式(3)—(5)進(jìn)行計(jì)算,蠕動(dòng)泵水力性能得到綜合評(píng)價(jià)的綜合值如表1所示.

        由表1可以看出,滑靴半徑為27.5 mm時(shí),綜合評(píng)分最高為0.90,滑靴半徑為30.0 mm時(shí)的綜合評(píng)分次之.雖然蠕動(dòng)泵滑靴半徑為27.5 mm時(shí)的綜合評(píng)分最高,但是滑靴半徑過(guò)小,使得泵管變形過(guò)大,更易磨損,不利于蠕動(dòng)泵長(zhǎng)時(shí)間穩(wěn)定工作[19].同時(shí),與滑靴半徑為32.5 mm時(shí)相比,滑靴半徑為30.0 mm時(shí)蠕動(dòng)泵平均回流系數(shù)更小,泵管溫度更低,磨損程度更低.

        考慮綜合評(píng)分結(jié)果和水肥一體化系統(tǒng)實(shí)際應(yīng)用中對(duì)精度要求較高[20],蠕動(dòng)泵的滑靴半徑優(yōu)先選擇為30.0 mm.一般作物肥液噴灑體積分?jǐn)?shù)要求不超過(guò)0.3%,其中尿素為0.4%~0.6%.當(dāng)水肥一體化流量為13~38 m3/h時(shí),根據(jù)作物肥液體積分?jǐn)?shù)要求,蠕動(dòng)泵工作流量為39~228 L/h.

        3 結(jié) 論

        對(duì)蠕動(dòng)泵滑靴結(jié)構(gòu)進(jìn)行優(yōu)化,在不同滑靴半徑及轉(zhuǎn)速下分別測(cè)量了蠕動(dòng)泵的配肥流量、泵管溫度、瞬時(shí)流量和回流系數(shù),并進(jìn)行蠕動(dòng)泵水力性能綜合評(píng)價(jià),得到結(jié)論如下:

        1) 在相同轉(zhuǎn)速下,隨著滑靴半徑增大,蠕動(dòng)泵配肥流量逐漸減小,泵管溫度逐漸升高,在滑靴半徑為37.5 mm時(shí)達(dá)到最大值51.3 ℃,平均回流系數(shù)呈先減小后增大的變化趨勢(shì),并在半徑為30.0 mm時(shí)達(dá)到最小值0.56.

        2) 在相同滑靴半徑下,隨著轉(zhuǎn)速增大,蠕動(dòng)泵最大瞬時(shí)流量呈先增大后減小的變化趨勢(shì),回流系數(shù)呈先減小后增大再減小的趨勢(shì),在轉(zhuǎn)速為50 r/min時(shí)略有降低,各蠕動(dòng)泵結(jié)構(gòu)在轉(zhuǎn)速為30 r/min時(shí)回流系數(shù)最小.

        3) 采用綜合評(píng)分法對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行評(píng)價(jià),并綜合考慮實(shí)際運(yùn)行時(shí)的配肥注肥精度以及泵管壽命,建議蠕動(dòng)泵滑靴半徑優(yōu)先選擇為30.0 mm.

        參考文獻(xiàn)(References)

        [1] 趙峰, 李寒松, 孔凡祝, 等. 我國(guó)節(jié)水灌溉技術(shù)發(fā)展現(xiàn)狀與趨勢(shì)[J]. 農(nóng)業(yè)裝備與車輛工程, 2018, 56(2): 25-28.

        ZHAO Feng, LI Hansong, KONG Fanzhu, et al. Deve-lopment status and trend of water saving irrigation technology in China [J]. Agricultural equipment and vehicle engineering, 2018, 56 (2): 25-28. (in Chinese)

        [2] WANG Z, YANG X, LI J. Effect of phosphorus-coupled nitrogen fertigation on clogging in drip emitters when applying saline water[J]. Irrigation science, 2020, 38(4): 337-351.

        [3] 劉俊萍, 朱興業(yè), 袁壽其, 等. 中國(guó)農(nóng)業(yè)節(jié)水噴微灌裝備研究進(jìn)展及發(fā)展趨勢(shì)[J]. 排灌機(jī)械工程學(xué)報(bào), 2022, 40(1): 87-96.

        LIU Junping, ZHU Xingye, YUAN Shouqi, et al. Research and development trend of agricultural water-saving sprinkler and micro-irrigation equipment in China[J]. Journal of drainage and irrigation machinery engineering, 2022, 40(1): 87-96. (in Chinese)

        [4] 李紅, 湯攀, 陳超,等. 中國(guó)水肥一體化施肥設(shè)備研究現(xiàn)狀與發(fā)展趨勢(shì)[J]. 排灌機(jī)械工程學(xué)報(bào), 2021, 39(2): 200-209.

        LI Hong, TANG Pan, CHEN Chao, et al. Research status and development trend of ftilization equipment used in fertigation in China[J]. Journal of drainage and irrigation machinery engineering, 2021, 39(2): 200-209. (in Chinese)

        [5] 劉彩玲, 李方林, 姜萌,等. 點(diǎn)膠-紙帶式小粒徑種子蔬菜精密播種機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2022, 38(13): 20-29.

        LIU Cailing, LI Fanglin, JIANG Meng, et al. Design and experiment of the spotting glue-paper tape precision seeder for small seed vegetables[J]. Transactions of the CSAE, 2022, 38(13): 20-29. (in Chinese)

        [6] MA X, ZHANG L, WANG D, et al. The shell shape optimization and fluid-structure interaction simulation of hose pump in water-fertilizer integrated fertilizer application[J]. Scientific reports, 2022, 12(1): 3284.

        [7] FERRARI D G, HOWELL G, ASPRAY T J. Improved precision and efficiency of a modified ORG0020 dynamic respiration test setup for compost stability assessment[J]. Sustainability, 2017, 9(12) :2358.

        [8] MNICA G, MARYLINE C, KATIA P,et al. Dynamics of short-term phosphorus uptake by intact mycorrhizal and non-mycorrhizal maize plants grown in a circulatory semi-hydroponic cultivation system[J]. Frontiers in plant science, 2017, 8: 285559.

        [9] XIE Y, MARC S, SIEGFRIED E V. A bioreactor and nutrient balancing approach for the conversion of solid organic fertilizers to liquid nitrate-rich fertilizers: mine-ralization and nitrification performance complemented with economic aspects[J]. Science of the total environment, 2022, 6:107-112.

        [10] 黃語(yǔ)燕, 劉善文, 陳永快,等.溫室基質(zhì)栽培水肥一體化施肥系統(tǒng)的構(gòu)建[J]. 江蘇農(nóng)業(yè)科學(xué), 2019, 47(21): 278-281.

        HUANG Yuyan, LIU Shanwen, CHEN Yongkuai, et al. Construction of water and fertilizer integrated fertilization system for greenhouse substrate cultivation [J]. Jiangsu agricultural science, 2019, 47(21): 278-281. (in Chinese)

        [11] 徐燦, 劉霓紅, 程俊峰,等. 基于蠕動(dòng)泵的水肥藥一體化裝備設(shè)計(jì)與試驗(yàn)[J].農(nóng)機(jī)化研究, 2022, 44(4): 63-70.

        XU Can, LIU Nihong, CHENG Junfeng, et al. Design and test of water, fertilizer and medicine integrated equipment based on peristaltic pump[J]. Journal of agricultural mechanization research, 2022, 44(4): 63-70. (in Chinese)

        [12] 孫竹, 薛新宇, 顧偉,等. 微小型注入式直流混藥器設(shè)計(jì)與實(shí)驗(yàn)[J]. 中國(guó)農(nóng)機(jī)化學(xué)報(bào), 2016, 37(3): 66-69.

        SUN Zhu, XUE Xinyu, GU Wei, et al. Design and experiment of micro direct-current injection mixer[J]. Journal of Chinese agricultural mechanization, 2016, 37(3): 66-69. (in Chinese)

        [13] 劉俊萍, 李吉鵬, 史永杰,等. 水肥一體化灌溉裝置蠕動(dòng)泵結(jié)構(gòu)優(yōu)化[J]. 節(jié)水灌溉, 2021(2): 70-74.

        LIU Junping, LI Jipeng, SHI Yongjie, et al. Structure optimization of peristaltic pump in water fertilizer integrated irrigation device[J].Water saving irrigation, 2021(2): 70-74. (in Chinese)

        [14] 李寧, 袁航. 蠕動(dòng)泵脈動(dòng)產(chǎn)生原因及抑制方法[J]. 質(zhì)量技術(shù)監(jiān)督研究, 2020(1): 26-30.

        LI Ning, YUAN Hang. Discussion on methods of redu-cing pulsation of peristaltic pump[J]. Market regulation and quality technology research, 2020(1): 26-30. (in Chinese)

        [15] GUO R, ZHAO Z, ZHOU J, et al. Reliability evalua-tion of piston pump based on comprehensive evaluation index[J]. Journal of testing and evaluation, 2021, 49(5): 3716-3733.

        [16] 郭永磊, 鄭建新, 朱立新, 等. 耦合空化效應(yīng)的超聲滾壓系統(tǒng)流場(chǎng)結(jié)構(gòu)優(yōu)化設(shè)計(jì)[J]. 表面技術(shù), 2022, 51(3): 186-191.

        GUO Yonglei,ZHENG Jianxin,ZHU Lixin,et al. Structural optimization design of ultrasonic rolling system with coupled cavitation effect[J]. Surface technology, 2022, 51(3): 186-191. (in Chinese)

        [17] 倪成良, 江錦波, 彭旭東, 等. 浸酚醛樹(shù)脂石墨與9Cr18不銹鋼配副的摩擦磨損正交試驗(yàn)研究[J]. 流體機(jī)械, 2019, 47(4): 1-5.

        NI Chengliang, JIANG Jinbo, PENG Xudong, et al. Orthogonal experimental study on tribological behavior of phenolic resin impregnated Graphite-9Cr18 stainless steel friction pairs in a mechanical seal[J]. Fluid machinery, 2019, 47(4): 1-5. (in Chinese)

        [18] 陳歲繁,張小猛,李其朋,等.垂直螺旋輸送機(jī)輸送特性及其參數(shù)優(yōu)化研究[J]. 機(jī)電工程, 2023, 40(5): 746-756.

        CHEN Suifan, ZHANG Xiaomeng, LI Qipeng, et al. Conveying characteristics and parameter optimization of vertical screw conveyor[J]. Journal of mechanical amp; electrical engineering, 2023, 40(5): 746-756. (in Chinese)

        [19] SAUNIER J, YAGOUBI N. Investigating the stator dynamic flexural and compressive stresses on flexible tubing: comparison of clamp and peristaltic pump impact on surface damages and particles leaching during infusionacts[J]. Journal of the mechanical behavior of biomedical materials, 2021, 123: 104737.

        [20] 李吉鵬. 基于蠕動(dòng)泵配肥注肥的水肥一體化噴灌系統(tǒng)設(shè)計(jì)及試驗(yàn)[D]. 鎮(zhèn)江:江蘇大學(xué), 2021.

        (責(zé)任編輯 陳建華)

        收稿日期: 2022-11-03; 修回日期: 2023-01-29; 網(wǎng)絡(luò)出版時(shí)間: 2025-01-07

        網(wǎng)絡(luò)出版地址: https://link.cnki.net/urlid/32.1814.th.20250106.1329.008

        基金項(xiàng)目: 江蘇省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目 (BE2021341);江蘇大學(xué)農(nóng)業(yè)裝備學(xué)部科研項(xiàng)目(NZXB20210101)

        第一作者簡(jiǎn)介: 劉青松(1996—),男,吉林扶余人,碩士研究生(1061014554@qq.com),主要從事流體機(jī)械及排灌機(jī)械研究.

        通信作者簡(jiǎn)介: 劉俊萍(1982—),女,遼寧海城人,副研究員(liujp@ujs.edu.cn),主要從事流體機(jī)械及排灌機(jī)械研究.

        7777精品伊人久久久大香线蕉| av有码在线一区二区三区| 麻豆三级视频网站在线观看| 永久免费观看的黄网站在线| 国内嫩模自拍诱惑免费视频 | 永久天堂网av手机版| 亚洲日产一线二线三线精华液 | 中文字幕精品乱码一二三区| 黑丝美腿国产在线观看| 99e99精选视频在线观看| 亚洲av成人片色在线观看高潮| 男人靠女人免费视频网站| 亚洲中文字幕无码爆乳av| 狼友AV在线| 青青草最新在线视频观看| 日本黄色特级一区二区三区| 日本一区二区三区亚洲| 国产成人av一区二区三区在线观看| 午夜精品久久久久久99热| 在线亚洲欧美日韩精品专区| 超薄肉色丝袜一区二区| 久久精品国产亚洲黑森林| 初尝人妻少妇中文字幕在线| 人妻中文字幕一区二区视频| 欧美性猛交xxxx乱大交极品| 国产人妻精品无码av在线| 亚洲男人天堂| 亚洲精品国产精品av| 一区二区三区观看视频在线| 337p日本欧洲亚洲大胆色噜噜| 少妇愉情理伦片高潮日本| av片在线观看免费| 人妻少妇看A偷人无码电影| 国产av一区二区制服丝袜美腿 | 国产精品99无码一区二区| 人妻少妇精品专区性色av| 精品国产香蕉伊思人在线又爽又黄| 亚洲一区二区三区免费av在线| 亚洲精品中文字幕91| 人禽杂交18禁网站免费| 日本高清视频www|