亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        核盤菌致病機(jī)制研究進(jìn)展

        2025-02-06 00:00:00潘洪玉李亞嵐孫洪宇肖坤欽

        摘要: 核盤菌(Sclerotinia sclerotiorum (Lib.) de Bary)是世界性的死體營(yíng)養(yǎng)型植物病原真菌, 寄主范圍極廣, 所引起的大豆和油菜等菌核病會(huì)導(dǎo)致農(nóng)業(yè)生產(chǎn)的巨大經(jīng)濟(jì)損失. 核盤菌致病機(jī)制復(fù)雜, 不僅具有直接殺死細(xì)胞的典型死體營(yíng)養(yǎng)階段, 也包含需抑制植物免疫的短暫活體營(yíng)養(yǎng)期. 核盤菌具有種類繁多的致病因子, 包括介導(dǎo)侵染結(jié)構(gòu)形成或抗逆能力的關(guān)鍵調(diào)控因子、 降解植物細(xì)胞組分的水解酶、 草酸、 誘導(dǎo)植物細(xì)胞死亡或抑制植物免疫的效應(yīng)蛋白等. 綜述核盤菌侵染模型, 總結(jié)各種致病因子, 尤其是效應(yīng)蛋白在核盤菌致病中的作用, 并結(jié)合最新研究結(jié)果對(duì)核盤菌致病新機(jī)制進(jìn)行展望, 為作物菌核病的防控提供理論依據(jù).

        關(guān)鍵詞:" 核盤菌; 致病機(jī)制; 致病因子; 效應(yīng)蛋白

        中圖分類號(hào): Q71" 文獻(xiàn)標(biāo)志碼: A" 文章編號(hào): 1671-5489(2025)01-0253-09

        Research Advances on Pathogenic Mechanism of Sclerotinia sclerotiorum

        PAN Hongyu, LI Yalan, SUN Hongyu," XIAO Kunqin

        (College of Plant Sciences," Jilin University," Changchun" 130062," China)

        收稿日期: 2024-11-22.

        第一作者簡(jiǎn)介:""" 潘洪玉(1961—)," 男," 漢族," 博士," 教授," 博士生導(dǎo)師, 從事植物病原真菌發(fā)育調(diào)控及其抗病基因工程的研究, E-mail: panhongyu@jlu.edu.cn. 通信作者簡(jiǎn)介:" 肖坤欽(1996—)," 男," 漢族," 博士, 助理工程師," 從事核盤菌與寄主互作機(jī)制的研究, E-mail: xiaokq@jlu.edu.cn.

        基金項(xiàng)目: 吉林大學(xué)研究生教育教學(xué)改革重點(diǎn)項(xiàng)目(批準(zhǔn)號(hào): 2023JGZ012)、 國(guó)家自然科學(xué)基金(批準(zhǔn)號(hào): 32272484; 323B2055)和國(guó)家重點(diǎn)研發(fā)計(jì)劃政府間科技創(chuàng)新合作專項(xiàng)基金(批準(zhǔn)號(hào): 2019YFE0114200).

        Abstract:"" Sclerotinia sclerotiorum (Lib.) de Bary is a worldwide and necrotrophic phytopathogenic fungi with a wide host-range. Sclerotinia stem rot (SSR) caused in soybean and rapeseed by S.sclerotiorum has caused huge economic losses to agricultural production. The pathogenic mechanism of S.sclerotiorum is complicated," which not only has a necrotrophic phase that directly kills cells," but also includes a short biotrophic phase that needs to suppress plant immunity. S.sclerotiorum has a wide variety of pathogenic factors," including key regulatory factors that mediate the formation of infection structure or stress resistance," hydrolytic enzymes that degrade plant cell components," oxalic acid," effector that induce plant cell death or inhibit plant immunity," etc. We have reviewed the infection model of S.sclerotiorum, summarized" the roles of various pathogenic factors," especially effector proteins," in the pathogenesis of S.sclerotiorum. Combined with the latest research," we have prospected the new pathogenic mechanism of S.sclerotiorum,"" providing theoretical basis for the prevention and control of crop Sclerotinia diaease.

        Keywords: Sclerotinia sclerotiorum; pathogenic mechanism; pathogenic factor; effector proctein

        核盤菌(Sclerotinia sclerotiorum (Lib.) de Bary)隸屬子囊菌門, 核盤菌屬, 在世界范圍內(nèi)廣泛分布[1]. 已知核盤菌可侵染超過(guò)700余種植物, 是典型的廣寄主性死體營(yíng)養(yǎng)型植物病原真菌, 侵染導(dǎo)致的植物病害稱為菌核?。?]. 在農(nóng)業(yè)生產(chǎn)上, 菌核病對(duì)大豆、 油菜、 向日葵等油料作物和多種蔬菜作物的生產(chǎn)危害巨大. 由于核盤菌致病機(jī)制復(fù)雜、 抗性種質(zhì)資源匱乏, 因此菌核病防控已成為世界性難題. 核盤菌具有典型的多形菌態(tài), 包括菌絲、 菌絲侵染時(shí)特化形成的侵染結(jié)構(gòu)-侵染墊、 菌絲在逆境下聚集產(chǎn)生的可越冬形態(tài)及初侵染源-菌核、 菌核在適宜條件下萌發(fā)產(chǎn)生的有性態(tài)-子囊盤和子囊盤產(chǎn)生可傳播的有性孢子-子囊孢子等, 菌核也可萌發(fā)形成菌絲繼續(xù)侵染[3]. 這種多形菌態(tài)的生活史是菌核病頻繁流行和難防難控的關(guān)鍵原因, 多個(gè)介導(dǎo)侵染墊形成、 菌核發(fā)育或抗逆性的關(guān)鍵調(diào)控因子影響核盤菌致病性[4]. 目前普遍認(rèn)為核盤菌侵染可分為兩個(gè)階段: 1) 早期通過(guò)分泌效應(yīng)蛋白抑制寄主的基礎(chǔ)免疫反應(yīng), 屬活體營(yíng)養(yǎng)期; 2) 后期利用草酸、 細(xì)胞壁降解酶及誘導(dǎo)植物細(xì)胞死亡的蛋白殺死寄主細(xì)胞, 攫取營(yíng)養(yǎng), 屬典型死體營(yíng)養(yǎng)階段[5]. 多項(xiàng)研究已證明草酸、 細(xì)胞壁降解酶、 效應(yīng)蛋白均在核盤菌致病過(guò)程中發(fā)揮重要作用[6]. 本文總結(jié)了核盤菌致病機(jī)制的研究進(jìn)展, 并結(jié)合最新研究成果對(duì)核盤菌致病新機(jī)制進(jìn)行展望, 為闡明菌核病成災(zāi)機(jī)制、 有效防控菌核病發(fā)生和危害提供參考.

        1 死體營(yíng)養(yǎng)型核盤菌兩階段侵染假說(shuō)

        以往研究[1]認(rèn)為核盤菌是典型的死體營(yíng)養(yǎng)型真菌, 但目前的遺傳學(xué)、 組織學(xué)染色和細(xì)胞學(xué)觀察證據(jù)均表明, 核盤菌在侵染早期存在一個(gè)明顯的、 典型的、 短暫的活體營(yíng)養(yǎng)階段, 開始時(shí)間和持續(xù)時(shí)間根據(jù)寄主的特征不同而不同[5,7-8]. 在該階段, 核盤菌不會(huì)導(dǎo)致侵染點(diǎn)周圍的寄主細(xì)胞死亡, 并且需抑制植物免疫以促進(jìn)菌絲的生存和后續(xù)的侵染進(jìn)程[9-11]. 根據(jù)侵染過(guò)程的先后順序分為如下幾個(gè)過(guò)程: 1) 侵染墊及衍生的侵染釘利用機(jī)械壓力打破寄主的角質(zhì)層(可能也包括各種蠟質(zhì)層), 但不穿透進(jìn)入寄主的表皮細(xì)胞[12-13]; 2) 在角質(zhì)層下, 從這些侵染釘中分化形成球莖狀和多葉狀的囊泡結(jié)構(gòu), 然后囊泡繼續(xù)生長(zhǎng)形成角質(zhì)層下的侵染性菌絲[14]; 3) 這些侵染性菌絲可持續(xù)在角質(zhì)層下水平生長(zhǎng)達(dá)數(shù)層菌絲, 此時(shí)不會(huì)殺死寄主表皮細(xì)胞而是抑制植物免疫, 包括抑制胼胝質(zhì)和乳突的沉積、 活性氧(ROS)積累、 芥子油苷等次生代謝物的防御壁壘, 處于典型的活體營(yíng)養(yǎng)階段, 與寄主進(jìn)行親和性互作, 這些菌絲構(gòu)成了主要的定殖陣地, 代表建立侵染和初步定殖完成[7,10,13]; 4) 隨后菌絲沿細(xì)胞間隙產(chǎn)生大量分支并利用各種細(xì)胞壁降解酶、 草酸和其他致病因子逐漸軟化分解表皮細(xì)胞壁, 侵入細(xì)胞后導(dǎo)致細(xì)胞壁崩解和細(xì)胞死亡并攫取死亡細(xì)胞的營(yíng)養(yǎng)成分[12]; 5) 上述過(guò)程逐步沿侵染點(diǎn)周圍的表皮細(xì)胞向遠(yuǎn)端和深層細(xì)胞持續(xù)進(jìn)行, 在侵染性菌絲的最前端繼續(xù)采用活體營(yíng)養(yǎng)方式擴(kuò)展, 而分支菌絲降解細(xì)胞壁、 誘導(dǎo)和殺死寄主細(xì)胞、 攫取營(yíng)養(yǎng), 最終形成病變組織的擴(kuò)展[5,7].

        2 侵染墊形成及抗逆對(duì)其致病性的決定作用

        除少數(shù)通過(guò)傷口侵染時(shí)不需侵染結(jié)構(gòu)外, 形成侵染墊是核盤菌定殖和侵染的前提, 因此侵染墊的形成和發(fā)育對(duì)核盤菌的致病至關(guān)重要. 遺傳學(xué)研究已證實(shí)多個(gè)調(diào)控因子通過(guò)介導(dǎo)侵染墊形成和發(fā)育決定核盤菌致病性[4-6], 綜合來(lái)看, 核盤菌侵染墊的形成至少涉及對(duì)寄主或堅(jiān)硬基質(zhì)的感知、 絲裂原活化蛋白激酶(mitogen-actived protein kinases," MAPKs)和RAS(rat sarcoma)等信號(hào)傳導(dǎo)通路、 幾個(gè)關(guān)鍵轉(zhuǎn)錄因子介導(dǎo)的轉(zhuǎn)錄重編程、 細(xì)胞自噬和非典型調(diào)控因子作用等5個(gè)層面. 例如, 一個(gè)位于細(xì)胞表面的SsCFEM蛋白在感知植物蠟質(zhì)層和堅(jiān)硬基質(zhì)上發(fā)揮重要作用, 因此將其敲除后導(dǎo)致侵染墊形成的能力顯著降低, 進(jìn)而降低了致病力[15]. MAPKs的細(xì)胞壁完整性通路介導(dǎo)了對(duì)細(xì)胞壁擾動(dòng)的感知和信號(hào)傳導(dǎo), 研究表明該通路的幾個(gè)核心組分SsPkc1,SsBck1,SsMkk1和SsSmk3均負(fù)責(zé)調(diào)控侵染墊的形成和發(fā)育, 它們敲除突變體的侵染墊水平和致病力均大幅度減少[16]. 另一個(gè)MAPKs通路SsSte50-SsSte11-SsSte7-SsSmk1也調(diào)控了侵染墊的形成, 甚至敲除SsSmk1后導(dǎo)致其侵染墊形成的能力和對(duì)寄主的致病性完全喪失[17]. 幾個(gè)介導(dǎo)RAS信號(hào)通路的蛋白SsRAS1,SsRAS2和SsGAP1也在調(diào)節(jié)侵染墊形成和致病性中發(fā)揮關(guān)鍵作用[18]. 轉(zhuǎn)錄因子通過(guò)操縱下游功能基因的轉(zhuǎn)錄發(fā)揮多效作用, SsSfh1,SsFkh1,SsSte12,SsMcm1,SsAms2,SsNsd1和SsFoxE3等轉(zhuǎn)錄調(diào)控因子都在調(diào)控侵染墊形成和發(fā)育中發(fā)揮重要作用, 也參與了對(duì)致病性的調(diào)控[16,19-23]. 由于在侵染墊形成期和侵染早期, 菌絲均處于營(yíng)養(yǎng)缺陷狀態(tài), 因此細(xì)胞自噬在侵染墊形成和致病中發(fā)揮關(guān)鍵作用, 已報(bào)道關(guān)鍵自噬相關(guān)蛋白SsAtg1,SsAtg8,SsAtg13和SsTOR均為侵染墊形成和致病所需[23-25]. 此外, 一些非典型調(diào)控因子也通過(guò)影響侵染墊發(fā)育決定致病性, 包括影響侵染墊黑色素合成的聚酮合酶SsPKS13、 鈣離子結(jié)合蛋白SsCaf1、 谷氨酰轉(zhuǎn)肽酶SsGGT1和草酸脫羧酶SsOdc2等, 它們的敲除或沉默突變體在提供人為傷口后均能恢復(fù)致病力[26-29].

        由于核盤菌在侵染時(shí)受植物免疫或植物細(xì)胞崩解產(chǎn)生的ROS和具有抑菌殺菌活性防御化合物的脅迫, 因此核盤菌也通過(guò)精密調(diào)控的抗氧化系統(tǒng)和解毒酶抵消這些脅迫的危害. 如編碼超氧化物歧化酶Sssod1、 過(guò)氧化氫酶Sscat1、 硫氧還蛋白還原酶SsTrr1、 銅離子輸入及轉(zhuǎn)運(yùn)SsCTR1,SsCCS 和 SsATX1的抗氧化解毒基因. 在敲除或沉默后, 核盤菌對(duì)氧化脅迫的耐受性和對(duì)寄主的致病力均顯著減少[30-31]. 其他編碼存活因子的基因SsSvf1和Bax 抑制劑的基因 SsBi1被沉默后也減少了核盤菌對(duì)多種脅迫的耐受性和對(duì)寄主的侵染能力[32]. 除上述關(guān)鍵ROS解毒基因外, 負(fù)責(zé)轉(zhuǎn)錄調(diào)控這些ROS解毒基因表達(dá)的調(diào)控因子SsSnf5和SsHsf1也被證明在抵御植物免疫產(chǎn)生的ROS時(shí), 二者相互作用組成轉(zhuǎn)錄模塊可激活ROS解毒基因的轉(zhuǎn)錄, 進(jìn)而增強(qiáng)了核盤菌對(duì)寄主的致病力[33]. 此外, 研究也證實(shí)核盤菌分別通過(guò)槲皮苷加雙氧酶SsQDO和異硫氰酸酯酶SsSaxA將植物產(chǎn)生的防御次生代謝物類黃酮和異硫氰酸酯分解為低毒性的化合物, 進(jìn)而降低了這些抗真菌化合物對(duì)自身的危害, 促進(jìn)對(duì)寄主的侵染[34-35].

        探究核盤菌影響致病的關(guān)鍵調(diào)控因子對(duì)解析核盤菌的致病機(jī)制至關(guān)重要, 也可將這些調(diào)控因子作為殺菌劑或寄主誘導(dǎo)的基因沉默(host-induced gene silencing, HIGS)靶標(biāo), 開發(fā)綠色高效的新型殺菌劑和抗病的新品種. 目前, 已證明分別針對(duì)SsSnf5,SsHsf1,SsHsp70,SsGAP1,SsRAS1,SsRAS2和SsSte50設(shè)計(jì)的HIGS載體在轉(zhuǎn)入寄主植物后均可減少核盤菌的侵染[17-18,33], 而分別以SsSmk3同源蛋白MoMps1、 保守的磷脂酸磷酸酯酶MoPah1為靶點(diǎn)開發(fā)的化合物A378-0和普萘洛爾可廣譜地應(yīng)用于治療植物病原真菌感染, 包括核盤菌[36-37].

        3 草酸產(chǎn)生對(duì)核盤菌廣譜致病性的決定作用

        草酸一直被認(rèn)為是核盤菌關(guān)鍵的致病因子, 草酸在核盤菌致病中的作用主要?dú)w因于其形成的酸性環(huán)境, 草酸作為核盤菌形成酸性環(huán)境的最主要物質(zhì), 在侵染過(guò)程中發(fā)揮多種且關(guān)鍵作用[5-6]. 編碼草酸合成的關(guān)鍵酶——草酰乙酸乙酰水解酶Ssoah在紫外誘變、 T-DNA插入突變、 基于同源重組的基因敲除或基于CRISPR-Cas9的突變體中, 均極顯著降低了對(duì)多種寄主的致病力[13,26,38]. 此外, 在大豆中過(guò)表達(dá)能降解草酸的草酸氧化酶OxO也降低了對(duì)核盤菌的敏感性[8].

        草酸在核盤菌侵染過(guò)程中已被證明主要有以下幾方面作用: 1) 操縱寄主氧化還原環(huán)境, 在侵染早期抑制寄主ROS爆發(fā)和胼胝質(zhì)沉積等植物免疫, 促進(jìn)早期定殖, 而在侵染后期則誘導(dǎo)寄主ROS爆發(fā)和細(xì)胞死亡, 促進(jìn)死體營(yíng)養(yǎng)階段的發(fā)生和病斑的擴(kuò)展[11]; 2) 在侵染早期通過(guò)激活非光化學(xué)淬滅操縱寄主葉黃素循環(huán), 進(jìn)而影響葉綠體氧化還原通路、 減少茉莉酸和脫落酸的合成, 最終削弱ROS爆發(fā)和胼胝質(zhì)沉積等植物免疫[39];" 3) 降低侵染點(diǎn)周圍的pH值, 創(chuàng)造有利于核盤菌侵染的酸性環(huán)境[38]; 4) 螯合寄主組織中的Ca2+形成草酸鈣結(jié)晶, 以避免高濃度鈣對(duì)菌絲的傷害[40]; 5) 抑制寄主的細(xì)胞自噬削弱植物免疫[10]; 6) 影響脫落酸途徑或保衛(wèi)細(xì)胞功能阻止氣孔關(guān)閉[41].

        4 核盤菌分泌水解酶對(duì)寄主植物組分的降解作用

        核盤菌在侵染時(shí)需通過(guò)分泌多種水解酶以幫助其穿透植物角質(zhì)層、 水解植物細(xì)胞壁和各種細(xì)胞成分, 將植物高分子物質(zhì)如果膠、 纖維素、 蛋白質(zhì)等降解為小分子物質(zhì)吸收利用. 大量核盤菌和寄主互作的轉(zhuǎn)錄組研究都展示了編碼各種水解酶的基因在侵染時(shí)期高度上調(diào)表達(dá)[9,42-45]. 在具體的功能研究上, 已有文獻(xiàn)報(bào)道了幾個(gè)水解酶作為核盤菌致病因子發(fā)揮作用: 敲除編碼角質(zhì)酶的SsCut1后減少了角質(zhì)酶活性和對(duì)寄主的致病力[46]; 敲除編碼內(nèi)切木聚糖酶的SsXyl1和SsXyl2也減少了核盤菌致病力[47-48];" 聚半乳糖醛酸酶SsPG1也在致病中起關(guān)鍵作用[49]. 研究表明, 某些水解酶也可作為激發(fā)子或通過(guò)其他方式激活植物免疫和誘導(dǎo)植物細(xì)胞死亡: SsCutA在異源表達(dá)后可作為激發(fā)子誘導(dǎo)植物免疫和煙草細(xì)胞死亡[50];" SsCut1瞬時(shí)表達(dá)進(jìn)煙草也能誘導(dǎo)煙草的ROS爆發(fā)和防衛(wèi)基因表達(dá)[46].

        5 效應(yīng)蛋白誘導(dǎo)植物細(xì)胞死亡對(duì)侵染的促進(jìn)作用

        對(duì)于死體營(yíng)養(yǎng)型病原菌, 誘導(dǎo)植物細(xì)胞死亡以促進(jìn)侵染是其核心特征, 核盤菌也在侵染中后期通過(guò)誘導(dǎo)寄主細(xì)胞死亡促進(jìn)侵染. 此外, 核盤菌作為典型的廣寄主性病原菌, 通常被認(rèn)為可分泌誘導(dǎo)植物細(xì)胞死亡的廣譜型效應(yīng)蛋白并靶向寄主保守蛋白[51]. 研究人員通過(guò)廣泛篩選, 已鑒定到十幾個(gè)能誘導(dǎo)植物細(xì)胞死亡的效應(yīng)蛋白. 通過(guò)在煙草瞬時(shí)表達(dá)系統(tǒng)中鑒定得到6個(gè)誘導(dǎo)壞死的效應(yīng)蛋白(necrosis-inducing effectors, SsNEs), 其中5個(gè)僅在包含信號(hào)肽時(shí)方能誘導(dǎo)壞死, 且誘導(dǎo)壞死過(guò)程依賴于煙草膜上共受體激酶BAK1和SOBIR1, 表明這5個(gè)SsNEs可能在質(zhì)外體被煙草某些膜上受體識(shí)別而誘導(dǎo)細(xì)胞死亡[52]. 進(jìn)一步研究表明, SsNE6/SsCDI可作為病原相關(guān)分子模式(pathogen-associated molecular patterns, PAMPs)誘導(dǎo)茄科植物的細(xì)胞死亡[53]; 而SsNE2/SsHip1代表一類新的壞死誘導(dǎo)蛋白, 其他幾個(gè)植物病原真菌的同源蛋白也能誘導(dǎo)壞死和非典型的植物先天免疫反應(yīng)(PTI)[52,54]. 同樣通過(guò)煙草瞬時(shí)表達(dá)系統(tǒng)也鑒定到5個(gè)細(xì)胞內(nèi)的誘導(dǎo)壞死型效應(yīng)蛋白(intracellular necrosis-inducing effectors, SsINEs), 但它們誘導(dǎo)壞死需去掉信號(hào)肽, 且它們具有不同的植物細(xì)胞定位[55]. 進(jìn)一步研究表明, SsINE1利用卵菌效應(yīng)蛋白中常見的RxLR類型基序進(jìn)入植物細(xì)胞[55]; 而SsINE5/SsSSP3誘導(dǎo)煙草細(xì)胞死亡需一個(gè)典型的R蛋白, 即NLR蛋白, 且SsINE5的同源蛋白廣泛存在于核盤菌科中, 也都能誘導(dǎo)細(xì)胞死亡[55-56]. 此外, 在病原菌中保守的壞死及乙烯誘導(dǎo)肽SsNEP1和SsNEP2也能誘導(dǎo)細(xì)胞死亡, 其中分別包含SsNLP1和SsNLP2作為典型PAMPs激活WRKY8依賴的PTI[57-58]. 另一類保守的壞死誘導(dǎo)蛋白是一種小的富含半胱氨酸的蛋白SsSCP, 它的核心同源肽廣泛存在于細(xì)菌、 真菌和卵菌中, 并作為PAMPs被擬南芥RLP受體RLP30或煙草RLP受體RE02識(shí)別后誘導(dǎo)經(jīng)典的PTI[59-60]. 另外幾個(gè)分泌蛋白也被證明能誘導(dǎo)植物細(xì)胞死亡, 并在遺傳學(xué)上證實(shí)了它們有助于核盤菌的致病性. 如SsCP1可在植物質(zhì)外體與抗病蛋白PR1互作促進(jìn)侵染, 同時(shí)在侵染后期, 積累高濃度的SsCP1誘導(dǎo)細(xì)胞死亡, 也促進(jìn)了侵染, 但SsCP1也被證實(shí)是一個(gè)PAMP, 可激活水楊酸途徑的免疫反應(yīng)[61]; 一個(gè)富含半胱氨酸的小分泌蛋白SsSSVP1可通過(guò)劫持保守的寄主線粒體蛋白 QCR8, 并擾亂其功能和定位誘導(dǎo)細(xì)胞死亡和促進(jìn)侵染[62]; SsXyl2也能以不依靠木聚糖酶活性的方式, 靶向質(zhì)外體和誘導(dǎo)植物過(guò)敏反應(yīng)蛋白NbHIR2的積累誘導(dǎo)細(xì)胞死亡和促進(jìn)致?。?8].

        6 核盤菌效應(yīng)蛋白抑制寄主植物免疫的定殖作用

        大量研究結(jié)果表明, 核盤菌存在一個(gè)活體營(yíng)養(yǎng)階段, 也需在侵染早期抑制植物免疫, 多個(gè)遺傳學(xué)證據(jù)已證實(shí)核盤菌在侵染早期通過(guò)分泌多種效應(yīng)蛋白抑制植物免疫和促進(jìn)早期定殖. 除SsCP1通過(guò)抑制PR1的抑菌功能抑制植物免疫外, 早期的效應(yīng)蛋白SsITL通過(guò)靶向植物葉綠體定位的鈣受體CAS干擾水楊酸的合成和信號(hào), 進(jìn)而抑制植物免疫[63]; 效應(yīng)蛋白SsCVNH通過(guò)與植物過(guò)氧化物酶AtPRX71相互作用減少過(guò)氧化物酶活性和抑制植物免疫[64]; 效應(yīng)蛋白SsERP1通過(guò)抑制乙烯信號(hào)以促進(jìn)侵染[65]. 研究表明, 植物為抑制SsPG1對(duì)植物細(xì)胞壁的降解作用, 進(jìn)化出了PG抑制蛋白PGIPs抑制核盤菌侵染, 同時(shí), 核盤菌為克服PGIPs的抑制作用, 也進(jìn)化出了失活PGIP的效應(yīng)蛋白SsPINE1, 通過(guò)解離PGIPs與SsPG1恢復(fù)SsPG1的致病作用, 從而促進(jìn)侵染[49]; 抑制植物早期免疫的效應(yīng)蛋白SsPEIE1通過(guò)直接靶向并抑制十字花科的植物過(guò)敏反應(yīng)蛋白HIRs的寡聚化抑制PAMPs誘導(dǎo)的ROS爆發(fā)、 MAPKs的激活以及水楊酸相關(guān)的免疫基因誘導(dǎo)等[66].

        7 核盤菌致病新機(jī)制及其研究展望

        近年來(lái), 關(guān)于核盤菌的致病機(jī)制研究有了飛躍式進(jìn)展, 目前已知的核盤菌致病模型如圖1所示." 但至少仍有如下謎團(tuán)有待揭秘.

        1) 侵染墊的形成首先依賴于菌絲對(duì)寄主表皮或堅(jiān)硬物質(zhì)的感知, 廣泛接受的觀點(diǎn)是一些膜蛋白可感知外界信號(hào)并介導(dǎo)下游信號(hào)的激活. 然而在核盤菌中除SsCFEM外, 其他任何膜蛋白的研究目前尚未見文獻(xiàn)報(bào)道. 生物信息學(xué)分析表明, 核盤菌基因組中存在大量膜蛋白, 它們的生物學(xué)功能有待揭示, 尤其是其是否存在膜蛋白能夠作為受體直接識(shí)別寄主表皮相關(guān)的配體分子, 又以何種激活途徑激活下游信號(hào)通路. 研究表明, SsCFEM錨定在細(xì)胞表面, 并能與假設(shè)的跨膜蛋白SsGPCR1互作介導(dǎo)細(xì)胞壁脅迫和侵染墊形成. 因此推測(cè)SsCFEM可能代表一種能感知細(xì)胞壁擾動(dòng)和機(jī)械壓力的蛋白, 通過(guò)與膜受體SsGPCR1互作導(dǎo)致受體構(gòu)像變化從而傳遞信號(hào), 這些有待進(jìn)一步的蛋白結(jié)構(gòu)學(xué)研究. 2) 盡管已報(bào)道了大量影響侵染墊形成的調(diào)控因子, 但侵染墊形成從起始到完成所涉及的細(xì)胞過(guò)程和行使形態(tài)發(fā)生的功能基因研究仍較少. 其中細(xì)胞壁重塑是菌絲形態(tài)轉(zhuǎn)變的前提, 然而關(guān)于核盤菌細(xì)胞壁重塑的關(guān)鍵調(diào)控因子和功能基因完全不清楚. 研究表明, 轉(zhuǎn)錄因子SsAsd4通過(guò)負(fù)調(diào)控多種細(xì)胞壁組分的合成基因和介導(dǎo)糖基磷脂酰肌醇錨定蛋白加工的關(guān)鍵酶的轉(zhuǎn)錄影響細(xì)胞壁重塑, 也正調(diào)控侵染墊形成. 這表明SsAsd4可能通過(guò)影響侵染墊形成時(shí)的細(xì)胞壁重塑介導(dǎo)侵染墊形成, 也表明細(xì)胞壁重塑可能是侵染墊形成的關(guān)鍵. 3) 核盤菌可感知寄主來(lái)源的ROS并激活SsSnf5-SsHsf1轉(zhuǎn)錄模塊以抵御氧化脅迫[33], 然而在植物病原真菌中尚未鑒定到ROS的直接受體, 也不清楚ROS受體通過(guò)修飾哪些靶標(biāo)蛋白對(duì)脅迫做出全局的調(diào)控響應(yīng). 4) 大量的轉(zhuǎn)錄組證據(jù)已證明核盤菌在侵染時(shí)會(huì)大幅度上調(diào)表達(dá)水解酶和異源物質(zhì)解毒基因, 但其上游的轉(zhuǎn)錄因子完全不清楚. 研究表明, 轉(zhuǎn)錄因子SsGATA1可直接結(jié)合幾個(gè)水解酶和異源物質(zhì)解毒基因的啟動(dòng)子激活它們轉(zhuǎn)錄, 但結(jié)果顯示敲除SsGATA1基因后并未完全喪失它們的轉(zhuǎn)錄. 這表明還存在其他轉(zhuǎn)錄因子也能發(fā)揮類似功能, 核盤菌如何適時(shí)且精準(zhǔn)激活這些轉(zhuǎn)錄因子功能仍有待進(jìn)一步研究. 5) 武裝或加強(qiáng)PAMPs激活的PTI被認(rèn)為是抗病育種的重要策略, 然而在核盤菌中僅鑒定到上文提及的幾個(gè)PAMPs和幾丁質(zhì), 更多的PAMPs仍有待被鑒定. 通過(guò)人工施用或轉(zhuǎn)入這些PAMPs將有望增強(qiáng)作物的菌核病抗性, 甚至廣譜抗性. 此外, 目前僅在植物中鑒定到RLP30/ RE02,RLP23和幾丁質(zhì)受體, 進(jìn)一步表征能夠識(shí)別核盤菌的膜上受體, 這將為菌核病的抗病育種提供重要基因資源. 6)" 與傳統(tǒng)的基因?qū)蚣僬f(shuō)不同, 核盤菌中誘導(dǎo)細(xì)胞死亡的效應(yīng)蛋白反而促進(jìn)了侵染, 表明它們可能在死體營(yíng)養(yǎng)階段發(fā)揮重要作用, 而不是單純誘導(dǎo)植物免疫. 然而核盤菌也需在早期抑制細(xì)胞死亡, 這些似乎是矛盾的. 細(xì)胞死亡在核盤菌與寄主互作中起什么作用, 目前尚未明確. 研究表明, 在侵染早期, 核盤菌會(huì)分泌效應(yīng)蛋白SsCm1抑制細(xì)胞死亡和植物免疫, 這有助于定殖, 與另一個(gè)早期效應(yīng)蛋白SsPEIE1的報(bào)道一致[66]. 在侵染后期, 核盤菌又會(huì)分泌效應(yīng)蛋白SsVSP25靶向植物利鈉肽和光系統(tǒng)Ⅱ, 進(jìn)而加速細(xì)胞死亡的速度促進(jìn)侵染."" 核盤菌中存在至少11個(gè)功能未被解析但能誘導(dǎo)植物細(xì)胞死亡的效應(yīng)蛋白[52,55]. 進(jìn)一步表征這些效應(yīng)蛋白和其他細(xì)胞死亡相關(guān)的核盤菌效應(yīng)蛋白及其與寄主互作機(jī)制, 將有望揭示細(xì)胞死亡在核盤菌與寄主互作中的作用, 為死體營(yíng)養(yǎng)型病原菌的致病機(jī)制提供參考. 此外, 這些效應(yīng)蛋白能誘導(dǎo)植物細(xì)胞死亡, 表明植物可能存在膜上或胞內(nèi)受體, 鑒定這些受體將有助于闡明植物免疫機(jī)制和提供抗病資源. 7) 研究表明, 核盤菌具有在侵染早期抑制植物免疫的效應(yīng)蛋白[63-64,66], 在幾個(gè)能抑制ROS爆發(fā)等植物免疫的效應(yīng)蛋白中, SsVSP41抑制關(guān)鍵激酶磷酸化信號(hào)轉(zhuǎn)導(dǎo)可促進(jìn)早期侵染, 進(jìn)一步證實(shí)了核盤菌存在一個(gè)早期的活體營(yíng)養(yǎng)階段, 此時(shí)效應(yīng)蛋白發(fā)揮抑制植物免疫的作用. 對(duì)這些抑制植物免疫效應(yīng)蛋白的進(jìn)一步挖掘和機(jī)制研究將逐步揭示核盤菌在侵染早期的定殖機(jī)制, 為農(nóng)業(yè)上及時(shí)阻斷核盤菌侵染提供理論依據(jù).

        綜上所述, 核盤菌引起的菌核病是世界性的大病害, 由于核盤菌致病機(jī)制復(fù)雜, 且缺乏有效的抗病品種, 應(yīng)用殺菌劑化學(xué)防治的作物已頻繁出現(xiàn)抗藥性. 因此亟需開發(fā)菌核病綠色防控的新策略. 進(jìn)一步鑒定核盤菌的關(guān)鍵致病因子, 研究植物抗病基因, 深入、 全面解析核盤菌的致病機(jī)理, 闡明菌核病成災(zāi)機(jī)制, 將為科學(xué)設(shè)計(jì)病害防控策略提供新見解, 從而保障國(guó)家糧油安全.

        參考文獻(xiàn)

        [1] BOLTON M D," THOMMA B P," NELSON B D. Sclerotinia sclerotiorum (Lib.) de Bary: Biology and Molecular Traits of a Cosmopolitan Pathogen[J]. Molecular Plant Pathology," 2006," 7(1): 1-16.

        [2] SHANG Q N," JIANG D H," XIE J T," et al. The Schizotrophic Lifestyle of Sclerotinia sclerotiorum[J]. Molecular Plant Pathology," 2024," 25(2):" e13423-1-e13423-13.

        [3] MELO"" B S," VOLTAN A R," ARRUDA W," et al. Morphological and Molecular Aspects of Sclerotial Development in the Phytopathogenic Fungus Sclerotinia sclerotiorum[J]. Microbiological Research," 2019," 229:" 126326-1-126326-7.

        [4] XIA" S T," XU Y," HOY R," et al. The Notorious Soilborne Pathogenic Fungus Sclerotinia sclerotiorum:" An Update on Genes Studied with Mutant Analysis[J]. Pathogens," 2019," 9(1): 27-1-27-22.

        [5] LIANG" X F," ROLLINS J A. Mechanisms of Broad Host Range Necrotrophic Pathogenesis in Sclerotinia sclerotiorum[J]. Phytopathology," 2018," 108(10):" 1128-1140.

        [6] XU" L S," LI G Q," JIANG D H," et al. Sclerotinia sclerotiorum:" An Evaluation of Virulence Theories[J]. Annual Review of Phytopathology," 2018," 56:" 311-338.

        [7] KABBAGE" M," YARDEN O," DICKMAN M B. Pathogenic Attributes of Sclerotinia sclerotiorum:" Switching from a Biotrophic to Necrotrophic Lifestyle[J]. Plant Science," 2015," 233:" 53-60.

        [8] DAVIDSON" A L," BLAHUT-BEATTY L," ITAYA A," et al. Histopathology of Sclerotinia sclerotiorum Infection and Oxalic Acid Function in Susceptible and Resistant Soybean[J]. Plant Pathology," 2016," 65:" 878-887.

        [9] PEYRAUD" R," MBENGUE M," BARBACCI A," et al. Intercellular Cooperation in a Fungal Plant Pathogen Facilitates Host Colonization[J]. Proceedings of the National Academy of Sciences of the United States of America," 2019," 116(8):" 3193-3201.

        [10] KABBAGE" M," WILLIAMS B," DICKMAN M B. Cell Death Control:" The Interplay of Apoptosis and Autophagy in the Pathogenicity of Sclerotinia sclerotiorum[J]. PLoS Pathogens," 2013," 9(4):" e1003287-1-e1003287-12.

        [11] WILLIAMS" B," KABBAGE M," KIM H J," et al. Tipping the Balance:" Sclerotinia sclerotiorum Secreted Oxalic Acid Suppresses Host Defenses by Manipulating the Host Redox Environment[J]. PLoS Pathogens," 2011," 7(6):" e1002107-1-e1002107-10.

        [12] HUANG" L," BUCHENAUER H," HAN Q," et al. Ultrastructural and Cytochemical Studies on the Infection Process of Sclerotinia sclerotiorum in Oilseed Rape[J]. Journal of Plant Diseases and Protection," 2008," 115(1):" 9-16.

        [13] LIANG" X F," LIBERTI D," LI M Y," et al. Oxaloacetate Acetylhydrolase Gene Mutants of Sclerotinia sclerotiorum Do Not Accumulate Oxalic Acid but Do Produce Limited Lesions on Host Plants[J]. Molecular Plant Pathology," 2015," 16(6): 559-571.

        [14] JAMAUX" I," GELIE B," LAMARQUE C. Early Stages of Infection of Rapeseed Petals and Leaves by Sclerotinia sclerotiorum Revealed by Scanning Electron Microscopy[J]. Plant Pathology," 1995," 44(1):" 22-30.

        [15] 紀(jì)旭. 核盤菌分泌蛋白SsCFEM1的功能研究 [D]. 長(zhǎng)春: 吉林大學(xué)," 2020. (JI X. Functional Study on Secretory Protein SsCFEM1 in Sclerotinia sclerotiorum[D]." Changchun: Jilin University, 2020.)

        [16] CONG" J," XIAO K Q," JIAO W L," et al. The Coupling between Cell Wall Integrity Mediated by MAPK Kinases and SsFkh1 Is Involved in Sclerotia Formation and Pathogenicity of Sclerotinia sclerotiorum[J]. Frontiers in Microbiology," 2022," 13:" 816091-1-816091-13.

        [17] TIAN" L," LI J," XU Y," et al. A MAP Kinase Cascade Broadly Regulates the Lifestyle of Sclerotinia sclerotiorum and Can Be Targeted by HIGS for Disease Control[J]. The Plant Journal," 2023, 118(2):" 324-344.

        [18] XU" Y," TAN J Y," LU J X," et al. RAS Signalling Genes Can Be Used as Host-Induced Gene Silencing Targets to Control Fungal Diseases Caused by Sclerotinia sclerotiorum and Botrytis cinerea[J]. Plant Biotechnology Journal," 2024, "22(1):" 262-277.

        [19] LIU" L," WANG Q C," SUN Y," et al. Sssfh1," a Gene Encoding a Putative Component of the RSC Chromatin Remodeling Complex," Is Involved in Hyphal Growth," Reactive Oxygen Species Accumulation," and Pathogenicity in Sclerotinia sclerotiorum[J]. Frontiers in Microbiology," 2018," 9:" 1828-1-1828-14.

        [20] XU" T T," LI J T," YU B D," et al. Transcription Factor SsSte12 Was Involved in Mycelium Growth and Development in Sclerotinia sclerotiorum[J]. Frontiers in Microbiology," 2018," 9:" 2476-1-2476-13.

        [21] LIU" L," WANG Q C," ZHANG X H," et al. Ssams2," a Gene Encoding GATA Transcription Factor," Is Required for Appressoria Formation and Chromosome Segregation in Sclerotinia sclerotiorum[J]. Frontiers in Microbiology," 2018," 9:" 3031-1-3031-12.

        [22] LI" J T," MU W H," VELUCHAMY S," et al. The GATA-Type IVb Zinc-Finger Transcription Factor SsNsd1 Regulates Asexual-Sexual Development and Appressoria Formation in Sclerotinia sclerotiorum[J]. Molecular Plant Pathology," 2018," 19(7):" 1679-1689.

        [23] JIAO" W L," YU H L," CONG J," et al. Transcription Factor SsFoxE3 Activating SsAtg8 Is Critical for Sclerotia," Compound Appressoria Formation," and Pathogenicity in Sclerotinia sclerotiorum[J]. Molecular Plant Pathology," 2022," 23(2):" 204-217.

        [24] JIAO" W L," YU H L," CHEN X T," et al. The SsAtg1 Activating Autophagy Is Required for Sclerotia Formation and Pathogenicity in Sclerotinia sclerotiorum[J]. Journal of Fungi," 2022," 8(12):" 1314-1-1314-16.

        [25] JIAO" W L," DING W C," ROLLINS J A," et al. Cross-Talk and Multiple Control of Target of Rapamycin (TOR) in Sclerotinia sclerotiorum[J]. Journal of Fungi," 2023," 11(2):" e0001323-1-e0001323-12.

        [26] LI" J T," ZHANG Y H," ZHANG Y C," et al. Introduction of Large Sequence Inserts by CRISPR-Cas9 to Create Pathogenicity Mutants in the Multinucleate Filamentous Pathogen Sclerotinia sclerotiorum[J]. mBio," 2018," 9(3): e00567-18-1-e00567-18-19.

        [27] XIAO" X Q," XIE J T," CHENG J S," et al. Novel Secretory Protein Ss-Caf1 of the Plant-Pathogenic Fungus Sclerotinia sclerotiorum Is Required for Host Penetration and Normal Sclerotial Development[J]. Molecular Plant-Microbe Interactions," 2014," 27(1):" 40-55.

        [28] LI" M Y," LIANG X F," ROLLINS J A. Sclerotinia sclerotiorum γ-Glutamyl Transpeptidase (Ss-Ggt1) Is Required Forregulating Glutathione Accumulation and Development of Sclerotia and Compound Appressoria[J]. Molecular Plant-Microbe Interactions," 2012," 25(3):" 412-420.

        [29] LIANG" X F," MOOMAW E W," ROLLINS J A. Fungal Oxalate Decarboxylase Activity Contributes to Sclerotinia sclerotiorum Early Infection by Affecting Both Compound Appressoria Development and Function[J]. Molecular Plant Pathology," 2015," 16(8):" 825-836.

        [30] ZHANG" J Y," WANG Y B," DU J," et al. Sclerotinia sclerotiorum Thioredoxin Reductase Is Required for Oxidative Stress Tolerance," Virulence," and Sclerotial Development[J]. Frontiers in Microbiology," 2019," 10:" 233-1-233-9.

        [31] DING" Y J," MEI J Q," CHAI Y R," et al. Sclerotinia sclerotiorum Utilizes Host-Derived Copper for ROS Detoxification and Infection[J]. PLoS Pathogens," 2020," 16(10):" e1008919-1-e1008919-22.

        [32] YU" Y," DU J," WANG Y B," et al. Survival Factor 1 Contributes to the Oxidative Stress Response and Is Required for Full Virulence of Sclerotinia sclerotiorum[J]. Molecular Plant Pathology," 2019," 20(7):" 895-906.

        [33] XIAO" K Q," LIU L," HE R N," et al. The Snf5-Hsf1 Transcription Module Synergistically Regulates Stress Responses and Pathogenicity by Maintaining ROS Homeostasis in Sclerotinia sclerotiorum[J]. New Phytologist," 2024," 241(4):" 1794-1812.

        [34] CHEN" J Y," ULLAH C," REICHELT M," et al. The Phytopathogenic Fungus Sclerotinia sclerotiorum Detoxifies Plant Glucosinolate Hydrolysis Products via an Isothiocyanate Hydrolase[J]. Nature Communications," 2020," 11(1):" 3090-1-3090-12.

        [35] CHEN" J Y," ULLAH C," REICHELT M," et al. Sclerotinia sclerotiorum Circumvents Flavonoid Defenses by Catabolizing Flavonol Glycosides and Aglycones[J]. Plant Physiology," 2019," 180(4):" 1975-1987.

        [36] KONG" Z W," ZHANG X," ZHOU F," et al. Structure-Aided Identification of an Inhibitor Targets Mps1 for the Management of Plant-Pathogenic Fungi[J]. mBio," 2023," 14:" e0288322-1-e0288322-14.

        [37] ZHAO" J," CHEN Y," DING Z F," et al. Identification of Propranolol and Derivatives That Are Chemical Inhibitors of Phosphatidate Phosphatase as Potential Broad-Spectrum Fungicides [J]. Plant Communications," 2024," 5:" 100679-1-100679-16.

        [38] XU" L S,"" XIANG M S," WHITE D," et al. pH Dependency of Sclerotial Development and Pathogenicity Revealed by Using Genetically Defined Oxalate-Minus Mutants of Sclerotinia sclerotiorum[J]. Environmental Microbiology," 2015," 17(8):" 2896-2909.

        [39] ZHOU" J," ZENG L Z," LIU J," et al. Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to Sclerotinia sclerotiorum[J]. PLoS Pathogens," 2015," 11(5):" e1004878-1-e1004878-25.

        [40] HELLER" A," WITT-GEIGES T. Oxalic Acid Has an Additional," Detoxifying Function in Sclerotinia sclerotiorum Pathogenesis [J]. PLoS One," 2013," 8(8):" e72292-1-e72292-17.

        [41] GUIMARES" R L," STOTZ H U. Oxalate Production by Sclerotinia sclerotiorum Deregulates Guard Cells during Infection [J]. Plant Physiology," 2004," 136(3):" 3703-3711.

        [42] OLIVEIRA" M B," DE-ANDRADE R V," GROSSI-DE-Sá M F," et al. Analysis of Genes That Are Differentially Expressed during the Sclerotinia sclerotiorum-Phaseolus vulgaris Interaction [J]. Frontiers in Microbiology," 2015," 6:"" 1162-1-1162-14.

        [43] SEIFBARGHI" S," BORHAN M H," WEI Y D," et al. Changes in the Sclerotinia sclerotiorum Transcriptome during Infection of Brassica napus[J]. BMC Genomics," 2017," 18(1):" 266-1-266-37.

        [44] DERBYSHIRE" M," DENTON-GILES M," HEGEDUS D," et al. The Complete Genome Sequence of the Phytopathogenic Fungus Sclerotinia sclerotiorum Reveals Insights into the Genome Architecture of Broad Host Range Pathogens [J]. Genome Biology and Evolution," 2017," 9(3):" 593-618.

        [45] WESTRICK" N M," RANJAN A," JAIN S," et al. Gene Regulation of Sclerotinia sclerotiorum during Infection of Glycine max:" On the Road to Pathogenesis [J]. BMC Genomics," 2019," 20(1):" 157-1-157-22.

        [46] GONG" Y D," FU Y P," XIE J T," et al. Sclerotinia sclerotiorum SsCut1 Modulates Virulence and Cutinase Activity [J]. Journal of Fungi," 2022," 8(5):" 526-1-526-15.

        [47] YU" Y," XIAO J F," DU J," et al. Disruption of the Gene Encoding Endo-β-1,4-xylanase Affects the Growth and Virulence of Sclerotinia sclerotiorum[J]. Frontiers in Microbiology," 2016," 7:" 1787-1-1787-9.

        [48] WANG" P," WANG Y B," HU Y W," et al. Plant Hypersensitive Induced Reaction Protein Facilitates Cell Death Induced by Secreted Xylanase Associated with the Pathogenicity of Sclerotinia sclerotiorum[J]. The Plant Journal," 2024," 118(1):" 90-105.

        [49] WEI" W," XU L S," PENG H," et al. A Fungal Extracellular Effector Inactivates Plant Polygalacturonase-Inhibiting Protein [J]. Nature Communications," 2022," 13(1):" 2213-1-2213-15.

        [50] ZHANG" H J," WU Q," CAO S," et al. A Novel Protein Elicitor (SsCut) from Sclerotinia sclerotiorum Induces Multiple Defense Responses in Plants [J]. Plant Molecular Biology," 2014," 86(4/5):" 495-511.

        [51] DERBYSHIRE" M C," RAFFAELE S. Till Death Do Us Pair:" Co-evolution of Plant-Necrotroph Interactions[J]. Current Opinion Plant Biology," 2023," 76:" 102457-1-102457-11.

        [52] SEIFBARGHI" S," BORHAN M H," WEI Y," et al. Receptor-Like Kinases BAK1 and SOBIR1 Are Required for Necrotizing Activity of a Novel Group of Sclerotinia sclerotiorum Necrosis-Inducing Effectors[J]. Frontiers in Plant Science," 2020," 11: 1021-1-1021-17.

        [53] FRANCO-OROZCO" B," BEREPIKI A," RUIZ O," et al. A New Proteinaceous Pathogen-Associated Molecular Pattern (PAMP) Identified in Ascomycete Fungi Induces Cell Death in Solanaceae[J]. New Phytologist," 2017," 214(4):" 1657-1672.

        [54] JEBLICK" T," LEISEN T," STEIDELE C E," et al. Botrytis Hypersensitive Response Inducing Protein 1 Triggers Non-canonical PTI to Induce Plant Cell Death[J]. Plant Physiology," 2023," 191(1):" 125-141.

        [55] NEWMAN" T E," KIM H," KHENTRY Y," et al. The Broad Host Range Pathogen Sclerotinia sclerotiorum Produces Multiple Effector Proteins That Induce Host Cell Death Intracellularly[J]. Molecular Plant Pathology," 2023," 24(8):" 866-881.

        [56] DENTON-GILES" M," MCCARTHY H," SEHRISH T," et al. Conservation and Expansion of a Necrosis-Inducing Small Secreted Protein Family from Host-Variable Phytopathogens of the Sclerotiniaceae[J]. Molecular Plant Pathology," 2020," 21(4):" 512-526.

        [57] REN" C X," CHEN S Y," HE Y H," et al. Fine-Tuning of the Dual-role Transcription Factor WRKY8 via Differential Phosphorylation for Robust Broad-Spectrum Plant Immunity[J]. Plant Communications," 2024," 27:" 101072-1-101072-19.

        [58] BASHI" Z D," HEGEDUS D D," BUCHWALDT L," et al. Expression and Regulation of Sclerotinia sclerotiorum Necrosis and Ethylene-Inducing Peptides (NEPs)[J]. Molecular Plant Pathology," 2010,"" 11(1):" 43-53.

        [59] YANG" Y K," STEIDELE C E," R?SSNER C," et al. Convergent Evolution of Plant Pattern Recognition Receptors Sensing Cysteine-Rich Patterns from Three Microbial Kingdoms[J]. Nature Communications," 2023," 14(1):" 3621-1-3621-12.

        [60] NIE" J J," YIN Z Y," LI Z P," et al. A Small Cysteine-Rich Protein from Two Kingdoms of Microbes Is Recognized as a Novel Pathogen-Associated Molecular Pattern[J]. New Phytologist," 2019," 222(2):" 995-1011.

        [61] YANG" G G," TANG L G," GONG Y D," et al. A Cerato-Platanin Protein SsCP1 Targets Plant PR1 and Contributes to Virulence of Sclerotinia sclerotiorum[J]. New Phytologist," 2018," 217(2):" 739-755.

        [62] LYU" X L," SHEN C C," FU Y P," et al. A Small Secreted Virulence-Related Protein Is Essential for the Necrotrophic Interactions of Sclerotinia sclerotiorum with Its Host Plants[J]. PLoS Pathogens," 2016," 12(2):" e1005435-1-e1005435-28.

        [63] TANG" L G," YANG G G," MA M," et al. An Effector of a Necrotrophic Fungal Pathogen Targets the Calcium-Sensing Receptor in Chloroplasts to Inhibit Host Resistance[J]. Molecular Plant Pathology," 2020,"" 21(5):" 686-701.

        [64] MA" M," TANG L G," SUN R," et al. An Effector SsCVNH Promotes the Virulence of Sclerotinia sclerotiorum through Targeting Class Ⅲ Peroxidase AtPRX71[J]. Molecular Plant Pathology," 2024,nbsp;" 25(5):" e13464-1-e13464-16.

        [65] FAN" H X," YANG W W," NIE J Y," et al. A Novel Effector Protein SsERP1 Inhibits Plant Ethylene Signaling to Promote Sclerotinia sclerotiorum Infection[J]. Journal of Fungi," 2021,"" 7(10):" 825-1-825-15.

        [66] LIU" X F," ZHAO H H," YUAN M Y," et al. An Effector Essential for Virulence of Necrotrophic Fungi Targets Plant HIRs to Inhibit Host Immunity [J]. Nature Communications," 2024," 15(1):" 9391-1-9391-16.

        (責(zé)任編輯: 單 凝)

        偷拍一区二区三区在线观看| 美女偷拍一区二区三区| 亚洲av综合av一区| 日日干夜夜操高清视频| 第一九区另类中文字幕| 日韩中文网| 国产av国片精品jk制服| 精品日本韩国一区二区三区| 熟妇丰满多毛的大隂户| 日韩人妖干女同二区三区| 国产成人亚洲不卡在线观看| 一区二区三区国产免费视频| 99综合精品久久| 日本怡春院一区二区三区| 亚洲狠狠久久五月婷婷| 国产成人精品综合在线观看| 国产女人精品一区二区三区| 不卡视频一区二区三区| 久久久亚洲欧洲日产国码aⅴ| 亚洲一区二区三区成人在线| 99精品国产99久久久久久97| 国产亚洲视频在线观看播放| 狠狠躁18三区二区一区| 国成成人av一区二区三区| 亚洲国产美女精品久久久 | 一区二区三区人妻在线| 国产成年无码V片在线| 最新系列国产专区|亚洲国产| 亚洲精品一区二区高清| 色婷婷激情在线一区二区三区| 亚洲精品成人片在线观看| 国产私人尤物无码不卡| 亚洲国产日韩综一区二区在性色 | 人妻在卧室被老板疯狂进入| 中文字幕人妻被公喝醉在线| 麻豆人妻无码性色AV专区| 国内精品久久久久久久久久影院| www射我里面在线观看| 亚洲成av人片在www鸭子| 亚洲伊人久久大香线蕉影院| 亚洲av无码精品色午夜|