摘 要: 急性腎損傷(acute kidney injury, AKI)是一種發(fā)病迅速、病因復(fù)雜且致死率較高的腎臟疾病,對(duì)動(dòng)物生命健康構(gòu)成嚴(yán)重威脅。近年來(lái),間充質(zhì)干細(xì)胞(mesenchymal stem cells,MSCs)作為治療急性損傷的有效方法已被廣泛認(rèn)可。然而,由于細(xì)胞療法存在局限性,一種備受關(guān)注的新型無(wú)細(xì)胞治療方法即間充質(zhì)干細(xì)胞源外泌體(mesenchymal stem cell-derived exosomes, MSC-exos)在急性腎損傷治療方面引起了極大關(guān)注。MSC-exos通過(guò)多種機(jī)制(如抑制炎癥反應(yīng)、減少凋亡以及調(diào)節(jié)自噬等方式)發(fā)揮著治愈急性腎損傷的作用。本文將總結(jié)MSC-exos在動(dòng)物AKI治療方面取得的相關(guān)進(jìn)展,并旨在為基于干細(xì)胞來(lái)源外泌體進(jìn)行動(dòng)物臨床治理和應(yīng)用提供理論參考。
關(guān)鍵詞: 急性腎損傷;間充質(zhì)干細(xì)胞;外泌體
中圖分類號(hào): S856.59"""" 文獻(xiàn)標(biāo)志碼:A"""" 文章編號(hào): 0366-6964(2025)01-0115-11
收稿日期:2024-02-26
基金項(xiàng)目:寧波第二激素廠橫向技術(shù)合作項(xiàng)目(K4050722213)
作者簡(jiǎn)介:賀海洋(2002-),男,河南南陽(yáng)人,本科生,主要參與動(dòng)物成體干細(xì)胞作用機(jī)理研究,E-mail:hhy1483457965@163.com
*通信作者:彭 莎,主要從事成體干細(xì)胞增殖及分化機(jī)理研究,E-mail:pengshacxh@nwsuaf.edu.cn;馬保華,主要從事臨床獸醫(yī)學(xué)相關(guān)研究,E-mail:mabh@nwsuaf.edu.cn
Research Progress on the Role and Mechanism of Mesenchymal Stem Cell-derived Exosomes
in Animal Acute Renal Injury
HE" Haiyang, MA" Baohua*, PENG" Sha*
(Key Laboratory of Animal Biotechnology of" Ministry of Agriculture and
Rural Affairs, College of Veterinary Medicine, Northwest Aamp;F University, Yangling 712100, China)
Abstract: Acute kidney injury (AKI) is a kidney disease with rapid onset, complex etiology and high mortality, which poses a serious threat to the life and health of animals. In recent years, mesenchymal stem cells (MSCs) have been widely recognized as an effective method for the treatment of acute injury. However, due to the limitations of cell therapy, mesenchymal stem cell-derived exosomes (MSC-exos), a new cell-free treatment method that has attracted much attention, has attracted great attention in the treatment of acute kidney injury. MSC-exos can cure acute kidney injury through a variety of mechanisms such as inhibiting inflammation, reducing apoptosis, and regulating autophagy. This review summarizes the progress of MSC-exos in the treatment of AKI in animals, and aims to provide a theoretical reference for the clinical management and application of stem cell-derived exosomes in animals.
Key words: acute kidney injury; mesenchymal stem cells; exosomes
*Corresponding authors:" PENG Sha, E-mail: pengshacxh@nwsuaf.edu.cn; MA Baohua, E-mail: mabh@nwsuaf.edu.cn
急性腎損傷(acute kidney injury, AKI)是由于缺血、腎臟實(shí)質(zhì)病變、腎毒性物質(zhì)等原因引發(fā)短時(shí)間內(nèi)腎小管上皮細(xì)胞壞死和腎功能下降,從而導(dǎo)致機(jī)體血尿素氮、肌酐含量增加,以及尿量迅速下降的臨床綜合征[1]。急性腎損傷在動(dòng)物中有著較高的發(fā)病率和死亡率。臨床治療常用輸液療法預(yù)防AKI引起的繼發(fā)性感染,并采用血液透析、腹膜透析等透析療法,但透析療法操作技術(shù)要求高、治療費(fèi)用高昂,且不能有效保證受損腎臟功能恢復(fù)。因此,尋找一種新的有效治療動(dòng)物急性腎損傷的方法具有重要意義。目前,間充質(zhì)干細(xì)胞(mesenchymal stem cells, MSCs)及其衍生成分作為一種新興的治療手段,在動(dòng)物AKI臨床治療中已顯現(xiàn)出較大潛力。
1 間充質(zhì)干細(xì)胞及其細(xì)胞外囊泡的生物學(xué)功能
MSCs是源于中胚層的一類多能干細(xì)胞,具有多種細(xì)胞分化能力和歸巢特性,在組織器官發(fā)生損傷后,MSCs可以遷移到受損組織內(nèi)部并分化為相應(yīng)的細(xì)胞類型,發(fā)揮器官組織修復(fù)功能[2]。隨著研究工作的不斷深入,人們發(fā)現(xiàn)MSCs并不主要依賴其分化能力實(shí)現(xiàn)組織修復(fù),而主要是通過(guò)細(xì)胞外囊泡(extracellular vesicles, EVs)介導(dǎo)的旁分泌作用發(fā)揮修復(fù)和保護(hù)作用。MSCs分泌的EVs中包含大量生長(zhǎng)因子、營(yíng)養(yǎng)因子、趨化因子等生物活性分子,這些分子發(fā)揮免疫調(diào)節(jié)和損傷修復(fù)的作用。細(xì)胞外囊泡可以通過(guò)與受損組織的細(xì)胞相互作用,傳遞其中的生物活性分子,促進(jìn)細(xì)胞增殖、減輕炎癥反應(yīng)、抑制細(xì)胞凋亡,并促進(jìn)血管生成和組織再生[2]。因此,MSCs的EVs具有廣泛的臨床應(yīng)用前景,EVs治療被認(rèn)為是一種新的治療策略。
2 外泌體的生物學(xué)特征
外泌體(exosomes, Exos)為細(xì)胞所釋放的EVs中的一種納米級(jí)脂質(zhì)包裹體結(jié)構(gòu),直徑通常在30~150 nm,Exos含有蛋白質(zhì)、mRNA和miRNA等生物分子[3]。Exos在調(diào)節(jié)細(xì)胞生物學(xué)功能和介導(dǎo)細(xì)胞間通訊中發(fā)揮關(guān)鍵作用[4]。Exos主要通過(guò)兩種機(jī)制與靶細(xì)胞互動(dòng),一是可以被靶細(xì)胞通過(guò)胞吞作用攝入,隨后釋放其攜帶的信息分子,從而影響靶細(xì)胞的功能[5];二是通過(guò)Exos表面的信號(hào)分子與靶細(xì)胞膜表面的受體結(jié)合,形成蛋白質(zhì)復(fù)合體并激活相應(yīng)的信號(hào)通路,以產(chǎn)生生物效應(yīng)[6]。MSCs在腎臟發(fā)生損傷時(shí)可通過(guò)分泌Exos來(lái)促進(jìn)細(xì)胞間的通訊,從而促進(jìn)組織修復(fù),這一發(fā)現(xiàn)為Exos在組織工程和再生醫(yī)學(xué)領(lǐng)域的應(yīng)用提供了新的視角。
3 間充質(zhì)干細(xì)胞源外泌體的生物學(xué)特性
間充質(zhì)干細(xì)胞源外泌體(mesenchymal stem cell-derived exosomes, MSC-exos)具備許多與其來(lái)源細(xì)胞相似的特性,包括歸巢能力、低免疫原性以及能夠攜帶和傳遞多種生物活性分子,這些特性使MSC-exos在醫(yī)學(xué)臨床中的應(yīng)用前景備受關(guān)注。有研究證實(shí),MSC-exos能夠高效裝運(yùn)mRNA、miRNA及蛋白質(zhì)等生物活性物質(zhì),具備降低細(xì)胞凋亡、緩解炎癥、調(diào)節(jié)自噬、抑制氧化應(yīng)激、提升組織修復(fù)潛力等多方面的分子生物學(xué)功能[7]。且MSC-exos中含有與其來(lái)源細(xì)胞相似的生物活性物質(zhì),使MSC-exos具備能夠替代干細(xì)胞執(zhí)行器官和組織修復(fù)等生物學(xué)功能的潛力。
MSC-exos應(yīng)用于動(dòng)物急性腎損傷治療可避免傳統(tǒng)細(xì)胞療法中可能出現(xiàn)的異物堆積、非治療目的的分化,甚至形成腫瘤等多種潛在風(fēng)險(xiǎn)。加之MSC-exos具有免疫原性低、便于保存和運(yùn)輸?shù)忍攸c(diǎn),使其作為“創(chuàng)新的無(wú)細(xì)胞的干細(xì)胞治療技術(shù)”在急性腎損傷治療領(lǐng)域具有較大優(yōu)勢(shì),成為細(xì)胞治療的有力替代者[8-9]。
4 MSC-exos治療急性腎損傷的作用機(jī)制
研究發(fā)現(xiàn),MSC-exos通過(guò)釋放mRNA、miRNA及蛋白質(zhì)等生物活性物質(zhì),發(fā)揮抗炎、抗氧化、抗凋亡,促進(jìn)受損腎臟血管重建等生物學(xué)功能,而發(fā)揮對(duì)AKI的治療作用[10]。Collino團(tuán)隊(duì)研究發(fā)現(xiàn),敲除MSCs中DROSHA基因后,MSC-exos中的miRNA的表達(dá)量顯著降低,且缺少DROSHA的外泌體對(duì)AKI的臨床療效明顯降低[11]。這一發(fā)現(xiàn)強(qiáng)調(diào)了Exos中miRNA在腎臟損傷修復(fù)中的重要性,進(jìn)一步指引了外泌體作為潛在治療策略的研究方向。
4.1 抗炎作用
在AKI發(fā)生后,機(jī)體免疫系統(tǒng)迅速被激活,大量免疫細(xì)胞和細(xì)胞因子參與AKI進(jìn)程。其中樹(shù)突狀細(xì)胞、單核/巨噬細(xì)胞、中性粒細(xì)胞等免疫細(xì)胞在受損細(xì)胞釋放的損傷相關(guān)分子模式、致炎因子與趨化因子的作用下激活,釋放大量促炎細(xì)胞因子,如白細(xì)胞介素-1α(interleukin-1α, IL-1α)和腫瘤壞死因子-α(tumor necrosis factor-α, TNF-α),以及單核細(xì)胞趨化蛋白-1(monocyte chemoattractant protein- MCP-1)和白細(xì)胞介素-8(interleukin-8, IL-8)等,這些細(xì)胞因子共同誘發(fā)炎癥反應(yīng),同時(shí)固有免疫和適應(yīng)性免疫共同作用、相互制約,參與腎臟組織的損傷或修復(fù)[12-13]。一些調(diào)節(jié)因子包括核因子-κB(nuclear factor kappa-B, NF-κB)、熱休克因子蛋白(heat shock proteins, HSP)和缺氧誘導(dǎo)因子-1(hypoxia inducible factor- HIF-1)等,也會(huì)刺激一系列促炎細(xì)胞因子的合成和釋放[14-15]。這一復(fù)雜的免疫調(diào)節(jié)網(wǎng)絡(luò)反映了機(jī)體對(duì)AKI的即時(shí)響應(yīng),也揭示了潛在的干預(yù)點(diǎn),為針對(duì)AKI的治療提供了理論依據(jù)和潛在靶點(diǎn)。
研究發(fā)現(xiàn),CX3C趨化因子配體1(CX3C chemokine ligand" CX3CL1)作為巨噬細(xì)胞的一種誘導(dǎo)蛋白,在缺血再灌注誘導(dǎo)的AKI發(fā)生時(shí)表達(dá)上調(diào),導(dǎo)致大量巨噬細(xì)胞聚集于受損的腎組織[16]。給缺血再灌注引發(fā)的AKI小鼠靜脈注射MSC-exos后,CX3CL1的蛋白表達(dá)水平下調(diào),受損腎臟中巨噬細(xì)胞數(shù)量減少。此外,MSC-exos中的miRNA可轉(zhuǎn)移到受損腎臟的靶細(xì)胞中,表明miRNA在AKI后修復(fù)過(guò)程可能扮演著重要角色。通過(guò)對(duì)Targetscan數(shù)據(jù)庫(kù)預(yù)測(cè)的針對(duì)CX3CL1 mRNA的靶分子(miR-15a、miR-15b、miR-16、miR-195、miR-424和miR497)進(jìn)行RT-qPCR檢測(cè)發(fā)現(xiàn),MSC-exos中miR-16、miR-15b和miR-15a高表達(dá),表明它們可能是CX3CL1的靶分子,具有調(diào)節(jié)CX3CL1的潛在作用,但其具體功能機(jī)制還有待進(jìn)一步探究[17]。在AKI的治療過(guò)程中,MSC-exos的作用不僅限于抑制CX3CL1的表達(dá),減少巨噬細(xì)胞的聚集和活化,抑制炎性細(xì)胞浸潤(rùn),還包括對(duì)NF-κB途徑的抑制,從而減少促炎因子的釋放[17]。這些研究發(fā)現(xiàn)為開(kāi)發(fā)新的AKI治療策略提供了有價(jià)值的線索。
腎損傷過(guò)程中,CC趨化因子配體2(CC chemokine ligand 2, CCL2)及CC趨化因子受體(CC chemokine receptor 2, CCR2)通路是介導(dǎo)巨噬細(xì)胞遷移至炎癥部位的關(guān)鍵,并且巨噬細(xì)胞會(huì)被這一通路激活,釋放促炎因子IL-1α和TNF-α等,加劇腎損傷[18]。研究表明,CCR2在MSC-exos中高表達(dá),CCR2+的Exos可通過(guò)與胞外游離的CCL2結(jié)合,降低游離CCL2水平,進(jìn)而抑制巨噬細(xì)胞的募集和激活,減少AKI后炎癥細(xì)胞的浸潤(rùn),從而促進(jìn)腎臟修復(fù)[19]。此外,MSC-exos中CCR2與游離CCL2的結(jié)合,可減少CCL2誘導(dǎo)的NF-κB和炎癥因子(如TNF-α、IL-6和IL-1β)的mRNA表達(dá)水平的上調(diào),進(jìn)而減少巨噬細(xì)胞的活化,促進(jìn)腎臟組織的修復(fù)[19]。研究發(fā)現(xiàn),對(duì)小鼠盲腸結(jié)扎穿孔和脂多糖(lipopolysaccharide,LPS)處理人近端腎小管上皮細(xì)胞(human kidney- HK-2)建立的膿毒癥腎損傷體內(nèi)外模型注射MSC-exos后,腎組織中IL-1β和TNF-α等促炎因子的表達(dá)顯著降低,進(jìn)一步證實(shí)了MSC-exos在治療腎損傷中的抗炎作用[20-21]。
NF-κB通路是炎癥反應(yīng)的關(guān)鍵調(diào)節(jié)通路,其激活可促進(jìn)炎癥因子的合成與釋放,因此抑制其激活對(duì)控制炎癥至關(guān)重要[22]。Shen等[19]研究證實(shí),經(jīng)MSC-exos處理的巨噬細(xì)胞中NF-κB亞基p65 的磷酸化(p-p65)水平顯著降低,進(jìn)一步說(shuō)明MSC-exos在抑制NF-κB活化方面的潛在作用。白細(xì)胞介素-1受體相關(guān)激酶1(interleukin-1 receptor associated kinase" IRAK1)是已知的正向調(diào)節(jié)NF-κB 活性的關(guān)鍵蛋白,在炎癥反應(yīng)中發(fā)揮重要作用。研究發(fā)現(xiàn),IRAK1是腎小管上皮細(xì)胞中miR-146b的下游靶基因,MSC-Exos通過(guò)上調(diào)miR-146b水平降低IRAK1的表達(dá),從而抑制NF-κB的活性,減少促炎因子的釋放,最終減輕膿毒癥相關(guān)的AKI,提高患有膿毒癥腎損傷小鼠的成活[23]。給膿毒癥誘導(dǎo)的AKI小鼠注射脂肪來(lái)源的MSC-exos后,發(fā)現(xiàn)小鼠體內(nèi)沉寂信息調(diào)節(jié)因子(sirtuin" SIRT1)表達(dá)顯著升高,NF-κB、促炎因子的表達(dá)明顯降低,表明MSC-exos可能通過(guò)SIRT1/NF-κB信號(hào)通路發(fā)揮抗炎作用,改善膿毒癥誘導(dǎo)的急性腎損傷[24-25]。
這些研究揭示了MSC-exos在調(diào)節(jié)腎損傷炎癥反應(yīng)中的潛在機(jī)制,MSC-exos利用其抗炎和免疫調(diào)節(jié)特性,通過(guò)調(diào)節(jié)CCL2/CCR2軸和NF-κB通路減少炎癥因子的生成,促進(jìn)受損腎臟組織的修復(fù)。
4.2 抗凋亡作用
在缺血再灌注引發(fā)AKI發(fā)生后,腎臟組織會(huì)發(fā)生一系列損傷反應(yīng),這些反應(yīng)會(huì)導(dǎo)致細(xì)胞膜破裂,細(xì)胞內(nèi)容物釋放,從而激發(fā)炎癥和免疫反應(yīng)導(dǎo)致細(xì)胞通過(guò)壞死或凋亡的方式死亡[26-27]。
在治療AKI時(shí),抑制這些高度調(diào)控的非凋亡性細(xì)胞死亡也是一個(gè)有效的策略。如圖1所示,MSC-exos可通過(guò)激活磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase, PI3K)/蛋白激酶B(protein kinase B, Akt)信號(hào)通路上調(diào)抗凋亡基因(如Bcl-2、BIRC8等)的表達(dá),下調(diào)細(xì)胞凋亡關(guān)鍵基因(如Casp1、Casp8等)的表達(dá),減少細(xì)胞凋亡;此外,MSC-exos可通過(guò)抑制NOD樣受體熱蛋白結(jié)構(gòu)域相關(guān)蛋白3(NOD-like receptor thermal protein domain associated protein 3, NLRP3)/Caspase1信號(hào)通路,降低焦亡相關(guān)蛋白如細(xì)胞焦亡關(guān)鍵因子Gasdermin D(GSDMD)、Caspase1、NLRP3的表達(dá)水平,減少細(xì)胞焦亡;通過(guò)激活miR125b-5p/p53信號(hào)通路,降低p53蛋白表達(dá),上調(diào)細(xì)胞周期蛋白依賴性激酶1(cyclin-dependent kinase,CDK1)、細(xì)胞周期蛋白B1(Cyclin B1)的表達(dá),緩解細(xì)胞阻滯,減少細(xì)胞凋亡;通過(guò)轉(zhuǎn)導(dǎo)miR-874-3p抑制受體相互作用蛋白激酶1(receptor interacting protein kinase RIPK1)、受體相互作用蛋白激酶3(receptor interacting protein kinase3, RIPK3)和混合譜系激酶樣結(jié)構(gòu)域樣假激酶(mixed lineage kinase domain-protein, MLKL)的表達(dá),減少細(xì)胞壞死性凋亡[28-29]。
在順鉑誘導(dǎo)的AKI小鼠模型中,MSC-exos通過(guò)上調(diào)抗凋亡基因(如Bcl-xl、Bcl-2)的表達(dá),同時(shí)下調(diào)細(xì)胞凋亡關(guān)鍵基因(如Casp1、Casp8和LTA)的表達(dá),從而減少腎小管上皮細(xì)胞的凋亡和壞死,但該研究中未探明MSC-exos發(fā)揮作用的具體信號(hào)通路[30]。MSC-exos通過(guò)激活PI3K/Akt信號(hào)通路,上調(diào)Akt的表達(dá)并促使其磷酸化,磷酸化的Akt抑制促凋亡蛋白Bax的表達(dá),使其喪失與Bcl-2的結(jié)合能力,從而促進(jìn)Bcl-2蛋白的表達(dá),進(jìn)而減少Caspase3的活性,抑制腎小管上皮細(xì)胞的凋亡,最終對(duì)腎臟組織發(fā)揮保護(hù)作用[31]。MSC-exos可通過(guò)轉(zhuǎn)運(yùn)或誘導(dǎo)與Caspase3和Caspase7表達(dá)相關(guān)的miRNA(Caspase3:miR-410、miR-495、miR-548c-5p、let-7a;Caspase7:miR-375、miR-495、miR-548c-5p)來(lái)減少Caspase3、Caspase7的表達(dá),從而減少細(xì)胞凋亡[32]。這些研究共同支持了MSC-exos 在減少AKI發(fā)生時(shí)細(xì)胞凋亡方面的潛在作用。
壞死性凋亡是一種受調(diào)控的、促炎的、不依賴Caspase的程序性死亡[26,33]。在AKI發(fā)生后,與壞死性凋亡相關(guān)的關(guān)鍵蛋白Caspase8、RIPK1和RIPK3表達(dá)上調(diào),激活下游MLKL,與受RIPK1調(diào)控的RIPK3共同作用,啟動(dòng)并傳遞壞死性凋亡信號(hào)至細(xì)胞,活化的MLKL介導(dǎo)細(xì)胞膜破裂,進(jìn)一步損害腎臟細(xì)胞[34-35]。在對(duì)MSC-exos治療AKI的研究中發(fā)現(xiàn),MSC-exos中miR-874-3p通過(guò)抑制RIPK1的表達(dá),靶向調(diào)控RIPK3、MLKL的磷酸化水平,降低其表達(dá)量,減少細(xì)胞的壞死性凋亡,促進(jìn)腎臟恢復(fù)[29]。
細(xì)胞焦亡又稱細(xì)胞炎性壞死,是一種促炎性細(xì)胞的程序性死亡。在AKI發(fā)生后,細(xì)胞焦亡被激活,導(dǎo)致細(xì)胞膨脹、核收縮直至細(xì)胞破裂,并釋放促炎因子,從而損害腎臟組織[36]。NLRP3和Caspase1在細(xì)胞焦亡過(guò)程中起到重要作用[37]。在AKI發(fā)生后,NLRP3炎性小體被激活,刺激Caspase1的活化,進(jìn)一步裂解GSDMD,進(jìn)而誘發(fā)細(xì)胞焦亡[38]。Wan等[28]的研究表明,在順鉑和缺血再灌注誘導(dǎo)的小鼠AKI模型中,經(jīng)MSC-exos治療后,腎組織中焦亡相關(guān)蛋白GSDMD、Caspase1、NLRP3的表達(dá)水平降低,表明MSC-exos可通過(guò)抑制細(xì)胞焦亡來(lái)緩解AKI。
細(xì)胞周期阻滯是AKI發(fā)生時(shí)導(dǎo)致細(xì)胞凋亡的一個(gè)重要因素,因此減少腎小管上皮細(xì)胞(tubular epithelial cells,TECs)的周期阻滯對(duì)于促進(jìn)組織修復(fù)和腎臟功能恢復(fù)至關(guān)重要。在缺血再灌注損傷導(dǎo)致的AKI中,近端小管中的抑癌基因p53會(huì)被激活,通過(guò)促進(jìn)細(xì)胞凋亡、細(xì)胞周期阻滯和自噬等多個(gè)生物學(xué)途徑參與AKI的發(fā)展和腎臟修復(fù)過(guò)程[39]。因此,抑制p53蛋白的表達(dá)對(duì)于減少細(xì)胞周期阻滯和細(xì)胞凋亡,促進(jìn)腎臟修復(fù)具有重要的意義。通過(guò)在缺血再灌注性AKI小鼠模型中的研究發(fā)現(xiàn),MSC-exos可通過(guò)miR125b-5p/p53信號(hào)通路抑制TECs中p53蛋白的表達(dá),上調(diào)CDK1和Cyclin B 從而解除G2/M期的阻滯[40]。此外,MSC-exos還促進(jìn)抗凋亡蛋白Bcl-2的表達(dá),并抑制凋亡相關(guān)蛋白Bax的表達(dá),減少細(xì)胞凋亡的發(fā)生,從而促進(jìn)缺血再灌注性AKI時(shí)腎臟的修復(fù)過(guò)程[41]。
目前,在不同病因誘導(dǎo)的AKI中,MSC-exos調(diào)控p53蛋白表達(dá)的作用機(jī)制尚未明了,故深入研究MSC-exos調(diào)控p53蛋白表達(dá)的具體信號(hào)通路對(duì)于豐富MSC-exos抗凋亡作用機(jī)制具有重要意義。
4.3 調(diào)節(jié)自噬
自噬是細(xì)胞在遭遇應(yīng)激或病理狀態(tài)時(shí)啟動(dòng)的一種防御機(jī)制,它通過(guò)降解受損的細(xì)胞器和蛋白質(zhì)為細(xì)胞存活提供必需的營(yíng)養(yǎng)物質(zhì),從而維持細(xì)胞的穩(wěn)態(tài)[42]。近年來(lái)的研究發(fā)現(xiàn),自噬在AKI發(fā)生發(fā)展中扮演重要角色。它通過(guò)調(diào)節(jié)組織物質(zhì)供應(yīng),維持機(jī)體的穩(wěn)態(tài),有助于抗細(xì)胞凋亡和減少炎癥反應(yīng),從而促進(jìn)小鼠AKI的恢復(fù)[43-44]。自噬在AKI發(fā)生后的修復(fù)過(guò)程中起重要作用,而MSC-exos通過(guò)激活多條信號(hào)通路促進(jìn)自噬,以修復(fù)腎臟功能[42-43],但其具體分子機(jī)制有待進(jìn)一步探究。
在順鉑誘導(dǎo)的AKI小鼠模型中,MSC-exos中含有14-3-3ζ蛋白,它可與多種參與細(xì)胞凋亡和存活調(diào)控的信號(hào)通路相互作用,對(duì)自噬過(guò)程中的關(guān)鍵蛋白通路,信號(hào)包括PI3K和哺乳動(dòng)物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)等起到調(diào)節(jié)作用。MSC-exos通過(guò)轉(zhuǎn)導(dǎo)14-3-3ζ蛋白激活自噬過(guò)程,從而阻礙藥物對(duì)腎臟的損傷[44]。但關(guān)于MSC-exos通過(guò)14-3-3ζ蛋白調(diào)節(jié)自噬的具體作用機(jī)制仍不清楚。有研究發(fā)現(xiàn),自噬中發(fā)揮關(guān)鍵作用的是自噬相關(guān)蛋白(autophagy-related protein, ATG),可通過(guò)改變ATG的表達(dá)調(diào)控自噬的強(qiáng)弱[45]。MSC-exos中的14-3-3ζ蛋白可靶向調(diào)節(jié)自噬相關(guān)16樣蛋白(autophagy related 16 like protein, ATG16L)的表達(dá),從而激活自噬[46]。在順鉑誘導(dǎo)的小鼠AKI模型中,hucMSC-exos通過(guò)下調(diào)磷酸化mTOR表達(dá),抑制mTOR通路的激活,從而上調(diào)自噬標(biāo)志蛋白(microtubule-associated protein 1 light chain 3 beta, LC3B)及自噬相關(guān)蛋白ATG5、ATG7的表達(dá),誘導(dǎo)腎小管上皮細(xì)胞和腎組織的自噬,從而減輕早期的細(xì)胞凋亡與炎癥反應(yīng)。此外,MSC-exos還可通過(guò)miRNA let-7a-5p靶向調(diào)控RradD mRNA表達(dá),激活下游自噬途徑,從而改善細(xì)胞凋亡水平,促進(jìn)腎組織的修復(fù)進(jìn)程[43]。
自噬、免疫反應(yīng),炎癥反應(yīng)及細(xì)胞凋亡存在密切的聯(lián)系。例如,TLR9作為Toll樣受體家族的一員,可特異性識(shí)別受損細(xì)胞釋放的內(nèi)源性產(chǎn)物,引發(fā)炎癥和凋亡。在膿毒血癥引起的AKI小鼠模型中,TLR9是MSC-exos中miR-342-5p的靶基因,MSC-exos通過(guò)轉(zhuǎn)遞大量miR-342-5p分子而抑制TLR9的表達(dá),從而促進(jìn)自噬,改善AKI狀況,防止炎癥反應(yīng)和細(xì)胞凋亡的發(fā)生[47]。
4.4 促進(jìn)再生作用
在AKI發(fā)生后,腎小管上皮細(xì)胞受損,伴隨著毛細(xì)血管稀疏化,這導(dǎo)致腎臟血液灌流減少和氧氣供應(yīng)不足。這種狀況如持續(xù)存在會(huì)導(dǎo)致腎間質(zhì)纖維化,甚至演化為慢性腎臟疾病。因此,促進(jìn)缺血后的血管再生及內(nèi)皮細(xì)胞的保護(hù)對(duì)于減輕腎損傷和腎功能的恢復(fù)具有重要意義[48]。在AKI后再生過(guò)程中,MSC-exos不僅轉(zhuǎn)導(dǎo)多種細(xì)胞因子如胰島素樣生長(zhǎng)因子-1(insulin-like growth factor- IGF-1)和肝細(xì)胞生長(zhǎng)因子(hepatocyte growth factor, HGF)、活化性別決定區(qū)域Y相關(guān)的高遷移率族框-9(sex determining region Y-box 9, Sox-9)蛋白,從而促進(jìn)TECs的分化和增殖,而且可促進(jìn)血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor, VEGF)在受損血管中高表達(dá),從而促進(jìn)腎臟血管內(nèi)皮細(xì)胞的增殖(圖2)。VEGF是促進(jìn)新生血管生成的重要介質(zhì),它不僅參與基質(zhì)重塑、黏附因子表達(dá),還能刺激小管周圍毛細(xì)血管增殖等生物過(guò)程。Choi等[49-50]研究發(fā)現(xiàn),MSC-exos通過(guò)傳遞VEGF至腎臟血管中,增強(qiáng)腎臟血管中VGEF的表達(dá),從而改善腎小管周圍毛細(xì)血管稀疏化,促進(jìn)腎臟的修復(fù)和血氧供應(yīng)。
在AKI發(fā)生后,Sox-9蛋白在近端小管細(xì)胞中表達(dá),Sox9+細(xì)胞是一種具有高增殖能力的祖細(xì)胞樣細(xì)胞,可分化為多種腎臟組織細(xì)胞類型,參與腎臟組織修復(fù)過(guò)程。Zhang等[48]研究發(fā)現(xiàn),MSC-exos可促進(jìn)受損組織中Sox-9的活化,激活Sox9+細(xì)胞的大量增殖,替代受損細(xì)胞,從而顯著改善AKI后腎臟功能。在機(jī)體內(nèi),IGF-1和HGF是參與腎小管修復(fù)、促進(jìn)腎小管上皮細(xì)胞增殖的重要生長(zhǎng)因子。研究發(fā)現(xiàn),MSC-exos可轉(zhuǎn)移 IGF-1受體(IGF-1R)的mRNA到TECs,增強(qiáng)TECs對(duì)局部產(chǎn)生的IGF-1的敏感性,受損的TECs與外泌體、IGF-1共同孵育促進(jìn)TECs大量增殖,從而修復(fù)受損部位并改善腎臟機(jī)能。MSC-exos轉(zhuǎn)移攜帶的HGF可重新啟動(dòng)成熟腎小管上皮細(xì)胞的去分化過(guò)程,并激活腎小管上皮細(xì)胞內(nèi)ERK1/2信號(hào)通路,從而介導(dǎo)腎小管上皮細(xì)胞的增殖[51]。
4.5 抗氧化應(yīng)激作用
在正常生理狀態(tài)下,機(jī)體的氧化應(yīng)激水平由活性氧(reactive oxygen species, ROS)的產(chǎn)生和消除之間維持的精細(xì)平衡所控制[52]。AKI發(fā)生后,腎小管上皮細(xì)胞受損,導(dǎo)致線粒體功能發(fā)生障礙,釋放大量ROS,當(dāng)ROS累積水平超出機(jī)體抗氧化酶的清除能力時(shí),便會(huì)誘發(fā)機(jī)體產(chǎn)生過(guò)度的氧化應(yīng)激。這種氧化應(yīng)激進(jìn)一步導(dǎo)致ROS的積累,高濃度的ROS會(huì)引起腎臟細(xì)胞線粒體損傷、斷裂,并釋放大量細(xì)胞色素c和線粒體DNA等損傷因子,最終引發(fā)腎細(xì)胞凋亡壞死,加速AKI病程[53-54]。在AKI發(fā)生后,MSC-exos通過(guò)激活多條信號(hào)通路[29,55],減少ROS的釋放,緩解氧化應(yīng)激以修復(fù)腎臟功能。
核因子 E2 相關(guān)因子2 (nuclear factor erythroid-2-related factor 2, Nrf2)是一種氧化還原感應(yīng)轉(zhuǎn)錄因子,在氧化應(yīng)激條件下被激活,與抗氧化反應(yīng)組件(anti-oxide response element, ARE)結(jié)合,誘導(dǎo)超氧化物歧化酶(superoxide dismutase, SOD)和過(guò)氧化氫酶(catalase, CAT)等抗氧化酶的表達(dá),減輕氧化應(yīng)激[56]。Zhang等[57]在缺血再灌注引發(fā)的AKI大鼠模型中證實(shí),MSC-exos可增強(qiáng)Nrf2/ARE信號(hào)通路的激活,減輕氧化應(yīng)激,促進(jìn)腎臟功能的恢復(fù)。盡管MSC-exos在抗氧化應(yīng)激中的作用已得到證實(shí),但其詳細(xì)的作用機(jī)制還不甚明了。由于MSC-exos中還有大量作用和機(jī)制不明確的miRNA,推測(cè)MSC-exos的抗氧化應(yīng)激作用可能與特定的miRNA有關(guān)。Cao等[58]揭示MSC-exos通過(guò)轉(zhuǎn)導(dǎo)miRNA-200a-3p靶向激活TECs的Keap1-Nrf2信號(hào)通路,增強(qiáng)Nrf2的表達(dá),降低Keap1的表達(dá),從而減少ROS的生成,緩解氧化應(yīng)激,促進(jìn)腎功能的恢復(fù)。
煙酰胺腺嘌呤二核苷酸磷酸氧化酶(nicotinamide adenine dinucleotide phosphate oxidase, NOX2)作為生物膜中傳遞電子的載體蛋白,主要參與ROS的生成。在AKI發(fā)生后,NOX2在體內(nèi)表達(dá)顯著升高。Zhang等[59]的研究發(fā)現(xiàn),給缺血再灌注誘發(fā)的AKI小鼠模型中注射人臍帶來(lái)源的MSC-exos,其腎臟組織中NOX2和ROS的表達(dá)水平下降,氧化應(yīng)激減輕,腎臟功能有所改善。有學(xué)者發(fā)現(xiàn),褪黑素預(yù)處理后的MSC-exos較于MSC-exos可顯著降低低氧誘導(dǎo)因子-1α、NOX2的表達(dá)水平和丙二醛含量,從而減少ROS的生成,同時(shí)誘導(dǎo)超氧化物歧化酶、過(guò)氧化氫酶等抗氧化酶的表達(dá),從而發(fā)揮更強(qiáng)的抗氧化應(yīng)激作用。這一發(fā)現(xiàn)為使用聯(lián)合藥物聯(lián)合治療動(dòng)物腎損傷提供新的視角。Zhou等[60]發(fā)現(xiàn),人臍帶來(lái)源的MSC-exos可減少順鉑誘導(dǎo)的AKI小鼠模型腎臟中有害產(chǎn)物(如8-羥基-2-脫氧鳥(niǎo)苷,丙二酰二醛)的積累,增強(qiáng)谷胱甘肽水平,抑制p38/微管關(guān)聯(lián)調(diào)節(jié)激酶(microtubule affinity regulating kinase, MARK)通路的激活,對(duì)抗順鉑誘導(dǎo)的氧化應(yīng)激,促進(jìn)腎臟功能的恢復(fù)。腎臟纖維化是阻礙AKI后期腎臟修復(fù)的關(guān)鍵因素,抑制腎臟纖維化對(duì)于AKI演變?yōu)槁阅I損傷具有重要意義。腎損傷后纖維化的主要原因?yàn)槟I小管上皮細(xì)胞向間質(zhì)表型轉(zhuǎn)化 (epithelial-mesenchymal transition, EMT) 的啟動(dòng),Snail基因作為驅(qū)動(dòng)EMT關(guān)鍵轉(zhuǎn)錄因子,抑制其表達(dá)對(duì)于AKI后腎臟功能的恢復(fù)有著重要作用。MSC-exos通過(guò)轉(zhuǎn)導(dǎo)OCT-4 mRNA抑制Snail表達(dá),從而抑制EMT的發(fā)生與腎臟組織的纖維化,降低細(xì)胞氧化應(yīng)激水平,對(duì)腎臟后期修復(fù)發(fā)揮保護(hù)作用[61]。
此外,MSC-exos可促進(jìn)受損細(xì)胞線粒體的功能恢復(fù)從而緩解氧化應(yīng)激。Zhao等[55]的研究發(fā)現(xiàn),向缺血再灌注AKI小鼠模型注射MSC-exos后,能夠恢復(fù)體內(nèi)重組線粒體轉(zhuǎn)錄因子-A(recombinant transcription factor A, TFAM)的蛋白表達(dá)和線粒體 DNA(mitochondrial DNA, mtDNA)的豐度,從而促進(jìn)腎小管細(xì)胞線粒體的功能恢復(fù),減少ROS的產(chǎn)生,改善小鼠腎臟功能。在細(xì)胞壞死性凋亡發(fā)生后,線粒體內(nèi)形成的RIPK3-MLKL壞死小泡和磷酸甘油酸突變酶(protein gamma arginine methyltransferase 5, PGAM5)結(jié)合,促進(jìn)動(dòng)力相關(guān)蛋白1(dynamic-related protein" Drp1)在S637位點(diǎn)去磷酸化,調(diào)節(jié)線粒體的分裂過(guò)程,導(dǎo)致線粒體功能發(fā)生障礙,ROS釋放過(guò)量,進(jìn)而誘發(fā)氧化應(yīng)激反應(yīng),加重腎小管上皮細(xì)胞的損傷[62]。此外,Yu等[29]通過(guò)研究發(fā)現(xiàn),MSC-exos通過(guò)抑制PGAM5的表達(dá)和RIPK3-MLKL壞死小體的形成,有效抑制Drp1的去磷酸化,促進(jìn)線粒體的融合,緩解氧化應(yīng)激,減少對(duì)腎小管上皮細(xì)胞的損傷。
在AKI的治療中,MSC-exos主要通過(guò)誘導(dǎo)抗氧化酶的表達(dá)改善細(xì)胞線粒體功能,進(jìn)而減少ROS釋放;除此之外,MSC-exos還可通過(guò)誘導(dǎo)抗氧化酶降低NOX2蛋白的表達(dá),進(jìn)而清除機(jī)體內(nèi)過(guò)多的ROS,維持機(jī)體ROS的產(chǎn)生和消除間平衡,緩解氧化應(yīng)激,減少腎臟細(xì)胞凋亡與腎臟纖維化,改善腎臟功能[27]。
5 小結(jié)與展望
大量研究已經(jīng)證實(shí),MSC-exos可向腎臟傳輸多種mRNA、miRNA以及生物活性因子,它們通過(guò)抗凋亡、抗炎、抗氧化應(yīng)激、保護(hù)內(nèi)皮和調(diào)節(jié)自噬等多種途徑對(duì)發(fā)生AKI的腎臟進(jìn)行保護(hù)和修復(fù)[10]。MSC-exos中mRNA和miRNA在治療AKI中起到關(guān)鍵作用,它們是治療中的潛在驅(qū)動(dòng)因素[63]。為了更深入地理解MSC-exos的治療潛力,未來(lái)的研究應(yīng)重點(diǎn)探究不同類型的mRNA和miRNA在治療AKI時(shí)的具體分子機(jī)制及其在下游信號(hào)通路中的調(diào)控作用。這將有助于進(jìn)一步闡明MSC-exos在治療動(dòng)物急性腎損傷中的作用機(jī)制,并為其在臨床應(yīng)用奠定基礎(chǔ)。
雖然MSC-exos與傳統(tǒng)細(xì)胞療法相比具有一些明顯優(yōu)勢(shì),但其要應(yīng)用于臨床仍面臨挑戰(zhàn)。首先,MSC-exos的大規(guī)模生產(chǎn)和純化尚無(wú)明確的標(biāo)準(zhǔn)化流程,這在未來(lái)的臨床應(yīng)用中可能會(huì)成為一個(gè)問(wèn)題[64]。有研究發(fā)現(xiàn),脂肪來(lái)源的MSC-exos可從廢棄脂肪中抽取,獲取簡(jiǎn)便且來(lái)源豐富,這為大規(guī)模生產(chǎn)外泌體提供了便利[65]。其次,對(duì)于動(dòng)物AKI的治療來(lái)說(shuō),免疫排斥是一個(gè)重要的影響因素,盡管MSC-exos具低免疫原性的特性,但自體和異體來(lái)源的MSC-exos在治療過(guò)程中是否存在功能差異尚未明確,其對(duì)機(jī)體免疫系統(tǒng)的影響仍需進(jìn)一步探究。最后,由于細(xì)胞Exos和微囊泡之間的區(qū)分尚不明確,二者在動(dòng)物腎臟保護(hù)和修復(fù)過(guò)程中功能也可能存在差異。因此,如何區(qū)分Exos和微囊泡是將MSC-exos應(yīng)用于臨床前必須要解決的問(wèn)題。
隨著對(duì)MSC-exos的研究深入,人們對(duì)MSC-exos在治療動(dòng)物AKI中的巨大潛力充滿信心。探索MSC-exos在治療AKI過(guò)程中涉及的下游信號(hào)通路及具體分子機(jī)制,以及解決臨床轉(zhuǎn)化中所面臨的問(wèn)題(如MSC-exos的大規(guī)模制備、治療和操作的標(biāo)準(zhǔn)化等)將是未來(lái)的研究重點(diǎn)和方向。隨著上述問(wèn)題的解決,MSC-exos有望對(duì)動(dòng)物AKI的治療產(chǎn)生重要影響,并為寵物及人類AKI的臨床治療提供重要參考。
參考文獻(xiàn)(References):
[1] KELLUM J A, ROMAGNANI P, ASHUNTANTANG G, et al. Acute kidney injury[J]. Nat Rev Dis Primers, 202 7(1):52.
[2] HUANG Y L, YANG L N. Mesenchymal stem cells and extracellular vesicles in therapy against kidney diseases[J]. Stem Cell Res Ther, 202 12(1):219.
[3] XUNIAN Z, KALLURI R. Biology and therapeutic potential of mesenchymal stem cell-derived exosomes[J]. Cancer Sci, 2020, 111(9):3100-3110.
[4] DAD H A, GU T W, ZHU A Q, et al. Plant exosome-like nanovesicles: emerging therapeutics and drug delivery nanoplatforms[J]. Mol Ther, 202 29(1):13-31.
[5] ASKENASE P W. Exosomes provide unappreciated carrier effects that assist transfers of their miRNAs to targeted cells; I. They are ‘The Elephant in the Room’[J]. RNA Biol, 202 18(11):2038-2053.
[6] SPADA S. Study of microRNAs carried by exosomes[J]. Methods Cell Biol, 202 165:187-197.
[7] PEIRED A J, SISTI A, ROMAGNANI P. Mesenchymal stem cell-based therapy for kidney disease: a review of clinical evidence[J]. Stem Cells Int, 2016, 2016:4798639.
[8] ELAHI F M, FARWELL D G, NOLTA J A, et al. Preclinical translation of exosomes derived from mesenchymal stem/stromal cells[J]. Stem Cells, 2020, 38(1):15-21.
[9] JOO H S, SUH J H, LEE H J, et al. Current knowledge and future perspectives on mesenchymal stem cell-derived exosomes as a new therapeutic agent[J]. Int J Mol Sci, 2020, 21(3):727.
[10] ZHANG X Y, WANG J, ZHANG J, et al. Exosomes highlight future directions in the treatment of acute kidney injury[J]. Int J Mol Sci, 2023, 24(21):15568.
[11] COLLINO F, BRUNO S, INCARNATO D, et al. AKI recovery induced by mesenchymal stromal cell-derived extracellular vesicles carrying MicroRNAs[J]. J Am Soc Nephrol, 2015, 26(10):2349-2360.
[12] BONAVIA A, SINGBARTL K. A review of the role of immune cells in acute kidney injury[J]. Pediatr Nephrol, 2018, 33(10):1629-1639.
[13] TAMMARO A, KERS J, SCANTLEBERY A M L, et al. Metabolic flexibility and innate immunity in renal ischemia reperfusion injury: the fine balance between adaptive repair and tissue degeneration[J]. Front Immunol, 2020, 11:1346.
[14] LIU Z W, DONG Z. A cross talk between HIF and NF-κB in AKI[J]. Am J Physiol Renal Physiol, 202 321(3):F255-F256.
[15] AMARAL PEDROSO L, NOBRE V, DIAS CARNEIRO DE ALMEIDA C, et al. Acute kidney injury biomarkers in the critically ill[J]. Clin Chim Acta, 2020, 508:170-178.
[16] VON VIETINGHOFF S, KURTS C. Regulation and function of CX3CR1 and its ligand CX3CL1 in kidney disease[J]. Cell Tissue Res, 202 385(2):335-344.
[17] ZOU X Y, ZHANG G Y, CHENG Z L, et al. Microvesicles derived from human Wharton’s Jelly mesenchymal stromal cells ameliorate renal ischemia-reperfusion injury in rats by suppressing CX3CL1[J]. Stem Cell Res Ther, 2014, 5(2):40.
[18] YOO K D, CHA R H, LEE S, et al. Chemokine receptor 5 blockade modulates macrophage trafficking in renal ischaemic-reperfusion injury[J]. J Cell Mol Med, 2020, 24(10):5515-5527.
[19] SHEN B, LIU J, ZHANG F, et al. CCR2 positive exosome released by mesenchymal stem cells suppresses macrophage functions and alleviates ischemia/reperfusion-induced renal injury[J]. Stem Cells Int, 2016, 2016:1240301.
[20] 金 翠, 曹永梅, 尚嘉偉, 等. 骨髓間充質(zhì)干細(xì)胞來(lái)源外泌體保護(hù)膿毒癥相關(guān)急性腎損傷的體外研究[J]. 同濟(jì)大學(xué)學(xué)報(bào):醫(yī)學(xué)版, 2022, 43(2):157-164.
JIN C, CAO Y M, SHANG J W, et al. Protective effects of exosomes derived from bone mesenchymal stem cells in sepsis-induced acute kidney injury cell model in vitro[J]. Journal of Tongji University: Medical Science, 2022, 43(2):157-164. (in Chinese)
[21] 徐 瑩, 周 茹, 張欣洲, 等. 間充質(zhì)干細(xì)胞外泌體對(duì)CLP大鼠急性腎損傷作用研究[J]. 湖北醫(yī)藥學(xué)院學(xué)報(bào), 2022, 41(2):116-120.
XU Y, ZHOU R, ZHANG X Z, et al. The effect of mesenchymal stem cell-derived exosomes on acute kidney injury in CLP rats[J]. Journal of Hubei University of Medicine, 2022, 41(2):116-120. (in Chinese)
[22] KUNNUMAKKARA A B, SHABNAM B, GIRISA S, et al. Inflammation, NF-κB, and chronic diseases: how are they linked?[J]. Crit Rev Immunol, 2020, 40(1):1-39.
[23] ZHANG R X, ZHU Y, LI Y, et al. Human umbilical cord mesenchymal stem cell exosomes alleviate sepsis-associated acute kidney injury via regulating microRNA-146b expression[J]. Biotechnol Lett, 2020, 42(4):669-679.
[24] 高 芳. 脂肪間充質(zhì)干細(xì)胞外泌體對(duì)膿毒癥急性腎損傷的保護(hù)作用及機(jī)制研究[D]. 蘇州:蘇州大學(xué), 2021.
GAO F. Renoprotection and mechanisms of adipose-derived mesenchymal stem cell-derived exosome on sepsis-induced acute kidney injury[D]. Suzhou: Soochow University, 2021.
[25] GAO F, ZUO B J, WANG Y P, et al. Protective function of exosomes from adipose tissue-derived mesenchymal stem cells in acute kidney injury through SIRT1 pathway[J]. Life Sci, 2020, 255:117719.
[26] BERTHELOOT D, LATZ E, FRANKLIN B S. Necroptosis, pyroptosis and apoptosis:an intricate game of cell death[J]. Cell Mol Immunol, 202 18(5):1106-1121.
[27] KETELUT-CARNEIRO N, FITZGERALD K A. Apoptosis, pyroptosis, and necroptosis-Oh My!The many ways a cell can die[J]. J Mol Biol, 2022, 434(4):167378.
[28] WAN Y H, YU Y H, YU C J, et al. Human umbilical cord mesenchymal stem cell exosomes alleviate acute kidney injury by inhibiting pyroptosis in rats and NRK-52E cells[J]. Ren Fail, 2023, 45(1):2221138.
[29] YU Y H, CHEN M L, GUO Q T, et al. Human umbilical cord mesenchymal stem cell exosome-derived miR-874-3p targeting RIPK1/PGAM5 attenuates kidney tubular epithelial cell damage[J]. Cell Mol Biol Lett, 2023, 28(1):12.
[30] BRUNO S, GRANGE C, COLLINO F, et al. Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury[J]. PLoS One, 2012, 7(3):e33115.
[31] 王汝霖, 林 淼, 黎力平, 等. 骨髓間充質(zhì)干細(xì)胞來(lái)源exosome對(duì)大鼠腎缺血再灌注損傷的保護(hù)作用[J]. 中華醫(yī)學(xué)雜志, 2014, 94(42):3298-3303.
WANG R L, LIN M, LI L P, et al. Bone marrow mesenchymal stem cell-derived exosome protects kidney against ischemia reperfusion injury in rats[J]. Natl Med J China, 2014, 94(42):3298-3303. (in Chinese)
[32] LINDOSO R S, COLLINO F, BRUNO S, et al. Extracellular vesicles released from mesenchymal stromal cells modulate miRNA in renal tubular cells and inhibit ATP depletion injury[J]. Stem Cells Dev, 2014, 23(15):1809-1819.
[33] YE K, CHEN Z M, XU Y F. The double-edged functions of necroptosis[J]. Cell Death Dis, 2023, 14(2):163.
[34] FRANK D, VINCE J E. Pyroptosis versus necroptosis: similarities, differences, and crosstalk[J]. Cell Death Differ, 2019, 26(1):99-114.
[35] MORGAN M J, KIM Y S. Roles of RIPK3 in necroptosis, cell signaling, and disease[J]. Exp Mol Med, 2022, 54(10):1695-1704.
[36] ZHANG Z H, LIU W H, SHEN M L, et al. Protective effect of GM1 attenuates hippocampus and cortex apoptosis after ketamine exposure in neonatal rat via PI3K/AKT/GSK3β pathway[J]. Mol Neurobiol, 202 58(7):3471-3483.
[37] MALIREDDI R K S, KESAVARDHANA S, KANNEGANTI T D. ZBP1 and TAK1: master regulators of NLRP3 inflammasome/pyroptosis, apoptosis, and necroptosis (PAN-optosis)[J]. Front Cell Infect Microbiol, 2019, 9:406.
[38] HE Y, HARA H, NEZ G. Mechanism and regulation of NLRP3 inflammasome activation[J]. Trends Biochem Sci, 2016, 41(12):1012-1021.
[39] TANG C Y, MA Z W, ZHU J F, et al. P53 in kidney injury and repair: mechanism and therapeutic potentials[J]. Pharmacol Ther, 2019, 195:5-12.
[40] 曹婧媛. 人臍帶間充質(zhì)干細(xì)胞源外泌體對(duì)急性腎損傷的治療作用及機(jī)制探討[D]. 南京:東南大學(xué), 2021.
CAO J Y. The therapeutic effect and mechanism of human umbilical cord mesenchymal stem cell-derived exosomes in acute kidney injury[D]. Nanjing:Southeast University, 2021. (in Chinese)
[41] CAO J Y, WANG B, TANG T T, et al. Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p53 in ischemic acute kidney injury[J]. Theranostics, 202 11(11):5248-5266.
[42] LI W, HE P C, HUANG Y G, et al. Selective autophagy of intracellular organelles:recent research advances[J]. Theranostics, 202 11(1):222-256.
[43] WANG B Y, JIA H Y, ZHANG B, et al. Pre-incubation with hucMSC-exosomes prevents cisplatin-induced nephrotoxicity by activating autophagy[J]. Stem Cell Res Ther, 2017, 8(1):75.
[44] WANG J J, JIA H Y, ZHANG B, et al. HucMSC exosome-transported 14-3-3ζ prevents the injury of cisplatin to HK-2 cells by inducing autophagy in vitro[J]. Cytotherapy, 2018, 20(1):29-44.
[45] SAKAI Y, OKU M. ATG and ESCRT control multiple modes of microautophagy[J]. FEBS Lett, 2024, 598(1):48-58.
[46] JIA H Y, LIU W Z, ZHANG B, et al. HucMSC exosomes-delivered 14-3-3ζ enhanced autophagy via modulation of ATG16L in preventing cisplatin-induced acute kidney injury[J]. Am J Transl Res, 2018, 10(1):101-113.
[47] LIU W, HU C H, ZHANG B Y, et al. Exosomal microRNA-342-5p secreted from adipose-derived mesenchymal stem cells mitigates acute kidney injury in sepsis mice by inhibiting TLR9[J]. Biol Proced Online, 2023, 25(1):10.
[48] ZHANG K Y, CHEN S, SUN H M, et al. In vivo two-photon microscopy reveals the contribution of Sox9+ cell to kidney regeneration in a mouse model with extracellular vesicle treatment[J]. J Biol Chem, 2020, 295(34):12203-12213.
[49] CHOI H Y, MOON S J, RATLIFF B B, et al. Microparticles from kidney-derived mesenchymal stem cells act as carriers of proangiogenic signals and contribute to recovery from acute kidney injury[J]. PLoS One, 2014, 9(2):e87853.
[50] CHOI H Y, LEE H G, KIM B S, et al. Mesenchymal stem cell-derived microparticles ameliorate peritubular capillary rarefaction via inhibition of endothelial-mesenchymal transition and decrease tubulointerstitial fibrosis in unilateral ureteral obstruction[J]. Stem Cell Res Ther, 2015, 6(1):18.
[51] JU G Q, CHENG J, ZHONG L, et al. Microvesicles derived from human umbilical cord mesenchymal stem cells facilitate tubular epithelial cell dedifferentiation and growth via hepatocyte growth factor induction[J]. PLoS One, 2015, 10(3):e0121534.
[52] JAGANJAC M, MILKOVIC L, ZARKOVIC N, et al. Oxidative stress and regeneration[J]. Free Radic Biol Med, 2022, 181:154-165.
[53] LI X Q, HAN Y, MENG Y, et al. Small RNA-big impact:exosomal miRNAs in mitochondrial dysfunction in various diseases[J]. RNA Biol, 2024, 21(1):1-20.
[54] ZHAO L M, HAO Y J, TANG S Q, et al. Energy metabolic reprogramming regulates programmed cell death of renal tubular epithelial cells and might serve as a new therapeutic target for acute kidney injury[J]. Front Cell Dev Biol, 2023, 11:1276217.
[55] ZHAO M, LIU S Y, WANG C S, et al. Mesenchymal stem cell-derived extracellular vesicles attenuate mitochondrial damage and inflammation by stabilizing mitochondrial DNA[J]. ACS Nano, 202 15(1):1519-1538.
[56] WANG C, LI C C, PENG H, et al. Activation of the Nrf2-ARE pathway attenuates hyperglycemia-mediated injuries in mouse podocytes[J]. Cell Physiol Biochem, 2014, 34(3):891-902.
[57] ZHANG G Y, ZOU X Y, HUANG Y Q, et al. Mesenchymal stromal cell-derived extracellular vesicles protect against acute kidney injury through anti-oxidation by enhancing Nrf2/ARE activation in rats[J]. Kidney Blood Press Res, 2016, 41(2):119-128.
[58] CAO H M, CHENG Y Q, GAO H Q, et al. In vivo tracking of mesenchymal stem cell-derived extracellular vesicles improving mitochondrial function in renal ischemia-reperfusion injury[J]. ACS Nano, 2020, 14(4):4014-4026.
[59] ZHANG G Y, ZOU X Y, MIAO S, et al. The anti-oxidative role of micro-vesicles derived from human Wharton-Jelly mesenchymal stromal cells through NOX2/gp91(phox) suppression in alleviating renal ischemia-reperfusion injury in rats[J]. PLoS One, 2014, 9(3):e92129.
[60] ZHOU Y, XU H T, XU W R, et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro[J]. Stem Cell Res Ther, 2013, 4(2):34.
[61] 張志遠(yuǎn), 侯艷萍, 鄒翔宇, 等. 人臍帶間充質(zhì)干細(xì)胞微囊減輕小鼠急性腎損傷的研究[J]. 中華細(xì)胞與干細(xì)胞雜志:電子版, 2018, 8(5):264-271.
ZHANG Z Y, HOU Y P, ZOU X Y, et al. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells ameliorate acute kidney injury in mice[J]. Chinese Journal of Cell and Stem Cell: Electronic Edition, 2018, 8(5):264-271. (in Chinese)
[62] TANG C Y, CAI J, YIN X M, et al. Mitochondrial quality control in kidney injury and repair[J]. Nat Rev Nephrol, 202 17(5):299-318.
[63] WANG S Y, XU Y, HONG Q, et al. Mesenchymal stem cells ameliorate cisplatin-induced acute kidney injury via let-7b-5p[J]. Cell Tissue Res, 2023, 392(2):517-533.
[64] KIM H, LEE S K, HONG S, et al. Pan PPAR agonist stimulation of induced MSCs produces extracellular vesicles with enhanced renoprotective effect for acute kidney injury[J]. Stem Cell Res Ther, 2024, 15(1):9.
[65] HE W L, QIN D Z, LI B L, et al. Immortalized canine adipose-derived mesenchymal stem cells alleviate gentamicin-induced acute kidney injury by inhibiting endoplasmic reticulum stress in mice and dogs[J]. Res Vet Sci, 202 136:39-50.
(編輯 白永平)