摘要:頭孢地爾是一種新型頭孢菌素,體外抗菌活性高,在臨床療效和安全性上均有不錯(cuò)表現(xiàn),對(duì)臨床常見(jiàn)的碳青霉烯酶穩(wěn)定,可模擬鐵載體進(jìn)入細(xì)菌周質(zhì)間隙,因此幾乎不受膜孔蛋白和外排泵的影響,但也促使細(xì)菌進(jìn)化出各式各樣的耐藥機(jī)制。本文梳理了常見(jiàn)革蘭陰性菌對(duì)頭孢地爾的耐藥機(jī)制,歸納總結(jié)各類(lèi)細(xì)菌的耐藥特點(diǎn),深入探討頭孢地爾耐藥的各方面因素,以期為臨床應(yīng)用和相關(guān)研究提供參考。
關(guān)鍵詞:頭孢地爾;碳青霉烯酶;鐵載體;耐藥
中圖分類(lèi)號(hào):R978.1 文獻(xiàn)標(biāo)志碼:A
Advances in the resistance mechanisms to cefiderocol in Gram-negative bacteria
Wu Wenqi1, Li Jiayang2, Tian Sai3, Wu Xiuwen1, and Ren Jian'an1
(1 Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002;
2 School of Medicine, Southeast University, Nanjing 210009; 3 Nanjing University of Chinese Medicine, Nanjing 210023)
Abstract Cefiderocol is a novel cephalosporin with high antibacterial activity in vitro and good performance in clinical efficacy and safety. It is stable for common carbapenemase and can simulate siderophore entering the bacterial periplasmic space, which is almost unaffected by porin proteins and efflux pumps. However, this unique mechanism has also led to the evolution of various resistance mechanisms among bacteria. This review sorted out the resistance mechanisms of common Gram-negative bacteria against cefiderocol, summarized the characteristics of antibiotic resistance in different bacteria, and in-depth analyzed multiple elements of resistance to cefiderocol in hopes of providing a reference for its clinical application and related research.
Key words Cefiderocol; Carbapenemase; Siderophore; Antibiotic resistance
隨著革蘭陰性菌的耐藥形勢(shì)日趨嚴(yán)峻,抗菌藥物的選擇受限成為困擾全世界的公共衛(wèi)生問(wèn)題。頭孢地爾是一種新型鐵載體偶聯(lián)頭孢菌素,其化學(xué)結(jié)構(gòu)由頭孢菌素和兒茶酚鹽兩部分組成,前者的化學(xué)修飾類(lèi)似于頭孢他啶和頭孢吡肟,后者則使頭孢地爾被細(xì)菌識(shí)別為鐵載體從而對(duì)其主動(dòng)攝取,因此頭孢地爾的抗菌譜以革蘭陰性菌為主,同時(shí)對(duì)各類(lèi)β-內(nèi)酰胺酶穩(wěn)定[1]。體外抗菌實(shí)驗(yàn)顯示頭孢地爾的活性普遍高于其他抗菌藥物,其臨床療效和安全性均不劣于黏菌素和美羅培南[2-3]。由于頭孢地爾主要通過(guò)鐵載體受體蛋白進(jìn)入細(xì)菌,因此該藥活性幾乎不受細(xì)菌外排泵和膜孔蛋白的影響,相應(yīng)的耐藥機(jī)制也有別于其他藥物[1]。雖然頭孢地爾在我國(guó)尚未獲批上市,但是國(guó)內(nèi)部分細(xì)菌已經(jīng)對(duì)頭孢地爾產(chǎn)生耐藥性,相關(guān)機(jī)制還需進(jìn)一步探索[4-5]。因此在臨床合理應(yīng)用藥物之前必須全面了解革蘭陰性菌對(duì)頭孢地爾的耐藥機(jī)制。本文梳理了常見(jiàn)革蘭陰性菌對(duì)頭孢地爾的耐藥機(jī)制,歸納總結(jié)各類(lèi)細(xì)菌的耐藥特點(diǎn),深入探討頭孢地爾耐藥的各方面因素,以期為新藥的臨床應(yīng)用和相關(guān)研究提供參考。
1 腸桿菌目細(xì)菌
腸桿菌目細(xì)菌對(duì)頭孢地爾的耐藥機(jī)制有很多相似之處:①鐵載體受體結(jié)構(gòu)會(huì)影響頭孢地爾進(jìn)入細(xì)菌的速率,其中鐵載體受體基因cirA對(duì)頭孢地爾進(jìn)入細(xì)菌的影響在腸桿菌目細(xì)菌中較為明顯[6-8]。
②產(chǎn)碳青霉烯酶仍是細(xì)菌耐藥的主要機(jī)制,其中肺炎克雷伯菌碳青霉烯酶(Klebsiella pneumoniae carbapenemases, KPC)與新德里金屬酶(New Delhi metallo-β-lactamase,NDM)受到關(guān)注較多, NDM的水解能力更高,KPC的分布更廣泛且進(jìn)化能力更強(qiáng),其臨床流行的亞型KPC-2和KPC-3雖不能水解頭孢地爾,但由KPC-2和KPC-3發(fā)展而來(lái)的變體可提高細(xì)菌的頭孢地爾MIC值,甚至賦予頭孢他啶/阿維巴坦抗性[9-10]。
1.1 大腸埃希菌
NDM常見(jiàn)于大腸埃希菌[11]。有研究顯示頭孢地爾MIC值與大腸埃希菌NDM-5拷貝量增加有關(guān),細(xì)菌高表達(dá)NDM能更有效地水解頭孢地爾,但這種現(xiàn)象僅在大腸埃希菌中觀察到[12]。其他由拷貝量增加導(dǎo)致碳青霉烯酶水解能力躍升的現(xiàn)象則見(jiàn)于高表達(dá)KPC的細(xì)菌對(duì)頭孢他啶/阿維巴坦和美羅培南/阿維巴坦耐藥[13]。此外,NDM各亞型具有不同的水解傾向,如NDM-5水解碳青霉烯的能力最高,而僅一個(gè)氨基酸之差的NDM-35水解頭孢地爾的能力更高。盡管如此,NDM-5仍是ST167的主要酶型,因此更需要警惕,以防造成院內(nèi)的暴發(fā)流行[6]。
發(fā)生結(jié)構(gòu)和功能缺陷的鐵載體受體會(huì)降低大腸埃希菌對(duì)頭孢地爾的敏感性,其中fiuA的影響要高于cirA[14-15]。但cirA在產(chǎn)NDM的大腸埃希菌中更容易發(fā)生編碼截?cái)啵辜?xì)菌對(duì)頭孢地爾產(chǎn)生抗性[6]。
除了鐵載體受體,參與調(diào)節(jié)鐵轉(zhuǎn)運(yùn)系統(tǒng)的基因簇也可能影響頭孢地爾敏感性。如fec基因簇既可參與調(diào)節(jié)檸檬酸鹽依賴性鐵轉(zhuǎn)運(yùn)系統(tǒng),也不影響其他鐵通道基因的表達(dá),降低頭孢地爾敏感性的同時(shí)不改變其他抗菌藥物(如頭孢菌素和環(huán)丙沙星)的敏感性[16]。fec基因簇位于可移動(dòng)基因元件上,具有可轉(zhuǎn)移性,可作為大腸埃希菌和銅綠假單胞菌頭孢地爾耐藥的決定性因素[16]。
1.2 陰溝腸桿菌
NDM和突變的cirA也是陰溝腸桿菌耐頭孢地爾的重要因素,同時(shí)耐藥事件的發(fā)生還會(huì)受到機(jī)體抗感染能力的影響[7]。在免疫抑制的個(gè)體中,即使控制感染的措施足夠充分,頭孢地爾也不能完全抑制耐碳青霉烯細(xì)菌的生長(zhǎng),感染灶殘存的細(xì)菌可在頭孢地爾壓力下提前終止編碼鐵載體受體CirA,從而迅速進(jìn)化成耐藥菌。這種進(jìn)化過(guò)程與細(xì)菌表達(dá)的碳青霉烯酶種類(lèi)有關(guān),比如產(chǎn)NDM的陰溝腸桿菌更有cirA突變優(yōu)勢(shì)——體外誘導(dǎo)實(shí)驗(yàn)顯示只有表達(dá)NDM的陰溝腸桿菌能發(fā)生cirA突變進(jìn)而獲得頭孢地爾抗性[7]。由于細(xì)菌可以通過(guò)其他途徑攝取鐵元素,陰溝腸桿菌的適應(yīng)性不會(huì)因?yàn)镃irA的缺失而降低,且cirA位于染色體上,通過(guò)轉(zhuǎn)座子的插入失活即可使細(xì)菌產(chǎn)生穩(wěn)定的耐藥表型[17]。因此若想阻止陰溝腸桿菌頭孢地爾抗性的進(jìn)化,降低cirA的突變率是關(guān)鍵,可以嘗試添加NDM抑制劑[17]。
與水解活性普遍較高的金屬酶不同,陰溝腸桿菌的AmpC酶對(duì)頭孢地爾展現(xiàn)出獨(dú)特的水解活性。如頭孢吡肟可誘導(dǎo)體內(nèi)陰溝腸桿菌復(fù)合體的AmpC酶在R2環(huán)上缺失2個(gè)氨基酸,使得細(xì)菌在沒(méi)有超廣譜β-內(nèi)酰胺酶(extended-spectrum β-lactamase,ESBL)或碳青霉烯酶的情況下對(duì)頭孢他啶/阿維巴坦產(chǎn)生耐藥性,同時(shí)對(duì)頭孢地爾的敏感性降低[18-19]。從結(jié)構(gòu)上來(lái)說(shuō),R2環(huán)的改變?cè)龃罅说孜锝Y(jié)合部位,從整體上提高了AmpC酶識(shí)別和催化頭孢他啶的能力,進(jìn)而降低頭孢地爾的療效,但產(chǎn)該AmpC變體的陰溝腸桿菌對(duì)β-內(nèi)酰胺酶抑制劑仍然是敏感的,除非產(chǎn)生其他耐藥機(jī)制[18]。
1.3 肺炎克雷伯菌
NDM和cirA突變也發(fā)生在耐頭孢地爾的肺炎克雷伯菌中。與陰溝腸桿菌不同的是,CirA受體缺陷會(huì)降低肺炎克雷伯菌的適應(yīng)性[8]。即肺炎克雷伯菌以丟失鐵轉(zhuǎn)運(yùn)能力為代價(jià)來(lái)獲取高濃度頭孢地爾環(huán)境下的生存能力,這也是被抗菌藥物壓力選擇的結(jié)果,側(cè)面反映出鐵載體受體CirA是肺炎克雷伯菌從周?chē)h(huán)境獲取鐵元素的重要途徑。
值得注意的是,一些ESBL水解頭孢地爾的水平較高,如SHV-5和SHV-12,尤其是SHV-12,可以使肺炎克雷伯菌在不發(fā)生鐵載體受體突變的情況下對(duì)頭孢地爾不敏感,聯(lián)合孔蛋白OmpK35缺失則可實(shí)現(xiàn)耐藥[20]。
肺炎克雷伯菌是耐藥基因在環(huán)境和臨床中傳播的關(guān)鍵媒介,因其擁有更廣泛的生態(tài)分布、更高的耐藥基因多樣性和更大的質(zhì)粒載量[9, 21]。盡管耐頭孢地爾的機(jī)制并不比其它病原體多,但肺炎克雷伯菌仍是臨床和科研工作者的重點(diǎn)研究對(duì)象。
2 非發(fā)酵革蘭陰性菌
在與頭孢地爾的相互作用中,非發(fā)酵革蘭陰性菌的表現(xiàn)與腸桿菌目細(xì)菌有些許不同(表1)。作為非發(fā)酵菌,鮑曼不動(dòng)桿菌和銅綠假單胞菌之間有許多相似之處。如鐵載體受體蛋白PirA和PiuA可存在于銅綠假單胞菌和鮑曼不動(dòng)桿菌中,表達(dá)水平均受到環(huán)境鐵離子濃度的影響[22]。PirA屬于次級(jí)腸桿菌素轉(zhuǎn)運(yùn)體,在銅綠假單胞菌基因中的位置緊挨著雙組分調(diào)節(jié)系統(tǒng)PirR/S,在大腸埃希菌中pirA的同源基因序列則是fepA,位于腸桿菌素合成區(qū)域[22]。
臨床來(lái)源的細(xì)菌在耐藥機(jī)制上不等同于實(shí)驗(yàn)室來(lái)源的細(xì)菌。盡管研究顯示在耐頭孢地爾的非碳青霉烯酶因素中,大部分都屬于TonB依賴性受體(TBDRs),一種帶有β-桶狀結(jié)構(gòu)的轉(zhuǎn)運(yùn)蛋白,但臨床來(lái)源的銅綠假單胞菌對(duì)頭孢地爾的敏感性與TBDRs的表達(dá)之間并沒(méi)有一致的關(guān)系[23]。
2.1 鮑曼不動(dòng)桿菌
鮑曼不動(dòng)桿菌的耐藥機(jī)制頗具爭(zhēng)議。Gupta等[23]認(rèn)為鮑曼不動(dòng)桿菌在沒(méi)有β-內(nèi)酰胺酶的情況下進(jìn)化成頭孢地爾耐藥菌是通過(guò)下調(diào)鐵載體受體pirA的表達(dá)實(shí)現(xiàn)的。相反,Malik等[24]的研究表明,碳青霉烯酶是鮑曼不動(dòng)桿菌耐頭孢地爾的先決因素:當(dāng)碳青霉烯酶的表達(dá)水平均較高時(shí),鐵載體受體PirA和PiuA缺失或轉(zhuǎn)錄后修飾對(duì)細(xì)菌帶來(lái)的影響相當(dāng)于碳青霉烯酶的高拷貝和PBP3靶點(diǎn)修飾;當(dāng)碳青霉烯酶的表達(dá)水平較低時(shí),即使受體PirA和PiuA缺失或整體表達(dá)受限,鮑曼不動(dòng)桿菌也不會(huì)對(duì)頭孢地爾耐藥。但可以肯定的是,擁有耐頭孢地爾能力的鮑曼不動(dòng)桿菌會(huì)因?yàn)樗幬锏氖褂枚贿x擇,并且在患者之間傳播,尤其是燒傷患者——由于皮膚屏障缺失以及免疫功能受損,他們感染耐碳青霉烯鮑曼不動(dòng)桿菌的概率更高,抗菌藥物治療的效果也更差[25-26]。
從目前鮑曼不動(dòng)桿菌耐頭孢地爾的研究數(shù)據(jù)來(lái)看,主要耐藥型為ST2型,其β-內(nèi)酰胺酶PER-1可作為鮑曼不動(dòng)桿菌耐頭孢地爾的獨(dú)立因素,有blaPER的鮑曼不動(dòng)桿菌MIC值高于沒(méi)有blaPER的鮑曼不動(dòng)桿菌,且耐藥程度與blaPER拷貝數(shù)呈正相關(guān)[27-28]。此外,PER和NDM在很多藥物抗性表型上都很相似(如頭孢他啶/阿維巴坦、頭孢地爾),被阿維巴坦水解的效率均低于其他β-內(nèi)酰胺酶,且都與ISKox-2樣元件有關(guān)[29]。由此可見(jiàn),ESBL水解頭孢地爾的能力值得被關(guān)注。
即使鮑曼不動(dòng)桿菌沒(méi)有對(duì)頭孢地爾耐藥,多重感染也會(huì)導(dǎo)致藥物治療失敗[30]。比如鮑曼不動(dòng)桿菌和肺炎克雷伯菌的共感染,兩種細(xì)菌在協(xié)同作用下可長(zhǎng)期存在宿主體內(nèi),進(jìn)而加重抗菌藥物治療的難度[31]。一項(xiàng)旨在描述頭孢地爾治療重癥監(jiān)護(hù)病房10位感染耐碳青霉烯類(lèi)細(xì)菌患者初步經(jīng)驗(yàn)的臨床報(bào)告顯示,3例治療失敗案例中有1例為共感染鮑曼不動(dòng)桿菌和肺炎克雷伯菌的VAP患者,其他2例為感染鮑曼不動(dòng)桿菌的燒傷患者,所有細(xì)菌均對(duì)頭孢地爾敏感[30]。此外如果同時(shí)伴有COVID-19感染,增加的機(jī)械通氣時(shí)間則會(huì)提高相關(guān)感染風(fēng)險(xiǎn)[30]。
2.2 銅綠假單胞菌
銅綠假單胞菌的耐藥機(jī)制在革蘭陰性菌中較為特殊,僅通過(guò)外膜成分的改變就能明顯降低抗菌藥物的活性。如ST639可通過(guò)piuD和pirR基因的突變導(dǎo)致頭孢地爾進(jìn)入細(xì)菌所需的鐵載體受體(PiuD和PirA)功能的喪失,使銅綠假單胞菌在沒(méi)有β-內(nèi)酰胺酶的情況下對(duì)頭孢地爾耐藥[32]。這些受體的表達(dá)量受到周?chē)h(huán)境鐵離子濃度的影響,并在一定程度上與頭孢地爾敏感性呈正相關(guān)[33]。已被體外實(shí)驗(yàn)證明與頭孢地爾抗性有關(guān)的銅綠假單胞菌鐵載體受體包括:PirA,PiuA,PiuD,這些受體的表達(dá)受到σ/anti-σ因子(PiuC)或雙組分系統(tǒng)(PirR/S)的調(diào)節(jié),這些調(diào)節(jié)因子的表達(dá)則受到頭孢地爾的影響[22,33]。此外,銅綠假單胞菌的鐵轉(zhuǎn)運(yùn)系統(tǒng)可由其他抗菌藥物誘導(dǎo)改變,因此,是否有頭孢地爾用藥史并不能預(yù)測(cè)細(xì)菌的敏感性,相關(guān)的藥敏試驗(yàn)在臨床使用之前仍是不可避免的程序[32]。
3 其他相關(guān)因素
3.1 進(jìn)化策略
研究顯示,在抗菌藥物的壓力下,細(xì)菌的進(jìn)化策略是優(yōu)先提高耐藥酶基因的拷貝量,從而提高耐藥基因的總突變率,使得細(xì)菌更容易生成水解能力更強(qiáng)的耐藥酶[5,34]。這種進(jìn)化的發(fā)生可由β-內(nèi)酰胺類(lèi)抗菌藥物誘導(dǎo)引起,最終進(jìn)化的耐藥酶可具有交叉耐藥性,比如對(duì)頭孢他啶/阿維巴坦和頭孢地爾的交叉抗性[5]。
3.2 異質(zhì)性
異質(zhì)性耐藥是指菌群中存在對(duì)某種抗菌藥物敏感性不同的亞群,其中耐藥的亞群占比極少,僅在抗菌藥物壓力下具有生長(zhǎng)優(yōu)勢(shì),一旦停用抗菌藥物,耐藥亞群又會(huì)減少到原來(lái)的比例[35]。異質(zhì)性耐藥的現(xiàn)象普遍存在于多種抗菌藥物的使用中,尤其是在多重耐藥革蘭陰性菌的治療過(guò)程中[36]。
頭孢地爾異質(zhì)性耐藥菌的比例在4種監(jiān)測(cè)細(xì)菌(大腸埃希菌、肺炎克雷伯菌、銅綠假單胞菌、鮑曼不動(dòng)桿菌)中都超過(guò)了耐藥菌,且比例與頭孢地爾的全因死亡率相近,在臨床中難以檢測(cè),因此有研究認(rèn)為頭孢地爾的異質(zhì)性耐藥可能是導(dǎo)致臨床治療失敗的主要因素,應(yīng)該考慮將異質(zhì)性檢測(cè)放到常規(guī)路徑中[3,35]。相對(duì)地,也有研究認(rèn)為直接將較高全因死亡率歸于體外異質(zhì)性是不合理的,并且將異質(zhì)性檢測(cè)放到臨床路徑中更是不切實(shí)際的[37]。首先檢測(cè)異質(zhì)性的“金標(biāo)準(zhǔn)”——菌群譜分析法(population analysis profile,PAP)尚未被驗(yàn)證是預(yù)測(cè)臨床和微生物結(jié)局的有效方法,目前關(guān)于異質(zhì)性耐藥的實(shí)驗(yàn)設(shè)計(jì)也尚不足以驗(yàn)證體外試驗(yàn)結(jié)果與實(shí)際臨床結(jié)局之間的關(guān)系;其次,即使頭孢地爾用藥組的全因死亡率高于最佳治療組,后者的異質(zhì)性耐藥發(fā)生率也不會(huì)低,因?yàn)榇蟛糠只颊叨际褂昧损ぞ?,發(fā)生異質(zhì)性耐藥的事件在革蘭陰性菌中也很常見(jiàn)[3,35]。因此異質(zhì)性耐藥對(duì)頭孢地爾臨床結(jié)局的影響必須綜合考慮患者的免疫能力和身體機(jī)能水平[25,37]。
另一方面,異質(zhì)性耐藥也是聯(lián)合用藥有效抑制多重耐藥腸桿菌目細(xì)菌的關(guān)鍵機(jī)制,在未來(lái)聯(lián)合頭孢地爾和β-內(nèi)酰胺酶抑制劑也會(huì)是一項(xiàng)有效的治療策略[38-39]。
3.3 碳青霉烯酶的進(jìn)化
以耐碳青霉烯的細(xì)菌為例,所產(chǎn)β-內(nèi)酰胺酶不一定是碳青霉烯酶,也可能是ESBL酶或AmpC酶,但二者必須同時(shí)伴有孔蛋白表達(dá)下降或外排泵表達(dá)上升[40-41]。這種“產(chǎn)次級(jí)酶的同時(shí)降低藥物轉(zhuǎn)運(yùn)效率”機(jī)制與目前報(bào)道的頭孢地爾耐藥機(jī)制非常相似,可能是細(xì)菌早期耐藥策略,一旦相應(yīng)的水解酶出現(xiàn),頭孢地爾便會(huì)陷入與碳青霉烯類(lèi)藥物相同的困境。但值得注意的是,具有頭孢地爾水解活性的酶可能會(huì)恢復(fù)對(duì)碳青霉烯或者其他次級(jí)藥物的活性。
提高β-內(nèi)酰胺酶水解頭孢地爾能力的方式是突變[42-43]。進(jìn)化后的β-內(nèi)酰胺酶在一定程度上會(huì)促進(jìn)交叉耐藥的發(fā)生,由于頭孢地爾與頭孢他啶的結(jié)構(gòu)相似,當(dāng)β-內(nèi)酰胺酶使細(xì)菌對(duì)頭孢他啶/阿維巴坦耐藥時(shí),對(duì)頭孢地爾的敏感性也會(huì)隨之降低[42]。
盡管如此,對(duì)頭孢地爾的耐藥并不意味著細(xì)菌發(fā)展到了對(duì)β-內(nèi)酰胺類(lèi)抗生素全耐藥[42]。β-內(nèi)酰胺酶的進(jìn)化是抗菌藥物壓力選擇的結(jié)果,因此藥物不相容性可能使β-內(nèi)酰胺酶的水解能力在頭孢菌素類(lèi)、碳青霉烯類(lèi)、氨曲南之間達(dá)到一種平衡,使得細(xì)菌對(duì)β-內(nèi)酰胺類(lèi)藥物的敏感性落點(diǎn)限定在此間區(qū)域;而在添加β-內(nèi)酰胺酶抑制劑后,敏感性落點(diǎn)區(qū)域則會(huì)進(jìn)一步得到限制(圖1)。雖然目前相關(guān)機(jī)制仍不清楚,但這種權(quán)衡可為耐藥菌的治療提供新的策略[42]。
4 結(jié)語(yǔ)
目前頭孢地爾的藥敏試驗(yàn)仍是探索耐藥機(jī)制過(guò)程的難點(diǎn)。一方面缺少商品化和規(guī)范化的試劑,例如必需的貧鐵培養(yǎng)基或認(rèn)證質(zhì)量較高的藥敏卡片;另一方面對(duì)頭孢地爾耐藥的判定仍以微量肉湯稀釋法為主,對(duì)操作者的專(zhuān)業(yè)性具有較高要求,紙片擴(kuò)散法雖然更適合臨床檢驗(yàn)路徑的應(yīng)用,但其準(zhǔn)確度較差[44]。此外頭孢地爾還存在接種效應(yīng),因此當(dāng)感染灶菌量較高時(shí),使用頭孢地爾需謹(jǐn)慎[10,45]。
總的來(lái)說(shuō),產(chǎn)β-內(nèi)酰胺酶仍是革蘭陰性菌耐頭孢地爾最主要的耐藥機(jī)制。由于頭孢地爾通過(guò)模擬鐵載體進(jìn)入細(xì)菌,鐵載體受體或鐵轉(zhuǎn)運(yùn)相關(guān)蛋白缺陷成為此類(lèi)細(xì)菌的特點(diǎn)。各類(lèi)革蘭陰性菌具有不同的鐵載體受體突變傾向,以應(yīng)對(duì)頭孢地爾帶來(lái)的壓力。突變的發(fā)生可由其他β-內(nèi)酰胺類(lèi)藥物誘導(dǎo),也可受細(xì)菌blaNDM的影響。若突變的鐵載體受體位于染色體之上,則可使細(xì)菌形成穩(wěn)定的耐藥表型。但無(wú)論是β-內(nèi)酰胺酶還是鐵載體受體,都不能作為革蘭陰性菌耐頭孢地爾的必要條件,需要更多的研究進(jìn)一步探索。
因此,作為最后一道防線,頭孢地爾在使用前必須謹(jǐn)慎、綜合考慮臨床情況,同時(shí)積極控制感染源,動(dòng)態(tài)監(jiān)測(cè)抗菌藥物,并盡可能短程使用[25,46]。重視臨床指標(biāo)和實(shí)驗(yàn)數(shù)據(jù)的記錄和收集,為頭孢地爾及其他新藥的應(yīng)用積累經(jīng)驗(yàn)和循證依據(jù)。
參 考 文 獻(xiàn)
Ong’uti S, Czech M, Robilotti E, et al. Cefiderocol: A new cephalosporin stratagem against multidrug-resistant Gram-negative bacteria[J]. Clin Infect Dis, 2022, 74(7): 1303-1312.
Wunderink R G, Matsunaga Y, Ariyasu M, et al. Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of Gram-negative nosocomial pneumonia (APEKS-NP): A randomised, double-blind, phase 3, non-inferiority trial[J]. Lancet Infect Dis, 2021, 21(2): 213-225.
Bassetti M, Echols R, Matsunaga Y, et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenemresistant gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial[J]. Lancet Infect Dis, 2021, 21: 226-40.
Wang Q, Jin L, Sun S, et al. Occurrence of high levels of cefiderocol resistance in carbapenem-resistant Escherichia coli before its approval in China: A report from China CRE-Network[J]. Microbiol Spectr, 2022, 10(3): e0267021.
Zhang P, Hu H, Shi Q, et al. The effect of β-lactam antibiotics on the evolution of ceftazidime/avibactam and cefiderocol resistance in KPC-producing Klebsiella pneumoniae[J]. Antimicrob Agents Chemother, 2023, 67(3): e0127922.
Poirel L, Ortiz de la Rosa J M, Sakaoglu Z, et al. NDM-35-Producing ST167 Escherichia coli highly resistant to β-lactams including cefiderocol[J]. Antimicrob Agents Chemother, 2022, 66(8): e0031122.
Klein S, Boutin S, Kocer K, et al. Rapid development of cefiderocol resistance in carbapenem-resistant Enterobacter cloacae during therapy is associated with heterogeneous mutations in the catecholate siderophore receptor cirA[J]. Clin Infect Dis, 2022, 74(5): 905-908.
Mcelheny C L, Fowler E L, Iovleva A, et al. In vitro evolution of cefiderocol resistance in an NDM-producing Klebsiella pneumoniae due to functional loss of CirA[J]. Microbiol Spectr, 2021, 9(3): e0177921.
Wyres K L, Holt K E. Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria[J]. Curr Opin Microbiol, 2018, 45: 131-139.
Hobson C A, Cointe A, Jacquier H, et al. Cross-resistance to cefiderocol and ceftazidime-avibactam in KPC β-lactamase mutants and the inoculum effect[J]. Clin Microbiol Infect, 2021, 27(8): 1172.
Zhang Y, Wang Q, Yin Y, et al. Epidemiology of carbapenem-resistant Enterobacteriaceae infections: Report from the China CRE network[J]. Antimicrob Agents Chemother, 2018, 62(2): e01882-17.
Simner P J, Mostafa H H, Bergman Y, et al. Progressive development of cefiderocol resistance in Escherichia coli during therapy is associated with an increase in blaNDM-5 "copy number and gene expression[J]. Clin Infect Dis, 2022, 75(1): 47-54.
Zhang P, Shi Q, Hu H, et al. Emergence of ceftazidime/avibactam resistance in carbapenem-resistant Klebsiella pneumoniae in China[J]. Clin Microbiol Infect, 2020, 26(1): 124.
Ito A, Sato T, Ota M, et al. In vitro antibacterial properties of cefiderocol, a novel siderophore cephalosporin, against Gram-negative bacteria[J]. Antimicrob Agents Chemother, 2018, 62: e01454-17.
Garenaux A, Caza M, Dozois CM. The ins and outs of siderophore mediated iron uptake by extra-intestinal pathogenic Escherichia coli[J]. Vet Microbiol, 2011, 153(1- 2): 89-98.
Kocer K, Boutin S, Heeg K, et al. The acquisition of transferable extrachromosomal fec operon is associated with a cefiderocol MIC increase in Enterobacterales[J]. J Antimicrob Chemother, 2022, 77(12): 3487-3495.
Nurjadi D, Kocer K, Chanthalangsy Q, et al. New delhi metallo-beta-lactamase facilitates the emergence of cefiderocol resistance in Enterobacter cloacae[J]. Antimicrob Agents Chemother, 2022, 66(2): e0201121.
Shields R K, Iovleva A, Kline E G, et al. Clinical evolution of AmpC-mediated ceftazidime-avibactam and cefiderocol resistance in Enterobacter cloacae complex following exposure to cefepime[J]. Clin Infect Dis, 2020, 71(10): 2713-2716.
Kawai A, Mcelheny C L, Iovleva A, et al. Structural basis of reduced susceptibility to ceftazidime-avibactam and cefiderocol in Enterobacter cloacae due to AmpC R2 loop deletion[J]. Antimicrob Agents Chemother, 2020, 64(7): e00198-20.
Moon S H, Huang E. Cefiderocol resistance in Klebsiella pneumoniae is linked to SHV extended-spectrum β-lactamase activities and functional loss of the outer membrane porin OmpK35[J]. Microbiol Spectr, 2023, 11(3): e0349622.
Li J, Ren J, Wang W, et al. Risk factors and clinical outcomes of hypervirulent Klebsiella pneumoniae induced bloodstream infections[J]. Eur J Clin Microbiol Infect Dis, 2018, 37(4): 679-689.
Moynié L, Luscher A, Rolo D, et al. Structure and function of the PiuA and PirA Siderophore-drug receptors from Pseudomonas aeruginosa and Acinetobacter baumannii[J]. Antimicrob Agents Chemother, 2017, 61: e02531-16.
Gupta A, Landman D, Quale J. Relationship of tonB-dependent receptors with susceptibility to cefiderocol in clinical isolates of Pseudomonas aeruginosa[J]. J Antimicrob Chemother, 2022, 77(5): 1282-1285.
Malik S, Kaminski M, Landman D, et al. Cefiderocol resistance in Acinetobacter baumannii: Roles of β-lactamases, siderophore receptors, and penicillin binding protein 3[J]. Antimicrob Agents Chemother, 2020, 64(11): e01221-20.
任建安. 腹腔感染風(fēng)險(xiǎn)因素分析與對(duì)策[J]. 中華消化外科雜志, 2017, 16(12): 1167-1171.
Smoke S M, Brophy A, Reveron S, et al. Evolution and transmission of cefiderocol-resistant Acinetobacter baumannii during an outbreak in the burn intensive care unit[J]. Clin Infect Dis, 2023, 76(3): e1261-e1265.
Poirel L, Sadek M, Nordmann P. Contribution of PER-Type and NDM-Type β-lactamases to cefiderocol resistance in Acinetobacter baumannii[J]. Antimicrob Agents Chemother, 2021, 65(10): e0087721.
Liu X, Lei T, Yang Y, et al. Structural basis of PER-1-mediated cefiderocol resistance and synergistic inhibition of PER-1 by cefiderocol in combination with avibactam or durlobactam in Acinetobacter baumannii[J]. Antimicrob Agents Chemother, 2022, 66(12): e0082822.
Ruggiero M, Brunetti F, Dabos L, et al. Diversity of genetic platforms harboring the blaPER-2 gene in Enterobacterales and insights into the role of ISPa12 in its mobilization and dissemination[J]. Int J Antimicrob Agents, 2023, 62(1): 106850.
Falcone M, Tiseo G, Nicastro M, et al. Cefiderocol as rescue therapy for Acinetobacter baumannii and other carbapenem-resistant Gram-negative infections in intensive care unit patients[J]. Clin Infect Dis, 2021, 72(11): 2021-2024.
Semenec L, Cain A K, Dawson C J, et al. Cross-protection and cross-feeding between Klebsiella pneumoniae and Acinetobacter baumannii promotes their co-existence[J]. Nat Commun, 2023, 14(1): 702.
Streling A P, Al Obaidi M M, Lainhart W D, et al. Evolution of cefiderocol non-susceptibility in Pseudomonas aeruginosa in a patient without previous exposure to the antibiotic[J]. Clin Infect Dis, 2021, 73(11): e4472-e4474.
Luscher A, Moynié L, Auguste P S, et al. TonB-dependent receptor repertoire of Pseudomonas aeruginosa for uptake of siderophore-drug conjugates[J]. Antimicrob Agents Chemother, 2018, 62: e00097-18.
Baquero F, Martínez J L, F Lanza V, et al. Evolutionary pathways and trajectories in antibiotic resistance[J]. Clin Microbiol Rev, 2021, 34(4): e0005019.
Choby J E, Ozturk T, Satola S W, et al. Widespread cefiderocol heteroresistance in carbapenem-resistant Gram-negative pathogens[J]. Lancet Infect Dis, 2021, 21(5): 597-598.
Roch M, Sierra R, Andrey D O. Antibiotic heteroresistance in ESKAPE pathogens, from bench to bedside[J]. Clin Microbiol Infect, 2023, 29(3): 320-325.
Bassetti M, Echols R, Koren A, et al. Placing in vitro heteroresistance in the context of clinical results[J]. Lancet Infect Dis, 2021, 21(7): 908-909.
Moon S H, Udaondo Z, Jun S R, et al. Cefiderocol heteroresistance in Klebsiella pneumoniae is linked to mutations in the siderophore receptor cirA and β-lactamase activities[J]. Int J Antimicrob Agents, 2022, 60(3): 106635.
Band V I, Hufnagel D A, Jaggavarapu S, et al. Antibiotic combinations that exploit heteroresistance to multiple drugs effectively control infection[J]. Nat Microbiol, 2019, 4(10): 1627-1635.
Mccreary E K, Heil E L, Tamma P D. New perspectives on antimicrobial agents: Cefiderocol[J]. Antimicrob Agents Chemother, 2021, 65(8): e0217120.
Hamzaoui Z, Ocampo-Sosa A, Fernandez Martinez M, et al. Role of association of OmpK35 and OmpK36 alteration and blaESBL and/or blaAmpC genes in conferring carbapenem resistance among non-carbapenemase-producing Klebsiella pneumoniae[J]. Int J Antimicrob Agents, 2018, 52(6): 898-905.
Fr?hlich C, S?rum V, Tokuriki N, et al. Evolution of β-lactamase-mediated cefiderocol resistance[J]. J Antimicrob Chemother, 2022, 77(9): 2429-2436.
Kazmierczak K M, Tsuji M, Wise M G, et al. In vitro activity of cefiderocol, a siderophore cephalosporin, against a recent collection of clinically relevant carbapenem-non-susceptible Gram-negative bacilli, including serine carbapenemase- and metallo-β-lactamase-producing isolates (SIDERO-WT-2014 Study)[J]. Int J Antimicrob Agents, 2019, 53(2): 177-184.
Morris C P, Bergman Y, Tekle T, et al. Cefiderocol antimicrobial susceptibility testing against multidrug-resistant Gram-negative bacilli: A comparison of disk diffusion to broth microdilution[J]. J Clin Microbiol, 2020, 59(1): e01649-20.
Lenhard J R, Bulman Z P. Inoculum effect of β-lactam antibiotics[J]. J Antimicrob Chemother, 2019, 74(10): 2825-2843.
Wu X, Wu J, Wang P, et al. Diagnosis and management of intraabdominal infection: Guidelines by the Chinese society of surgical infection and intensive care and the Chinese college of gastrointestinal fistula surgeons[J]. Clin Infect Dis, 2020, 71(Suppl 4): S337-S362.