摘要:目的探討葉酸對鄰苯二甲酸二(2-乙基己基)酯(DEHP)暴露誘發(fā)小鼠膽汁淤積型肝損傷的保護作用及其機制。方法將ICR小鼠隨機分為對照(Control)組、葉酸高劑量(H-FA)組、DEHP組、DEHP+葉酸低劑量(DEHP+L-FA)組、DEHP+葉酸高劑量(DEHP+H-FA)組,每組6只。H-FA組、DEHP+L-FA組和DEHP+H-FA組給予相應劑量的葉酸灌胃,Control組和DEHP組灌胃等量的PBS溶液。2 h后,DEHP組、DEHP+L-FA組和DEHP+H-FA組給予含200 mg/kg DEHP的玉米油,Control組和H-FA組灌胃等量的純玉米油,共灌胃4周。記錄小鼠每天的體質量和攝食量,收集血液和肝組織。生化儀檢測血清總膽汁酸(TBA)和堿性磷酸酶(ALP)水平;HE染色觀察肝組織病理變化;試劑盒檢測肝組織丙二醛(MDA)和超氧化物歧化酶(SOD)含量;LC-MS/MS檢測小鼠血清膽汁酸譜;Western Blot法檢測肝臟膽汁酸代謝相關蛋白的表達水平。計量資料多組間比較采用單因素方差分析,進一步兩兩比較采用LSD-t檢驗。結果與對照組相比,DEHP組小鼠每日攝食量明顯下降,體質量從第10天開始顯著降低(P值均lt;0.05);與DEHP組相比,DEHP+L-FA組與DEHP+H-FA組小鼠的體質量和攝食量基本不變(P值均gt;0.05)。與對照組相比,DEHP組小鼠肝質量指數(shù)、血清TBA及ALP均顯著升高(P值均lt;0.05),肝組織可見匯管區(qū)擴大,膽管變形增生及少量炎性細胞浸潤;與DEHP組相比,DEHP+L-FA組與DEHP+H-FA組小鼠肝質量指數(shù)均明顯下降(P值均lt;0.01),DEHP+H-FA組的血清TBA和ALP均顯著下降(P值均lt;0.05),葉酸干預后小鼠肝組織形態(tài)結構明顯改善。與對照組相比,DEHP組小鼠肝臟SOD含量明顯下降(Plt;0.05),肝臟MDA含量明顯增加(Plt;0.01);與DEHP組相比,MDA和SOD含量在DEHP+H-FA組均顯著回調(P值均lt;0.05)。與對照組相比,DEHP組小鼠血清中α-鼠膽酸(α-MCA)、β-鼠膽酸(β-MCA)、去氧膽酸(DCA)、石膽酸(LCA)、?;悄懰幔═CA)、?;侨パ跄懰幔═DCA)、?;切苋パ跄懰幔═UDCA)、?;?β-鼠膽酸(T-β-MCA)、牛磺-α-鼠膽酸(T-α-MCA)、牛磺豬去氧膽酸(THDCA)、牛磺石膽酸(TLCA)均明顯升高(P值均lt;0.05),熊去氧膽酸(UDCA)明顯降低(Plt;0.05);與DEHP組相比,血清中DCA、LCA、TCA、TDCA、TUDCA、T-β-MCA、T-α-MCA、THDCA、TLCA在DEHP+H-FA組均明顯回調(P值均lt;0.05)。與對照組相比,DEHP組小鼠肝臟FXR和CYP3A11蛋白表達量均明顯增加(P值均lt;0.01),CYP7A1和MRP2蛋白表達量顯著降低(P值均lt;0.01);與DEHP組相比,肝臟FXR和CYP3A11蛋白表達量在DEHP+L-FA組和DEHP+H-FA組中均明顯下調(P值均lt;0.05);MRP2蛋白表達量在DEHP+L-FA組DEHP+H-FA組中均顯著上調(P值均lt;0.05);CYP7A1蛋白表達量在DEHP+H-FA組中顯著上調(Plt;0.05)。結論葉酸對DEHP暴露導致的小鼠膽汁淤積型肝損傷有保護作用,其機制可能是調節(jié)膽汁酸合成、代謝與轉運從而維持膽汁酸穩(wěn)態(tài)。
關鍵詞:鄰苯二甲酸二(2-乙基己基)酯;葉酸;膽汁淤積;膽汁酸類
基金項目:國家自然科學基金(82073566);安徽省高校優(yōu)秀青年人才支持計劃資助項目(gxyq2019014);安徽省公共衛(wèi)生臨床中心安徽醫(yī)科大學第一附屬醫(yī)院北區(qū)科研培育基金資助項目(2023YKJ14,2023YKJ06,2023YKJ11)
Protective effect of folic acid against cholestatic liver injury in mice caused by bis(2-ethylhexyl)phthalate exposure
HOU Mengzhen1,YU Yun2,3,HUANG Qianqian2,3,ZHANG Lun2,3,TAO Wenkang1,JIANG Yue1,WANG Jianqing1,2,3.(1.Departmentof Pharmacy,Anhui Medical University,Hefei 230032,China;2.Department of Pharmacy,The First Affiliated Hospital of AnhuiMedical University,Hefei 230012,China;3.Anhui Public Health Clinical Center,Hefei 230012,China)
Corresponding author:WANG Jianqing,jianqingwang81@126.com(ORCID:0000-0002-7935-9520)
Abstract:Objective To investigate the protective effect of folic acid against cholestatic liver injury in mice induced by bis(2-ethylhexyl)phthalate(DEHP)exposure and its mechanism.Methods ICR mice were randomly divided into control group,high-dose folic acid(H-FA)group,DEHP group,DEHP+low-dose folic acid(DEHP+L-FA)group,and DEHP+high-dose folic acid(DEHP+H-FA)group,with 6 mice in each group.The mice in the H-FA group,the DEHP+L-FA group,and the DEHP+H-FA group were given folic acid by gavage at the corresponding dose,and those in the control group and the DEHP group were given an equal volume of PBS solution by gavage.After 2 hours,the mice in the DEHP group,the DEHP+L-FA group,and the DEHP+H-FA group were given corn oil containing 200 mg/kg DEHP,and those in the control group and the H-FA group were given an equal volume of pure corn oil,by gavage for 4 weeks.Body weight and food intake were recorded every day,and blood and liver tissue samples were collected.A biochemical analyzer was used to measure the serum levels of total bile acid(TBA)and alkaline phosphatase(ALP);HE staining was used to observe the histopathological changes of liver tissue;kits were used to measure the content of malondialdehyde(MDA)and superoxide dismutase(SOD)in the liver;LC-MS/MS was used to measure serum bile acid profiles;Western blot was used to measure the expression levels of proteins associated with hepatic bile acid metabolism.A one-way analysis of variance was used for comparison of continuous data between multiple groups,and the least significant difference t-test was used for further comparison between two groups.Results Compared with the control group,the daily food intake of the mice in the DEHP group decreased significantly,and the body weight decreased significantly from day 10(Plt;0.05),and compared with the DEHP group,the DEHP+L-FA group and the DEHP+H-FA group had basically unchanged body weight and daily food intake(Pgt;0.05).Compared with the control group,the DEHP group had significant increases in liver weight index and the serum levels of TBA and ALP(all Plt;0.05),with enlarged portal area,bile duct deformity and hyperplasia,and a small amount of inflammatory cell infiltration in liver tissue;compared with the DEHP group,the DEHP+L-FA group and the DEHP+H-FA group had a significant reduction in liver weight index(Plt;0.01),and the DEHP+H-FA group had significant reductions in the serum levels of TBA and ALP(Plt;0.05),with a significant improvement in liver histomorphology and structure after folic acid intervention.Compared with the control group,the DEHP group had a significant reduction in the content of SOD(Plt;0.05)and a significant increase in the content of MDA in the liver(Plt;0.01),and compared with the DEHP group,the DEHP+H-FA group had significant reductions in the content of MDA and SOD(Plt;0.05).Compared with the control group,the DEHP group had significant increases in the serum levels ofα-muricholic acid(α-MCA),β-muricholic acid(β-MCA),deoxycholic acid(DCA),lithocholic acid(LCA),taurocholic acid(TCA),taurodeoxycholic acid(TDCA),tauroursodeoxycholic acid(TUDCA),tauro-β-muricholic acid(T-β-MCA),tauro-α-muricholic acid(T-α-MCA),taurohyodeoxycholicacid(THDCA),and taurolithocholicacid(TLCA)(Plt;0.05)and a significant reduction in ursodeoxycholicacid(UDCA)(Plt;0.05);compared with the DEHP group,the DEHP+H-FA group had significant reductions in the serum levels of DCA,LCA,TCA,TDCA,TUDCA,T-β-MCA,T-α-MCA,THDCA,and TLCA(Plt;0.05).Compared with the control group,the DEHP group had significant increases in the protein expression levels of FXR and CYP3A11 in the liver(Plt;0.01)and significant reductions in the protein expression levels of CYP7A1 and MRP2(Plt;0.01);compared with the DEHP group,the DEHP+L-FA group and the DEHP+H-FA group had significant reductions in the protein expression levels of FXR and CYP3A11 in the liver(Plt;0.05)and a significant increase in the protein expression level of MRP2(Plt;0.05),and the DEHP+H-FA group had a significant increase in the protein expression level of CYP7A1(Plt;0.05).Conclusion Folic acid has a protective effect against cholestatic liver injury in mice induced by DEHP exposure,possibly by regulating bile acid synthesis,catabolism,and transport and maintaining bile acid homeostasis.
Key words:Di-(2-Ethylhexyl)Phthalate;Folic Acid;Cholestasis;Bile Acid
Research funding:National Natural Science Foundation of China(82073566);The Program of Excellent Young Talents in Universities of Anhui Province(gxyq2019014);Anhui Public Health Clinical Center,Supported by North District Scientific Research and Cultivation Foundation of the First Affiliated Hospital of Anhui Medical University(2023YKJ14,2023YKJ06,2023YKJ11)
膽汁淤積是由于膽汁生成、分泌和排泄障礙而引起的一種病理過程,表現(xiàn)為肝臟及體循環(huán)內膽汁酸的蓄積。長時間的膽汁淤積可導致嚴重的肝膽損傷、炎癥、纖維化甚至肝硬化。多種因素可導致膽汁淤積,包括遺傳、免疫、藥物和環(huán)境等。鄰苯二甲酸二(2-乙基己基)酯[di-(2-ethylhexyl)phthalate,DEHP]作為最常用的增塑劑被廣泛用于醫(yī)療器械、食品包裝、化妝品等方面。既往研究[1]報道,靜脈輸液器等醫(yī)療產(chǎn)品中DEHP的浸出會增加膽汁淤積的發(fā)生風險。本課題組前期研究[2]已證實DEHP暴露可導致小鼠發(fā)生膽汁淤積。目前臨床治療膽汁淤積的藥物主要有熊去氧膽酸、奧貝膽酸、S-腺苷蛋氨酸等,但其療效有限,亟需尋找新的治療藥物。
葉酸作為人體必需的B族水溶性維生素,在維持一碳單位代謝、細胞生長和繁殖等過程均發(fā)揮重要作用。大量研究[3-6]表明,葉酸可通過抗炎、抗氧化應激、調節(jié)腸道菌群和糖脂代謝等對酒精、高脂飲食、藥物所致的肝損傷發(fā)揮保護作用。然而葉酸對膽汁淤積型肝損傷是否具有保護作用尚未見報道?;诖?,本文采用DEHP誘導小鼠膽汁淤積模型,探究葉酸對小鼠膽汁淤積的保護作用及其機制,以期為葉酸的臨床應用提供科學依據(jù)。
1材料與方法
1.1材料
1.1.1實驗動物30只健康雌性ICR小鼠,8周齡,SPF級,體質量為28~30 g,購買于北京斯貝福生物技術有限公司。實驗動物生產(chǎn)許可證編號:SCXK(京)2019-0010,實驗動物使用許可證編號:SYXK(皖)2020-001。小鼠飼養(yǎng)在適宜的環(huán)境中:溫度維持在(25±1)℃,濕度維持在55%±5%,自由飲水和攝食。
1.1.2主要試劑總膽汁酸(TBA)試劑盒和堿性磷酸酶(ALP)購自浙江伊利康生物技術有限公司(貨號:L70021、L70042);葉酸與DEHP購自美國默克公司(貨號:F7876、D201154-500 mL);22種膽汁酸標準品購自美國默克公司、中國上海源葉生物科技有限公司和美國Avanti?Polar Lipids公司;玉米油購自上海阿拉丁生化有限公司(貨號:C116025-500 mL);超氧化物歧化酶(SOD)測定試劑盒和丙二醛(MDA)測定試劑盒購自南京建成生物工程研究所(貨號:A001-3-2、A003-1-2);細胞核蛋白與細胞漿蛋白抽提試劑盒、RIPA裂解液和BCA蛋白濃度測定試劑盒(增強型)購自碧云天生物技術公司(貨號:P0028、P0013B、P0010);FXR、CYP7A1和MRP2抗體購自Abcam公司(貨號:ab51970、ab65596、ab203397);CYP3A11購自圣克魯斯生物有限公司(貨號:sc-271033);GAPDH和H3抗體購買于Abmart公司(貨號:P60037、P30266F)。
1.1.3主要儀器純水儀(型號:Direct-Q3UV)購自美國Millipore公司;多功能酶標儀(型號:ELx808)購自美國BioTek公司;全自動生化分析儀(型號:CS-T300)購自長春迪瑞醫(yī)療科技股份有限公司;臺式高速離心機(型號:D37520)購自賽默飛世爾科技公司;三重四級桿串聯(lián)質譜儀(型號:AB Sciex Triple Quad 4500)購自美國AB公司;顯影儀(型號:Tanon-5200Multi)購自上海天能科技有限公司。
1.2方法
1.2.1動物分組與處理適應性喂養(yǎng)7天后進行實驗操作。將所有小鼠按照體質量S型分為對照(Control)組、葉酸高劑量(H-FA)組、DEHP組、DEHP+葉酸低劑量(DEHP+L-FA)組、DEHP+葉酸高劑量(DEHP+H-FA)組,每組6只。葉酸低劑量和高劑量分別為1 mg/kg、5 mg/kg。H-FA組、DEHP+L-FA組和DEHP+H-FA組給予相應劑量的葉酸灌胃,Control組和DEHP組灌胃等量的PBS溶液。2 h后,DEHP組、DEHP+L-FA組和DEHP+H-FA組給予含200 mg/kg DEHP的玉米油,Control組和H-FA組灌胃等量的純玉米油,共灌胃4周。取材前禁食6 h,收集血液和肝組織用于后續(xù)實驗。
1.2.2一般情況觀察每天觀察小鼠的精神、毛發(fā)及死亡情況,記錄體質量與攝食量。
1.2.3肝組織病理學觀察將小鼠肝大葉相同部位組織經(jīng)4%多聚甲醛浸泡處理,室溫放置搖床固定24 h后,脫水、包埋、切片、固定和蘇木精-伊紅(HE)染色后,顯微鏡下觀察并拍照。
1.2.4血清生化檢測使用生化分析儀檢測血清中TBA和ALP的含量。
1.2.5小鼠肝組織中MDA和SOD含量的測定準確稱取組織重量,按照重量(g)∶體積(mL)=1∶9的比例加入9倍體積的生理鹽水制備勻漿,離心取上清液待測。根據(jù)試劑盒說明書步驟進行相關操作,檢測小鼠肝組織勻漿中MDA和SOD的含量。
1.2.6液相色譜-三重四級桿質譜檢測血清膽汁酸譜采用液相色譜-三重四級桿質譜儀(AB SCIEX Triple Quad?4500 System)檢測小鼠血清中各膽汁酸組分水平。色譜柱:Phenomenex Gemini 3um NX-C18 110A(100 mm×2.0 mm);流動相:A相為含有0.1%冰乙酸的4 mmol/L乙酸銨溶液,B相為甲醇;柱溫為40℃;流速為0.4 mL/min;進樣量為10μL。
1.2.7 Western Blot檢測小鼠肝組織膽汁酸代謝相關蛋白稱取小鼠肝組織50 mg,用RIPA裂解液提取總蛋白,并用細胞核蛋白與細胞漿蛋白抽提試劑盒提取核蛋白,用BCA法測定蛋白濃度并進行定量。蛋白經(jīng)SDS-PAGE電泳分離,并轉移到PVDF膜上,用快速封閉液封閉30 min,F(xiàn)XR(1∶2 500)、CYP7A1(1∶1 000)、CYP3A11(1∶1 000)、MRP2(1∶1 000)、H3(1∶10 000)、GAPDH(1∶5 000)一抗置于4℃冰箱孵育過夜,再用相應二抗(1∶10 000)室溫孵育1~2 h。用超敏ECL化學發(fā)光試劑盒在顯影儀上顯影,用Image J軟件分析蛋白條帶灰度值,計算蛋白表達量。
1.3統(tǒng)計學方法采用SPSS 25.0軟件進行數(shù)據(jù)分析,計量資料以±s表示,多組間比較采用單因素方差分析,進一步兩兩比較采用LSD-t檢驗。Plt;0.05為差異有統(tǒng)計學意義。
2結果
2.1葉酸對DEHP誘導的膽汁淤積小鼠體質量和攝食量的影響5組小鼠初始體質量差異無統(tǒng)計學意義(P值均gt;0.05)。從第10天開始,DEHP組小鼠的體質量明顯低于對照組(P值均lt;0.05);與DEHP組相比,DEHP+L-FA組與DEHP+H-FA組小鼠的體質量差異無統(tǒng)計學意義(P值均gt;0.05)。與對照組相比,DEHP組的每日攝食量顯著降低(Plt;0.01);與DEHP組相比,DEHP+L-FA組與DEHP+H-FA組小鼠的攝食量差異均無統(tǒng)計學意義(P值均gt;0.05)(圖1)。
2.2葉酸對DEHP誘導的膽汁淤積小鼠肝功能的影響與對照組相比,DEHP組小鼠肝質量指數(shù)顯著增加(Plt;0.01);與DEHP組相比,DEHP+L-FA組與DEHP+H-FA組小鼠肝質量指數(shù)均明顯降低(P值均lt;0.01)。血清生化指標表明,與對照組相比,DEHP組小鼠血清TBA和ALP均顯著升高(Plt;0.01、Plt;0.05);相較于DEHP組,DEHP+H-FA組小鼠血清TBA和ALP均明顯降低(Plt;0.01、Plt;0.05),DEHP+L-FA組小鼠血清TBA和ALP差異均無統(tǒng)計學意義(P值均gt;0.05)(圖2)。HE染色結果顯示,對照組與H-FA組的肝組織結構完整,DEHP組小鼠肝組織中可見匯管區(qū)擴大,膽管變形和增生并伴有少量炎性細胞浸潤,而葉酸干預后可顯著改善小鼠肝組織形態(tài)結構(圖3)。以上結果表明葉酸對DEHP暴露誘導的膽汁淤積型肝損傷有明顯保護作用。
2.3葉酸對DEHP誘導的膽汁淤積小鼠肝組織MDA、SOD含量的影響相比于對照組,DEHP組的MDA含量顯著上升(Plt;0.01),SOD含量顯著下降(Plt;0.05);與DEHP組相比,MDA和SOD含量在DEHP+H-FA組顯著回調(P值均lt;0.05),DEHP+L-FA組差異無統(tǒng)計學意義(P值均gt;0.05)(圖4)。提示在DEHP誘導的膽汁淤積型肝損傷中存在氧化應激,而葉酸能通過增強機體抗氧化發(fā)揮保肝作用。
2.4葉酸對DEHP誘導的膽汁淤積小鼠血清膽汁酸含量的影響采用LC-MS/MS檢測小鼠血清中各膽汁酸組分,探究DEHP暴露以及葉酸干預對小鼠血清各膽汁酸組分的作用。小鼠血清膽汁酸以游離型和牛磺酸結合型為主,甘氨膽酸、鵝脫氧甘膽酸等5種甘氨酸結合型膽汁酸因含量低于檢測限而無法定量。與對照組相比,DEHP組小鼠血清中TBA、未結合型膽汁酸、初級膽汁酸、次級膽汁酸均不同程度升高(Plt;0.01、Plt;0.01、Plt;0.01、Plt;0.05);而高劑量葉酸干預后,血清中TBA、未結合型膽汁酸、初級膽汁酸、次級膽汁酸基本降低至正常水平(Plt;0.01、Plt;0.01、Plt;0.01、Plt;0.05)。對血清中每種膽汁酸成分的含量進行分析,結果顯示,與對照組相比,DEHP組小鼠血清中有7種結合型膽汁酸[?;悄懰幔═CA)、?;侨パ跄懰幔═DCA)、?;切苋パ跄懰幔═UDCA)、?;?β-鼠膽酸(T-β-MCA)、?;?α-鼠膽酸(T-α-MCA)、牛磺豬去氧膽酸(THDCA)、?;鞘懰幔═LCA)明顯升高]和5種未結合型膽汁酸[熊去氧膽酸(UDCA)明顯降低,α-鼠膽酸(α-MCA)、β-鼠膽酸(β-MCA)、去氧膽酸(DCA)、石膽酸(LCA)明顯升高]均有顯著變化(P值均lt;0.05);而高劑量葉酸干預后,除α-MCA、β-MCA外,其余膽汁酸均顯著回調(P值均lt;0.05)。聚類熱圖分析5組間各膽汁酸亞型的分布規(guī)律,結果顯示,組內聚類理想,差異膽汁酸在不同組間區(qū)別明顯(圖5)。結果表明葉酸可顯著改善DEHP暴露導致的小鼠血清膽汁酸組分紊亂。
2.5葉酸對DEHP誘導的膽汁淤積小鼠膽汁酸代謝相關蛋白表達的影響為了進一步探究DEHP暴露及葉酸干預對小鼠肝組織膽汁酸代謝相關蛋白的作用,采用Western Blot法檢測小鼠肝臟膽汁酸代謝主要核受體FXR、膽汁酸合成酶CYP7A1、膽汁酸代謝酶CYP3A11、膽汁酸排泌轉運體MRP2等相關蛋白的表達水平。與對照組相比,DEHP組FXR和CYP3A11蛋白表達水平均明顯增加(P值均lt;0.01),CYP7A1和MRP2蛋白表達水平均顯著降低(P值均lt;0.01)。與DEHP組相比,F(xiàn)XR和CYP3A11在DEHP+L-FA組和DEHP+H-FA組中均明顯下調(P值均lt;0.05);MRP2在DEHP+L-FA組和DEHP+H-FA組中均顯著上調(P值均lt;0.05);CYP7A1在DEHP+H-FA組中顯著上調(Plt;0.05)(圖6)。
3討論
DEHP作為用量最大的鄰苯二甲酸酯類增塑劑,可通過消化道、呼吸道、皮膚等途徑進入人體。這種內分泌干擾物在體內的蓄積能誘發(fā)生殖毒性、神經(jīng)毒性、肝臟毒性及致癌性[7]。肝臟作為DEHP代謝的主要靶器官,體內外實驗結果[8-9]表明,DEHP暴露可加重氧化應激和炎癥,影響肝臟糖脂代謝并促進膽汁淤積和纖維化進展。ALP是膽汁淤積型肝病早期最具特征性的表現(xiàn),且增高程度與膽管阻塞的程度正相關。血清TBA是膽汁淤積型肝病最主要的實驗室證據(jù)支持。在本研究中,DEHP組小鼠肝體比、血清ALP和TBA明顯升高,肝臟病理可見匯管區(qū)擴大,膽管變形和增生并伴有少量炎性細胞浸潤,提示膽汁淤積模型造模成功。葉酸干預后,小鼠肝體比、血清生化指標TBA和ALP明顯下降,肝臟病理顯著改善,表明葉酸能有效保護DEHP誘導的膽汁淤積型肝損傷。MDA和SOD是評價機體氧化應激常用的兩個指標。本研究通過對肝臟MDA和SOD的檢測,說明DEHP暴露可導致小鼠氧化應激的增加,而氧化應激會進一步推進膽汁淤積性肝病的進程,提示葉酸能通過提高機體抗氧化能力起到保肝作用。
為了探究DEHP暴露及葉酸干預對膽汁酸譜的影響,基于液相色譜串聯(lián)質譜法對小鼠血清中17種膽汁酸進行絕對定量分析,發(fā)現(xiàn)模型組升高的多為結合膽汁酸,其中TCA升高最為明顯。在對照組中,TCA約占總膽汁酸15%,在DEHP組中則升高至39%,這一現(xiàn)象也存在于膽汁淤積型肝硬化患者及膽管結扎、α-異硫氰酸酯等膽汁淤積動物模型中[10-12]。膽汁酸作為一種兩性分子,其肝臟毒性的大小受疏水性的影響。本實驗結果中,LCA、DCA、CDCA、CA等疏水性膽汁酸均不同程度升高,其中肝毒性最強的膽汁酸LCA升高最顯著。葉酸給藥后,這些膽汁酸均表現(xiàn)出下降趨勢,表明其有效干預膽汁酸成分紊亂,降低毒性膽汁酸的濃度以保護肝損傷。膽汁淤積時,體內蓄積的膽汁酸通過腸肝循環(huán)影響腸道菌群穩(wěn)態(tài),而腸道菌群又會反過來影響膽汁酸的組成與疏水性[13]。肝臟中生成的初級膽汁酸大部分以?;撬岷透拾彼峤Y合型分泌入膽汁,排入腸道后在膽鹽水解酶和7α-脫羥基酶的作用下生成次級膽汁酸和未結合型膽汁酸。本研究中,DEHP組結合型膽汁酸增加的比例遠高于未結合型膽汁酸,尤其是T-β-MCA、T-α-MCA和TUDCA增加而β-MCA、α-MCA和UDCA降低,造成這一結果的原因可能是腸道菌群膽鹽水解酶活性的下降,導致膽汁酸的解偶聯(lián)能力降低。而膽汁酸解偶聯(lián)能力的降低又會進一步導致腸肝循環(huán)中膽汁酸的排泄下降,體內膽汁酸增加。以上結果提示腸道微生態(tài)失衡可能參與了DEHP誘導的膽汁淤積,未來可進一步研究其在葉酸改善DEHP誘導的膽汁酸代謝紊亂中的作用。
膽汁淤積發(fā)生時毒性膽汁酸的蓄積會造成肝損傷,從而激發(fā)肝臟產(chǎn)生適應性反應。FXR作為細胞核激素受體超家族之一,可被膽汁酸激活,是膽汁酸代謝的主要調節(jié)劑[14]。一般而言,膽汁酸疏水性越強,其對FXR的親和力就越高。將本次測定的膽汁酸按照激活強度排序,依次為CDCAgt;TCAgt;DCAgt;LCA。激活FXR可通過抑制CYP7A1而減少膽汁酸合成,也可通過誘導CYP3A11而增加膽汁酸代謝。在本研究中,與對照組相比,DEHP組FXR和CYP3A11蛋白表達水平明顯增加,CYP7A1蛋白表達水平顯著降低,提示DEHP暴露28天可導致小鼠出現(xiàn)膽汁淤積狀態(tài),但由于肝臟強大的代償功能,一定程度上保護了毒性膽汁酸造成的肝損傷。值得注意的是,DEHP組MRP2蛋白表達水平下降,而葉酸干預能逆轉MRP2蛋白的表達水平。MRP2是位于肝細胞毛細膽管膜的膽汁酸轉運蛋白,主要負責排泌膽汁酸和結合膽紅素等有機陰離子化合物,在維持膽汁酸穩(wěn)態(tài)和腸肝循環(huán)起到重要作用。大量研究[15-20]表明,在雌激素、膽管結扎、α-異硫氰酸酯、脂多糖等多種膽汁淤積模型、丙型肝炎及梗阻性膽汁淤積患者體內,均發(fā)現(xiàn)了MRP2蛋白表達的下降。這與本研究結果一致,MRP2的下調加重了膽汁淤積小鼠膽汁酸的蓄積。
綜上所述,葉酸可能通過調控膽汁酸合成、代謝與轉運,維持膽汁酸代謝穩(wěn)態(tài),并通過提高機體抗氧化能力,從而對DEHP誘導的膽汁淤積型肝損傷產(chǎn)生保護作用。
倫理學聲明:本研究遵守國家所有相關法規(guī)、機構政策和赫爾辛基宣言,于2020年5月23日經(jīng)由安徽醫(yī)科大學動物倫理委員會審批,批號:20200523,符合實驗室動物管理與使用準則。
利益沖突聲明:本文不存在任何利益沖突。
作者貢獻聲明:王建青、余蕓、侯夢貞負責課題設計,資料分析;侯夢貞、黃倩倩、張倫、陶文康、蔣月參與收集數(shù)據(jù),修改論文;王建青負責擬定寫作思路,指導撰寫文章并最后定稿。
參考文獻:
[1]BAGEL S,DESSAIGNE B,BOURDEAUX D,et al.Influence of lipid type on bis(2-ethylhexyl)phthalate(DEHP)leaching from infusion line sets in parenteral nutrition[J].JPEN J Parenter Enteral Nutr,2011,35(6):770-775.DOI:10.1177/0148607111414021.
[2]ZHAO F,ZHANG L,QU MC,et al.Obeticholic acid alleviates intra?uterine growth restriction induced by di-ethyl-hexyl phthalate in preg?nant female mice by improving bile acid disorder[J].Environ Sci Pollut Res Int,2023,30(51):110956-110969.DOI:10.1007/s11356-023-30149-9.
[3]GALLEGO-LOPEZ MDC,OJEDA ML,ROMERO-HERRERA I,et al.Folic acid homeostasis and its pathways related to hepatic oxidation in adolescent rats exposed to binge drinking[J].Antioxidants(Ba?sel),2022,11(2):362.DOI:10.3390/antiox11020362.
[4]ZHANG HQ,ZUO YW,ZHAO HC,et al.Folic acid ameliorates alco?hol-induced liver injury via gut-liver axis homeostasis[J].Front Nutr,2022,9:989311.DOI:10.3389/fnut.2022.989311.
[5]CHEN S,YANG MY,WANG R,et al.Suppression of high-fat-diet-in?duced obesity in mice by dietary folic acid supplementation is linked to changes in gut microbiota[J].Eur J Nutr,2022,61(4):2015-2031.DOI:10.1007/s00394-021-02769-9.
[6]JIANG L,GAI XC,NI Y,et al.Folic acid protects against tuberculosis-drug-induced liver injury in rats and its potential mechanism by me?tabolomics[J].J Nutr Biochem,2023,112:109214.DOI:10.1016/j.jnutbio.2022.109214.
[7]ZHANG YJ,GUO JL,XUE JC,et al.Phthalate metabolites:Charac?terization,toxicities,global distribution,and exposure assessment[J].Environ Pollut,2021,291:118106.DOI:10.1016/j.envpol.2021.118106.
[8]GAITANTZI H,HAKENBERG P,THEOBALD J,et al.Di(2-ethyl?hexyl)phthalate and its role in developing cholestasis:An in vitro study on different liver cell types[J].J Pediatr Gastroenterol Nutr,2018,66(2):e28-e35.DOI:10.1097/MPG.0000000000001813.
[9]WEI XJ,YANG DQ,ZHANG BY,et al.Di-(2-ethylhexyl)phthalate in?creases plasma glucose and induces lipid metabolic disorders via FoxO1 in adult mice[J].Sci Total Environ,2022,842:156815.DOI:10.1016/j.scitotenv.2022.156815.
[10]ZHOU YH,ZHOU YZ,LI YF,et al.Targeted bile acid profiles reveal the liver injury amelioration of Da-Chai-Hu Decoction against ANIT-and BDL-induced cholestasis[J].Front Pharmacol,2022,13:959074.DOI:10.3389/fphar.2022.959074.
[11]WANG GF,LI YY,SHI R,et al.Yinchenzhufu decoction protects against alpha-naphthylisothiocyanate-induced acute cholestatic liver injury in mice by ameliorating disordered bile acid homeostasis and inhibiting inflammatory responses[J].J Ethnopharmacol,2020,254:112672.DOI:10.1016/j.jep.2020.112672.
[12]LE YB,WANG KH,ZOU L.Mechanism of taurocholic acid in promot?ing the progression of liver cirrhosis[J].J Clin Hepatol,2021,37(11):2658-2662.DOI:10.3969/j.issn.1001-5256.2021.11.037.
樂英彪,王昆華,鄒雷.?;悄懰岽龠M肝硬化發(fā)展的機制[J].臨床肝膽病雜志,2021,37(11):2658-2662.DOI:10.3969/j.issn.1001-5256.2021.11.037.
[13]LI CZ,HUANG XW,ZHANG ZP,et al.Research progress in role of gut-liver axis in occurrence and development of atherosclerosis[J].J Jilin Univ Med Ed,2023,49(6):1669-1676.DOI:10.13481/j.1671-587X.20230636.
李朝政,黃曉巍,張澤鵬,等.腸-肝軸在動脈粥樣硬化發(fā)生發(fā)展中作用的研究進展[J].吉林大學學報(醫(yī)學版),2023,49(6):1669-1676.DOI:10.13481/j.1671-587X.20230636.
[14]TRAUNER M,F(xiàn)UCHS CD.Novel therapeutic targets for cholestatic and fatty liver disease[J].Gut,2022,71(1):194-209.DOI:10.1136/gutjnl-2021-324305.
[15]HAN X,LIN C,LIU H,et al.Allocholic acid protects againstα-naph?thylisothiocyanate-induced cholestasis in mice by ameliorating dis?ordered bile acid homeostasis[J].J Appl Toxicol,2024,44(4):582-594.DOI:10.1002/jat.4562.
[16]CHAI J,CAI SY,LIU XC,et al.Canalicular membrane MRP2/ABCC2 internalization is determined by Ezrin Thr567 phosphorylation in hu?man obstructive cholestasis[J].J Hepatol,2015,63(6):1440-1448.DOI:10.1016/j.jhep.2015.07.016.
[17]PAULUSMA CC,KOTHE MJ,BAKKER CT,et al.Zonal down-regula?tion and redistribution of the multidrug resistance protein 2 during bile duct ligation in rat liver[J].Hepatology,2000,31(3):684-693.DOI:10.1002/hep.510310319.
[18]ZU Y,LIU YN,LAN LL,et al.Consecutive baicalin treatment relieves its accumulation in rats with intrahepatic cholestasis by increasing MRP2 expression[J].Heliyon,2023,9(1):e12689.DOI:10.1016/j.heliyon.2022.e12689.
[19]RAZORI MV,MAIDAGAN PM,CIRIACI N,et al.Anticholestatic mechanisms of ursodeoxycholic acid in lipopolysaccharide-induced cholestasis[J].Biochem Pharmacol,2019,168:48-56.DOI:10.1016/j.bcp.2019.06.009.
[20]HINOSHITA E,TAGUCHI K,INOKUCHI A,et al.Decreased expres?sion of an ATP-binding cassette transporter,MRP2,in human livers with hepatitis C virus infection[J].J Hepatol,2001,35(6):765-773.DOI:10.1016/s0168-8278(01)00216-1.
收稿日期:2024-01-26;錄用日期:2024-03-12
本文編輯:王瑩
引 證 本 文 : HOU MZ, YU Y, HUANG QQ, et al. Protective effect of folic acid against cholestatic liver injury in mice caused by bis(2-ethylhexyl) phthalate exposure[J]. J Clin Hepatol, 2024, 40(10): 2062-2069.
侯夢貞, 余蕓, 黃倩倩, 等. 葉酸對鄰苯二甲酸二(2-乙基己基)酯 (DEHP)暴露導致小鼠膽汁淤積型肝損傷的保護作用[J]. 臨床 肝膽病雜志, 2024, 40(10): 2062-2069.