亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        紅松人工林地表火排放PM2.5及其水溶性碳特征

        2024-12-31 00:00:00王欣宇李兆國楊光寧吉彬韓懂懂耿道通馬尚炯吳菲
        關(guān)鍵詞:深度影響質(zhì)量

        摘 要:【目的】研究火干擾對(duì)野火排放PM2.5質(zhì)量濃度的影響,并了解野火排放PM2.5參與大氣碳循環(huán)的潛在能力,探究了火環(huán)境條件、火行為因素對(duì)野火排放PM2.5質(zhì)量濃度及其水溶性碳的影響,可為揭示野火干擾—野火排放顆粒物—大氣環(huán)境之間的多過程相互反饋關(guān)系提供科學(xué)依據(jù),對(duì)進(jìn)一步量化野火對(duì)大氣環(huán)境的影響有重要意義?!痉椒ā勘狙芯恳约t松人工林地表可燃物為實(shí)驗(yàn)材料,通過開展不同載量,含水率,坡度預(yù)設(shè)條件的模擬燃燒實(shí)驗(yàn),量化火焰高度、火焰長度、火焰深度、燃燒效率等火行為和火環(huán)境因素對(duì)PM2.5、水溶性碳的影響。通過單因素方差分析、多因素方差分析、相關(guān)分析、隨機(jī)森林回歸重要性排序等方法分析火環(huán)境對(duì)火行為的影響,火環(huán)境、火行為對(duì)PM2.5、水溶性碳質(zhì)量濃度的影響。【結(jié)果】可燃物載量極顯著影響PM2.5、水溶性碳質(zhì)量濃度(P<0.01),可燃物含水率顯著影響水溶性碳質(zhì)量濃度(P<0.05),但對(duì)PM2.5質(zhì)量濃度未產(chǎn)生顯著影響(P>0.05),坡度對(duì)PM2.5、水溶性碳質(zhì)量濃度均未產(chǎn)生顯著影響(P>0.05);可燃物載量與火行為呈顯著正相關(guān)(P<0.05),可燃物含水率與火行為呈顯著負(fù)相關(guān)(P<0.05),坡度僅顯著影響火焰深度(P<0.05);通過隨機(jī)森林回歸分析,對(duì)PM2.5質(zhì)量濃度影響較高的有火焰高度(39.12)、床層厚度(36.27)、火焰深度(35.01)、火焰長度(30.76),對(duì)水溶性碳質(zhì)量濃度影響較高的有床層厚度(40.05)、火焰高度(31.98)、火焰長度(31.06)?!窘Y(jié)論】紅松人工林地表可燃物燃燒排放的PM2.5及水溶性碳質(zhì)量濃度特征顯著地受到火行為的直接影響和火環(huán)境的間接影響。火環(huán)境能間接影響野火排放PM2.5質(zhì)量濃度和水溶性碳?;鸶蓴_可以通過影響野火排放PM2.5質(zhì)量濃度和水溶性碳對(duì)野火區(qū)域及其周邊地區(qū)的生態(tài)環(huán)境造成持續(xù)性影響。

        關(guān)鍵詞:模擬燃燒實(shí)驗(yàn);火環(huán)境;火行為;PM2.5;水溶性成分

        中圖分類號(hào):S762.1 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1673-923X(2024)11-0078-09

        基金項(xiàng)目:“十四五”國家重點(diǎn)研發(fā)計(jì)劃課題(2022YFC3003100);國家自然科學(xué)基金項(xiàng)目(32371881);中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)(2572023CT01);黑龍江省自然科學(xué)基金項(xiàng)目(LH2021C011)。

        Characteristics of surface fire emission of PM2.5 and its water-soluble carbon in red pine plantation

        WANG Xinyu, LI Zhaoguo, YANG Guang, NING Jibin, HAN Dongdong, GENG Daotong, MA Shangjiong, WU Fei

        (School of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, China)

        Abstract:【Objective】The effects of fire disturbance on the mass concentration of PM2.5 emitted from wildfires were studied, and the potential ability of PM2.5 emitted from wildfires to participate in the atmospheric carbon cycle was understood. The effects of fire environmental conditions and fire behavior factors on the mass concentration of PM2.5 emitted from wildfires and its water-soluble carbon were explored. It can provide a scientific basis for revealing the multi-process mutual feedback relationship between wildfire disturbance-wildfire emission particles-atmospheric environment, and is of great significance for further quantifying the impact of wildfires on the atmospheric environment.【Method】In this study, the surface combustible materials of red pine plantation were used as experimental materials. Simulated combustion experiments with different load, moisture content and slope preconditions were carried out to quantify the effects of flame height, flame length, flame width, combustion efficiency and other fire behavior and fire environment factors on PM2.5 and water-soluble carbon. The effects of fire environment on fire behavior, fire environment and fire behavior on PM2.5 and water-soluble carbon mass concentration were analyzed by one-way ANOVA, multi-factor ANOVA, correlation analysis and random forest regression importance ranking methods.【Result】The fuel load significantly affected the mass concentration of PM2.5 and watersoluble carbon (P<0.01). The fuel moisture content significantly affected the mass concentration of water-soluble carbon (P<0.05), but had no significant effect on the mass concentration of PM2.5 (P>0.05). The slope had no significant effect on the mass concentration of PM2.5 and water-soluble carbon (P>0.05). There was a significant positive correlation between fuel loading and fire behavior (P<0.05). There was a significant negative correlation between fuel moisture content and fire behavior (P<0.05). Slope only significantly affected flame depth (P<0.05). Through random forest regression analysis, the flame height (39.12), bed thickness (36.27), flame depth(35.01) and flame length (30.76) had a higher impact on PM2.5 mass concentration, and the bed thickness (40.05), flame height (31.98) and flame length (31.06) had a higher impact on water-soluble carbon mass concentration.【Conclusion】The mass concentration characteristics of PM2.5 and water-soluble carbon emitted by surface combustible combustion in red pine plantation were significantly affected by fire behavior directly and fire environment indirectly. The fire environment can indirectly affect the mass concentration of PM2.5 and water soluble carbon emitted by wildfire. Fire disturbance can have a lasting impact on the ecological environment of the wildfire area and its surrounding areas by affecting the mass concentration of PM2.5 and water-soluble carbon emitted by wildfire.

        Keywords: simulated combustion experiment; fire environment; fire behavior; PM2.5; water soluble components

        在氣候變化、野火頻發(fā)背景下,野火成為PM2.5排放量增加不可忽視的原因之一。野火過程會(huì)導(dǎo)致空氣中的PM2.5濃度顯著增加[1-3],遠(yuǎn)遠(yuǎn)超過世界衛(wèi)生組織12 μg/m3的PM2.5標(biāo)準(zhǔn)值[4-5],同時(shí)野火釋放的PM2.5對(duì)人體的傷害更大[6-8]。因此,野火排放PM2.5引起的環(huán)境污染問題、人體健康問題愈發(fā)受到人類的關(guān)注[9-12]。

        火干擾作為一種具有兩面性的生態(tài)干擾因子之一[13-15],可通過釋放氣體及包括PM2.5在內(nèi)的顆粒物至大氣中,參與生態(tài)系統(tǒng)中物質(zhì)循環(huán)及大氣循環(huán)。PM2.5的物質(zhì)組成非常復(fù)雜,不同來源的細(xì)顆粒物的化學(xué)組分差異也較大,但總體上主要包括了水溶性物質(zhì)、碳質(zhì)組分、無機(jī)元素以及其他組分[16,17]。其中水溶性碳(water-soluble carbon,WSC)是指能溶解于水的,具有不同結(jié)構(gòu)及分子質(zhì)量大小的碳化合物[18]。PM2.5中的WSC因其溶于水的特性,可通過不同形式顯著影響大氣循環(huán)、大氣輻射平衡和大氣化學(xué)[19-24],是大氣元素循環(huán)過程中活躍的角色之一[25]。因此,研究野火排放PM2.5中的WSC的質(zhì)量濃度特征,可解析野火排放PM2.5在地球化學(xué)過程的參與度,進(jìn)一步明晰野火對(duì)大氣碳循環(huán)過程的干擾過程。

        為了明晰野火背景下PM2.5的排放機(jī)制,了解不同火環(huán)境及火行為條件下PM2.5的排放特征及其物質(zhì)組成,本文通過實(shí)驗(yàn)室燃燒實(shí)驗(yàn),預(yù)設(shè)不同的可燃物載量、含水率、坡度,探究火環(huán)境條件、火行為因素對(duì)PM2.5排放量及其WSC的影響機(jī)制。以期為野火與野火產(chǎn)物方面的研究提供新的研究思路,為揭示野火干擾—野火排放顆粒物—大氣環(huán)境之間的多過程相互反饋關(guān)系提供理論依據(jù)。

        1 材料與方法

        1.1 樣品采集

        本研究選擇佳木斯孟家崗林場(46°20′~46°30′N,130°32′~130°52′E)的紅松人工林作為采樣地。在紅松人工林內(nèi)選取坡度較為平緩的地區(qū),布置20 m×20 m的樣方,收集樣方內(nèi)的可燃物,隨后運(yùn)到實(shí)驗(yàn)室儲(chǔ)存?zhèn)溆谩?/p>

        1.2 實(shí)驗(yàn)方法

        燃燒實(shí)驗(yàn)在東北林業(yè)大學(xué)燃燒實(shí)驗(yàn)室進(jìn)行,預(yù)設(shè)4、8、10、12 t/hm2四個(gè)可燃物載量水平,5%、10%、15%三個(gè)可燃物含水率水平,0°、10°、20°、30°四個(gè)坡度水平,每種實(shí)驗(yàn)條件設(shè)置3個(gè)重復(fù)共計(jì)144組模擬燃燒實(shí)驗(yàn)。本實(shí)驗(yàn)使用JCH-120F型中流量環(huán)境顆粒物采樣器,采用石英纖維濾膜,通過重量法測(cè)量PM2.5的排放量。進(jìn)行燃燒實(shí)驗(yàn)時(shí),將之前準(zhǔn)備好的可燃物均勻地散落在1 m×5 m的燃燒床上,并在可燃物床層上選取5個(gè)點(diǎn)利用刻度尺測(cè)定可燃物床層厚度。用手持氣象站(Kestrel 4500)記錄環(huán)境溫濕度。燃燒實(shí)驗(yàn):通過預(yù)實(shí)驗(yàn)確定了1 m長的預(yù)燃區(qū),當(dāng)火頭通過預(yù)燃區(qū),即認(rèn)為火焰達(dá)到穩(wěn)定狀態(tài)[26]。在火焰達(dá)到穩(wěn)定狀態(tài)后,用標(biāo)桿法分別測(cè)量并記錄火焰高度、火焰長度、火焰深度。在燃燒結(jié)束后,將燃燒剩余物收集稱量并記錄,將燃燒剩余物重量與可燃物重量的比值記為燃燒效率。

        1.3 樣品處理與分析

        采樣結(jié)束后,將濾膜再次在與采樣前相同的恒溫恒濕條件下處理并稱重、記錄濾膜質(zhì)量。濾膜前后稱得質(zhì)量差值即為采集到的PM2.5排放量。

        WSC質(zhì)量濃度測(cè)定:使用德國耶拿MultiN/ C2100S分析儀測(cè)得WSC。

        1.4 統(tǒng)計(jì)與分析

        用SPSS 23.0軟件進(jìn)行數(shù)據(jù)處理和統(tǒng)計(jì)分析,用OriginPro 2023軟件對(duì)數(shù)據(jù)進(jìn)行可視化處理。通過單因素方差分析法分析不同可燃物載量、可燃物含水率、坡度條件下對(duì)火行為的影響;通過多因素方差分析法分析可燃物載量、可燃物含水率、坡度及其交互作用對(duì)PM2.5、WSC質(zhì)量濃度的影響;通過R語言RandomForest包,構(gòu)建隨機(jī)森林回歸模型重要度排序;通過R語言linkET包進(jìn)行相關(guān)性分析并繪制相關(guān)性熱圖。

        2 結(jié)果與分析

        2.1 基本數(shù)據(jù)

        通過144場模擬燃燒實(shí)驗(yàn)收集的數(shù)據(jù)如表1所示。

        2.2 火環(huán)境對(duì)火行為特征的影響

        ANOVA分析結(jié)果表明,火焰長度、火焰高度、火焰深度在不同載量下存在極顯著差異(P<0.001);火焰長度、火焰高度在不同含水率下存在顯著差異(P<0.05),火焰深度在不同含水率下無顯著差異(P>0.05);火焰長度、火焰高度在不同坡度下無顯著差異(P>0.05),火焰深度在不同坡度下存在顯著差異(P<0.001)。

        由圖1可知,在相同可燃物載量和含水率下,火焰深度均表現(xiàn)為:30°實(shí)驗(yàn)組>20°實(shí)驗(yàn)組>10°實(shí)驗(yàn)組>0°實(shí)驗(yàn)組,尤其是30°實(shí)驗(yàn)組明顯高于0°、10°、20°實(shí)驗(yàn)組;在坡度為30°相同含水率的情況下,4~8 t/hm2的火焰長度、火焰高度、火焰深度變化量顯著高于0°、10°、20°實(shí)驗(yàn)組。

        火焰長度、火焰高度在4~12 t/hm2載量下都隨著載量的增大而增大,在12~16 t/hm2載量之間增加趨勢(shì)減弱甚至隨著載量增加而減小?;鹧嫔疃入S著載量的增大而增大,但在坡度為20°時(shí),火焰深度在4~12 t/hm2載量呈上升趨勢(shì),在12~16 t/hm2間呈下降趨勢(shì),當(dāng)坡度為30°時(shí),火焰深度在4~8 t/hm2載量之間隨著載量增加呈上升趨勢(shì),在8~16 t/hm2載量之間隨著載量增加呈下降趨勢(shì);火焰長度、火焰高度、火焰深度都在載量8~16 t/hm2載量之間隨著含水率的增加而減小,但當(dāng)載量為4 t/hm2時(shí)火焰長度、火焰高度、火焰深度隨著含水率的增加先減小后增大;火焰長度、火焰高度并未隨坡度的變化而表現(xiàn)出規(guī)律,火焰深度隨著坡度的增加而增加。

        2.3 火環(huán)境對(duì)PM2.5、WSC質(zhì)量濃度的影響

        火環(huán)境對(duì)PM2.5、WSC質(zhì)量濃度的影響如圖2所示,在4 t/hm2載量下PM2.5、WSC質(zhì)量濃度隨著坡度的增大而增大;在8 t/hm2載量下PM2.5、WSC質(zhì)量濃度在0°~15°隨坡度的升高而增加,在15°~30°隨坡度的升高而降低;在12 t/hm2載量下,含水率為5%~10%之間時(shí),PM2.5、WSC質(zhì)量濃度在10°之前隨著坡度的降低而降低,在10°之后隨著坡度增加而增加,在含水率為10%~15%時(shí),PM2.5、WSC質(zhì)量濃度在10°之前隨著坡度的降低而降低,在10°之后隨著坡度增加而增加,當(dāng)坡度到達(dá)15°~25°會(huì)達(dá)到峰值之后再開始下降;在16 t/hm2載量下PM2.5、WSC質(zhì)量濃度隨著含水率的增大而減小,在含水率為5%~10%,坡度在0~10°時(shí)PM2.5、WSC質(zhì)量濃度隨著坡度的增大而增大,在10°~20°時(shí)隨著坡度的增大而減小,在20°~30°隨著坡度的增大而增大。

        火環(huán)境及其交互作用如表2所示,可燃物載量極顯著影響PM2.5、WSC質(zhì)量濃度(P<0.01),可燃物含水率顯著影響WSC質(zhì)量濃度(P<0.05),可燃物含水率對(duì)PM2.5質(zhì)量濃度未產(chǎn)生顯著影響(P>0.05);坡度僅對(duì)WSC質(zhì)量濃度產(chǎn)生顯著影響(P<0.05),對(duì)PM2.5質(zhì)量濃度未產(chǎn)生顯著影響(P>0.05);此外,可燃物載量與可燃物含水率、可燃物載量與坡度的交互作用均對(duì)PM2.5質(zhì)量濃度產(chǎn)生極顯著影響(P<0.01),對(duì)WSC質(zhì)量濃度產(chǎn)生顯著影響(P<0.05);可燃物含水率與坡度的交互作用僅對(duì)PM2.5質(zhì)量濃度產(chǎn)生顯著影響(P<0.05),對(duì)WSC質(zhì)量濃度未產(chǎn)生顯著影響(P>0.05);可燃物載量、可燃物含水率、坡度三者的交互作用僅對(duì)PM2.5質(zhì)量濃度產(chǎn)生顯著影響(P<0.05),對(duì)WSC質(zhì)量濃度未產(chǎn)生顯著影響(P>0.05)。

        關(guān)于可燃物載量與可燃物含水率與坡度的交互作用對(duì)PM2.5、WSC質(zhì)量濃度的影響機(jī)制還有待進(jìn)一步研究討論。坡度在本實(shí)驗(yàn)中對(duì)PM2.5、WSC質(zhì)量濃度的影響顯著性較可燃物載量以及可燃物含水率低,這可能是由于在實(shí)驗(yàn)室條件并不能完全地模擬自然條件下的氣流運(yùn)動(dòng)。

        2.4 火行為對(duì)PM2.5、WSC質(zhì)量濃度的影響

        不同火行為下燃燒釋放PM2.5、WSC質(zhì)量濃度的特征如圖3所示,火焰長度、火焰高度、火焰深度的增加均會(huì)導(dǎo)致PM2.5、WSC質(zhì)量濃度增加,這可能是因?yàn)榛鹧骈L度、火焰深度、火焰高度的增大意味著更大的火焰體積以及燃燒面積,從而導(dǎo)致更多顆粒物的產(chǎn)生,并進(jìn)一步證實(shí)了火行為對(duì)PM2.5、WSC質(zhì)量濃度的影響。

        2.5 火環(huán)境、火行為對(duì)PM2.5、WSC質(zhì)量濃度的影響

        對(duì)火環(huán)境、火行為、PM2.5質(zhì)量濃度、WSC質(zhì)量濃度進(jìn)行相關(guān)性分析,結(jié)果如圖4所示。其中載量與床層厚度、火焰長度、火焰高度、燃燒效率呈極顯著正相關(guān)(P<0.01),與火焰深度、PM2.5、WSC質(zhì)量濃度呈顯著正相關(guān)(P<0.05);含水率與火焰長度、火焰深度、WSC質(zhì)量濃度呈顯著正相關(guān)(P<0.05);坡度僅與火焰深度呈極顯著正相關(guān)(P<0.01),與火焰長度、火焰深度、燃燒效率呈顯著正相關(guān)(P<0.05)。

        火焰高度與PM2.5質(zhì)量濃度相關(guān)性最高,載量與WSC質(zhì)量濃度相關(guān)性最高。火行為中,火焰高度、火焰長度、火焰深度與PM2.5、WSC質(zhì)量濃度均呈顯著正相關(guān)(P<0.05)。當(dāng)火焰長度、火焰深度、火焰高度較高時(shí),PM2.5、WSC質(zhì)量濃度都會(huì)隨之升高。PM2.5、WSC質(zhì)量濃度對(duì)火焰高度、火焰長度、火焰深度、燃燒效率的響應(yīng)程度存在部分差異,其中燃燒效率的對(duì)PM2.5、WSC質(zhì)量濃度的影響相對(duì)較小,這可能是因?yàn)槠渲械挠绊憴C(jī)制還受到其他例如風(fēng)速、溫度、濕度等外界因素的干擾。

        為了進(jìn)一步研究火行為變量對(duì)PM2.5、WSC質(zhì)量濃度變化的驅(qū)動(dòng)因素,本研究在不考慮變量交互作用的情況下,通過隨機(jī)森林回歸來探究每個(gè)因子的重要性。

        圖5分別展示了PM2.5質(zhì)量濃度(藍(lán)色)、WSC質(zhì)量濃度(粉紅色)所有解釋變量的均方根誤差。通過%IncMSE(Mean square error),發(fā)現(xiàn)在PM2.5質(zhì)量濃度隨機(jī)森林回歸模型中,重要因子從大到小依次是火焰高度(39.12)、床層厚度(36.27)、火焰深度(35.01)、火焰長度(30.76)、濕度(21.54)、燃燒效率(20.29)、溫度(9.08);在WSC質(zhì)量濃度隨機(jī)森林回歸模型中,重要因子從大到小依次是床層厚度(40.05)、火焰高度(31.98)、火焰長度(31.06)、火焰深度(18.88)、燃燒效率(13.14)、濕度(9.81)、溫度(8.17);

        對(duì)模型的解釋變量進(jìn)行顯著性驗(yàn)證,結(jié)果表明在PM2.5質(zhì)量濃度隨機(jī)森林回歸模型中,火焰高度、床層厚度、火焰深度、火焰長度、濕度均達(dá)到了顯著水平(P<0.05);在WSC質(zhì)量濃度隨機(jī)森林回歸模型中,床層厚度、火焰高度、火焰長度均達(dá)到了顯著水平(P<0.05)。

        整體看來,PM2.5、WSC質(zhì)量濃度隨機(jī)森林回歸模型均達(dá)到了顯著水平(P<0.05)。對(duì)比三個(gè)研究模型,PM2.5質(zhì)量濃度的隨機(jī)森林回歸模型總解釋度為47.5%,WSC質(zhì)量濃度的隨機(jī)森林回歸模型總解釋度為47.1%。

        3 討 論

        火環(huán)境條件主要包括區(qū)域氣候條件、地形因素、火場氣象因素三方面,前兩者共同決定著區(qū)域植被類型,可燃物載量與分解程度,火場氣象因素則會(huì)直接影響野火發(fā)生、發(fā)展過程,因此火環(huán)境條件會(huì)對(duì)火行為、PM2.5質(zhì)量濃度及WSC產(chǎn)生顯著影響[27-31]。本研究發(fā)現(xiàn),可燃物載量、含水率、環(huán)境濕度會(huì)顯著影響火行為、PM2.5質(zhì)量濃度,這與袁思博[32]、張遠(yuǎn)燕等[33]的研究結(jié)論相似。

        PM2.5、WSC質(zhì)量濃度都隨著載量的增大而增大,因?yàn)榭扇嘉镙d量越大,火行為越強(qiáng),其釋放的能量與物質(zhì)越多,PM2.5、WSC質(zhì)量濃度就越大,這與楊光等[34]的研究一致,但隨著可燃物載量的增加,PM2.5質(zhì)量濃度增幅會(huì)逐漸減小,這可能是因?yàn)榭扇嘉锶紵挠醒嫒紵龆?,?duì)PM2.5的排放產(chǎn)生負(fù)面效應(yīng)[35]。在4~12 t/hm2載量時(shí)PM2.5、WSC質(zhì)量濃度都隨著含水率的增大而增大,可能是因?yàn)殡S著含水率的增加,燃燒狀態(tài)逐漸轉(zhuǎn)變?yōu)闊o焰燃燒,進(jìn)而增加了PM2.5的排放量[35-37];但當(dāng)可燃物載量為16 t/hm2時(shí)PM2.5質(zhì)量濃度隨著可燃物含水率的增大而減小,而Ning等[28]的研究發(fā)現(xiàn)PM2.5排放量在一定范圍內(nèi)隨著含水率增大而增大,原因可能是當(dāng)可燃物載量與含水率同時(shí)升高,更多的水分參加了燃燒反應(yīng),導(dǎo)致部分可燃物沒有完全燃燒,并且本實(shí)驗(yàn)設(shè)置的載量較高,高載量、含水率、坡度的交互作用會(huì)顯著影響野火排放PM2.5質(zhì)量濃度。本研究發(fā)現(xiàn)床層厚度會(huì)顯著影響PM2.5、WSC質(zhì)量濃度,這可能是因?yàn)榇矊雍穸炔粌H與可燃物載量有直接關(guān)系,還顯著影響可燃物間緊密度,緊密度會(huì)影響可燃物床層中空氣的供應(yīng),同時(shí)也影響火焰的熱量傳遞過程。

        火行為直接影響PM2.5排放特征和WSC質(zhì)量濃度特征。火行為包括火焰形態(tài)、燃燒效率、火焰溫度等,本研究表明,在不同的火焰形態(tài)、燃燒效率下,PM2.5排放值、WSC質(zhì)量濃度存在差異,可能因?yàn)橐盎鸢l(fā)生時(shí),不同的火行為不但直接影響PM2.5排放,還會(huì)因熱輻射、熱對(duì)流動(dòng)力學(xué)過程改變可燃物狀態(tài)及區(qū)域內(nèi)溫濕度等環(huán)境因素,進(jìn)而對(duì)PM2.5排放產(chǎn)生二次影響。本研究發(fā)現(xiàn),PM2.5中WSC質(zhì)量濃度都隨著火焰長度、火焰高度、火焰深度的升高而升高,而李兆國等[38]對(duì)燃燒剩余物的研究中,燃燒剩余物中WSC隨著火焰長度、火焰高度、火焰深度的升高而降低,這表明火行為越強(qiáng),火強(qiáng)度越大,燃燒效率越高,可燃物燃燒越充分,導(dǎo)致燃燒剩余物中的WSC降低,顆粒物WSC升高。

        本實(shí)驗(yàn)通過分析不同火環(huán)境及部分火行為對(duì)PM2.5的影響發(fā)現(xiàn),影響野火排放PM2.5的因素還包含可燃物特性、地域氣候環(huán)境等。后續(xù)的研究可以考慮更多的火環(huán)境、火行為因素對(duì)PM2.5的影響,并對(duì)野火產(chǎn)生的PM2.5中其他組分進(jìn)行測(cè)定[39-40],以便更進(jìn)一步解構(gòu)PM2.5成分組成。WSC作為野火排放PM2.5中占比較高的組分[41],是野火影響區(qū)域降水的重要角色,因此后續(xù)的研究可結(jié)合野火排放PM2.5的WSC特征和SMOKE等模型展開構(gòu)建野火區(qū)域降水模型的研究[42-43]。

        4 結(jié) 論

        野火排放PM2.5作為具有強(qiáng)遷移能力的野火產(chǎn)物,是火干擾影響環(huán)境的關(guān)鍵的環(huán)節(jié)。而火行為是野火能量釋放的表現(xiàn)形式,會(huì)對(duì)野火排放PM2.5質(zhì)量濃度和水溶性碳造成顯著影響,火環(huán)境則能間接影響野火排放PM2.5質(zhì)量濃度和水溶性碳?;鸶蓴_可以通過影響野火排放PM2.5質(zhì)量濃度和水溶性碳對(duì)野火區(qū)域及其周邊地區(qū)的生態(tài)環(huán)境造成持續(xù)性影響。因此理解火環(huán)境以及火行為對(duì)PM2.5質(zhì)量濃度和水溶性碳的影響,對(duì)進(jìn)一步量化野火對(duì)大氣環(huán)境的影響有重要意義,并有助于提高生態(tài)系統(tǒng)的穩(wěn)定性及可持續(xù)性。

        參考文獻(xiàn):

        [1] 劉鑫源,楊光,寧吉彬,等.紅松人工林地表可燃物燃燒釋放顆粒物質(zhì)量及影響因素[J].林業(yè)科學(xué),2022,58(3):97-106. LIU X Y, YANG G, NING J B, et al. Quality and influencing factors of particulate matter released by surface fuel combustion in korean pine plantation[J]. Scientia Silvae Sinicae,2022,58(3): 97-106.

        [2] 郭雨萱,魏帽,田明月,等.云南省八種主要喬木燃燒釋放煙氣及顆粒物特性分析[J].環(huán)境科學(xué)研究,2021,34(10):2295-2305. GUO Y X,WEI M,TIAN M Y, et al. Characteristics of smoke and particulate matter released by combustion of eight main tree species in Yunnan province[J]. Research of Environmental Sciences,2021,34(10):2295-2305.

        [3] 鞠園華,馬祥慶,郭林飛,等.杉木枯落物燃燒釋放污染物特征及PM2.5成分分析[J].林業(yè)科學(xué),2019,55(7):187-196. JU Y H, MA X Q, GUO L F, et al. Characteristics of pollutants released by combustion of Chinese fir litterfall and PM2.5 composition analysis[J]. Scientia Silvae Sinicae,2019,55(7):187-196.

        [4] ESWORTHY R. The national ambient air quality standards for particulate matter (PM): EPA’S 2006 revisions and associated issues[Z]. Library of Congress. Congressional Research Service, 2013.

        [5] 陳雅真,梁小翠,閆文德,等.長沙市道路綠化帶滯留PM2.5的能力[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2022,42(8):118-127. CHEN Y Z, LIANG X C, YAN W D, et al. PM2.5 retention capacity of the road green belt in Changsha[J]. Journal of Central South University of Forestry Technology,2022,42(8):118-127.

        [6] AGUILERA R, CORRINGHAM T, GERSHUNOV A, et al. Wildfire smoke impacts respiratory health more than fine particles from other sources: observational evidence from Southern California[Z]. ISEE Conference Abstracts,2020.

        [7] FRANZI L M, BRATT J M, WILLIAMS K M, et al. Why is particulate matter produced by wildfires toxic to lung macrophages?[J]. Toxicology and Applied Pharmacology, 2011,257(2):182-188.

        [8] 李春陽,張運(yùn)林,郭妍,等.大興安嶺6種主要喬木樹種燃燒過程的含碳?xì)怏w釋放特征[J].中南林業(yè)科技大學(xué)學(xué)報(bào), 2020,40(6):81-88. LI C Y, ZHANG Y L, GUO Y, et al. Characteristics of carbonbearing gas release during combustion of six main tree species in Daxing’anling[J]. Journal of Central South University of Forestry Technology,2020,40(6):81-88.

        [9] 楊新興,馮麗華,尉鵬.大氣顆粒物PM2.5及其危害[J].前沿科學(xué),2012,6(1):22-31. YANG X X, FENG L H, WEI P. Atmospheric particulate matter PM2.5 and its hazards[J]. Frontier Science,2012,6(1):22-31.

        [10] CASCIO W E. Wildland fire smoke and human health[J]. Science of the Total Environment,2018,624:586-595.

        [11] ALVES C, GONCALVES C, FERNANDES A P, et al. Fireplace and woodstove fine particle emissions from combustion of western Mediterranean wood types[J]. Atmospheric Research, 2011,101(3):692-700.

        [12] 李兆國,甕岳太,石炳東,等.森林燃燒剩余物研究進(jìn)展[J].世界林業(yè)研究,2021,34(2):33-38. LI Z G,WENG Y T,SHI B D, et al. Research progress in forestfire residues[J]. World Forestry Research,2021,34(2):33-38.

        [13] CRUTZEN P J, HEIDT L E, KRASNEC J P, et al. Biomass burning as a source of atmospheric gases CO, H2, N2O, NO, CH3Cl and COS[J]. Nature,1979,282(5736):253-256.

        [14] PARK H, TAKEUCHI W, ICHII K. Satellite-based estimation of carbon dioxide budget in tropical peatland ecosystems[J]. Remote Sensing,2020,12(2):250.

        [15] 朱教君,劉足根.森林干擾生態(tài)研究[J].應(yīng)用生態(tài)學(xué)報(bào), 2004,15(10):1703-1710. ZHU J J, LIU Z G. A review on disturbance ecology of forest[J]. Chinese Journal of Applied Ecology, 2004,15(10):1703-1710.

        [16] 羅小靖.四川省典型城市大氣PM2.5組分特征及來源解析[D].成都:西南交通大學(xué),2020. LUO X Q. Characteristics of atmospheric PM2.5 compsitio in typica cities of Sichuan province and source resolutio[D]. Chengdu: Southwest Jiaotong University,2020.

        [17] 熊傳芳,張征宇,萬梅,等.嘉興市大氣PM2.5中金屬元素污染特征、生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)及來源分析[J].環(huán)境工程技術(shù)學(xué)報(bào), 2023,13(1):96-104. XIONG C F, ZHANG Z Y, WAN M, et al. Pollution characteristics, ecological risk assessment and source apportionment of mental elements in PM2.5 in Jiaxing city[J]. Journal of Environmental Engineering Technology,2023,13(1):96-104.

        [18] RUEDA-DELGADO G, WANTZEN K M, TOLOSA M B. Leaf-litter decomposition in an Amazonian floodplain stream: effects of seasonal hydrological changes[J]. Journal of the North American Benthological Society,2006,25(1):233-249.

        [19] ZHANG Q, ANASTASIO C. Free and combined amino compounds in atmospheric fine particles (PM2.5) and fog waters from northern California[J]. Atmospheric Environment, 2003,37(16):2247-2258.

        [20] CHAN M N, CHOI M Y, NG N L, et al. Hygroscopicity of watersoluble organic compounds in atmospheric aerosols: amino acids and biomass burning derived organic species[J]. Environmental Science Technology,2005,39(6):1555-1562.

        [21] MCGREGOR K G, ANASTASIO C. Chemistry of fog waters in California’s central valley: 2. photochemical transformations of amino acids and alkyl amines[J]. Atmospheric Environment, 2001,35(6):1091-1104.

        [22] 蔣斌,陳多宏,張濤,等.華南水稻秸稈焚燒期碳質(zhì)氣溶膠組分特征及源貢獻(xiàn)評(píng)估[J].生態(tài)環(huán)境學(xué)報(bào),2022,31(12):2358-2366. JIANG B,CHEN D H,ZHANG T, et al. Characteristics and sources of carbonaceous aerosols during the crop straw burning seasons in southern China [J]. Ecology and Environmental Sciences,2022,31(12):2358-2366.

        [23] 宋大偉,顧雪松,耿磊,等.無錫市PM2.5污染過程的含碳?xì)馊苣z變化特征及其來源分析[J].中國資源綜合利用,2021, 39(12):151-153. SONG D W, GU X S, GENG L, et al. Analysis on the change characteristics and its source of carbon-containing aerosol in the process of PM2.5 pollution in Wuxi city[J]. China Resources Comprehensive Utilization,2021,39(12):151-153.

        [24] 程麗琴,朱仁果,朱慧曉,等.南昌市PM2.5中游離氨基酸的濃度、來源與分布特征[J].環(huán)境科學(xué)學(xué)報(bào),2022,42(11): 308-317.CHENG L Q, ZHU R G, ZHU X H, et al. Concentration source and distribution of free amino acids in PM2.5 in Nanchang city[J]. Acta Scientiae Circumstantiae,2022,42(11):308-317.

        [25] MARTíNEZ A, LARRA?AGA A, PéREZ J, et al. Temperature affects leaf litter decomposition in low-order forest streams: field and microcosm approaches[J]. Fems Microbiology Ecology, 2014,87(1):257-267.

        [26] 張運(yùn)林,宋紅,胡海清.無風(fēng)條件下蒙古櫟—紅松混交林下地表可燃物3種火源點(diǎn)燃的能力分析[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2018,38(12):96-102,114. ZHANG Y L, SONG H, HU H Q. Analysis of the ignition ability of three kinds of fire sources under the condition of the mixed forests of Quercus mongolica and Pinus koraiensis under nowind conditions[J]. Journal of Central South University of Forestry Technology,2018,38(12):96-102,114.

        [27] TEINIL? K, AURELA M, NIEMI J V, et al. Concentration variation of gaseous and particulate pollutants in the Helsinki city centre- observations from a two-year campaign from 2013-2015[J]. Boreal Environment Research,2019,24:115-136.

        [28] NING J B, YANG G, LIU X Y, et al. Effect of fire spread, flame characteristic, fire intensity on particulate matter 2.5 released from surface fuel combustion of Pinus koraiensis plantation: a laboratory simulation study[J]. Environment International, 2022,166:107352.

        [29] JEONG C H, EVANS G J, HOPKE P K, et al. Influence of atmospheric dispersion and new particle formation events on ambient particle number concentration in Rochester, United States, and Toronto, Canada[J]. Journal of the Air Waste Management Association,2006,56(4):431-443.

        [30] RONKKO T, VIRTANEN A, VAARASLAHTI K, et al. Effect of dilution conditions and driving parameters on nucleation mode particles in diesel exhaust: laboratory and on-road study[J]. Atmospheric Environment,2006,40(16):2893-2901.

        [31] AN J L, WANG H L, SHEN L J, et al. Characteristics of new particle formation events in Nanjing, China: effect of watersoluble ions[J]. Atmospheric Environment,2015,108:32-40.

        [32] 袁思博.基于室內(nèi)模擬的東北紅松人工林地表可燃物燃燒釋放PM2.5濃度空間分布[D].哈爾濱:東北林業(yè)大學(xué),2020. YUAN S B. Spatial distribution of PM2.5 concentration released by surface fuel combustion in Korean pine plantation in northeast China based on indoor simulation[D]. Harbin: Northeast Forestry University,2020.

        [33] 張遠(yuǎn)艷,邸雪穎,趙鳳君,等.紅松人工林地表針葉可燃物燃燒PM2.5排放影響因子[J].北京林業(yè)大學(xué)學(xué)報(bào),2018,40(6): 30-40. ZHANG Y Y, DI X Y, ZHAO F J, et al. Influencing factors of PM2.5 emissions under the surface needle combustible combustion of Korean pine plantations[J]. Journal of Beijing Forestry University,2018,40(6):30-40.

        [34] 楊光,張遠(yuǎn)艷,邸雪穎,等.蒙古櫟床層燃燒排放PM2.5及影響因子[J].東北林業(yè)大學(xué)學(xué)報(bào),2018,46(11):66-69,74. YANG G, ZHANG Y Y, DI X Y, et al. Influence factors on PM2.5 emissions from Quercus mongolica broad leaves fuel bed burning[J]. Journal of Northeast Forestry University, 2018,46(11):66-69,74.

        [35] REISEN F, MEYER C P, WESTON C J, et al. Ground based field measurements of PM2.5 emission factors from flaming and smoldering combustion in Eucalypt forests[J]. Journal of Geophysical Research: Atmospheres,2018,123:8301-8314.

        [36] DONG T T, STOCK W D, CALLAN A C, et al. Emission factors and composition of PM2.5 from laboratory combustion of five western Australian vegetation types[J]. Science of the Total Environment,2020,703:134796.

        [37] NI H Y, HAN Y M, CAO J J, et al. Emission characteristics of carbonaceous particles and trace gases from open burning of crop residues in China[J]. Atmospheric Environment, 2015,123:399-406.

        [38] 李兆國,甕岳太,徐建楠,等.模擬地表火行為對(duì)燃燒剩余物水溶性碳氮的影響[J].生態(tài)學(xué)報(bào),2022,42(4):1500-1511. LI Z G, WENG Y T, XU J N, et al. Effect of the simulated surface fire behavior on water-soluble carbon and nitrogen in ash[J]. Acta Ecologica Sinica,2022,42(4):1500-1511.

        [39] GIODA A, AMARAL B S, MONTEIRO I L, et al. Chemical composition, sources, solubility, and transport of aerosol trace elements in a tropical region[J]. Journal of Environmental Monitoring, 2011,13(8):2134-2142.

        [40] SAMARA C, VOUTSA D, KOURAS A, et al. Organic and elemental carbon associated to PM10 and PM2.5 in the urban atmosphere estimation of secondary organic carbon[C]// European Aerosol Conference,Prague,2013.

        [41] LIM H J, TURPIN B J. Origins of primary and secondary organic aerosol in Atlanta: results of time-resolved measurements during the Atlanta supersite experiment[J]. Environmental Science Technology,2002,36(21):4489-4496.

        [42] 徐海文,張貴,譚三清,等.基于卷積神經(jīng)網(wǎng)絡(luò)的林火煙霧檢測(cè)[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2023,43(7):23-31,64. XU H W, ZHANG G, TAN S Q, et al. Forest fire smoke detection based on convolutional neural network[J]. Journal of Central South University of Forestry Technology,2023,43(7):23-31,64.

        [43] 馮豁朗,張貴,譚三清,等.基于Himawari-8衛(wèi)星數(shù)據(jù)的林火判別[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2021,41(8):75-83. FENG H L, ZHANG G, TAN S Q, et al. Discrimination of forest fire based on Himawari-8 satellite data[J]. Journal of Central South University of Forestry Technology,2021,41(8):75-83.

        [本文編校:吳 毅]

        猜你喜歡
        深度影響質(zhì)量
        是什么影響了滑動(dòng)摩擦力的大小
        “質(zhì)量”知識(shí)鞏固
        哪些顧慮影響擔(dān)當(dāng)?
        深度理解一元一次方程
        質(zhì)量守恒定律考什么
        做夢(mèng)導(dǎo)致睡眠質(zhì)量差嗎
        深度觀察
        深度觀察
        深度觀察
        擴(kuò)鏈劑聯(lián)用對(duì)PETG擴(kuò)鏈反應(yīng)與流變性能的影響
        中國塑料(2016年3期)2016-06-15 20:30:00
        亚洲精品国产成人| 日韩有码中文字幕在线观看| 亚洲国产日韩综一区二区在性色| 台湾自拍偷区亚洲综合| 午夜视频在线观看国产| 中国亚洲av第一精品| 伊人久久这里只有精品| 内射夜晚在线观看| 国产精品久久久久aaaa| 国产普通话对白视频二区| 少妇一级aa一区二区三区片| 日本女优爱爱中文字幕| 国产不卡在线观看视频| 性欧美丰满熟妇xxxx性久久久| 亚洲精品92内射| 国产做无码视频在线观看浪潮 | 蜜桃av观看亚洲一区二区 | 久久久国产精品麻豆| 国产三级在线看完整版| 中文字幕中文字幕三区| 日韩亚洲无吗av一区二区| 日韩人妻少妇一区二区三区| 国产精品麻豆欧美日韩ww| 91青青草久久| 亚洲一区二区三区av无| 自由成熟女性性毛茸茸应用特色| 放荡的美妇在线播放| 亚洲啪啪综合av一区| 中文字幕亚洲无线码a| 日韩av在线不卡一区二区| 精品无码无人网站免费视频 | 亚洲女初尝黑人巨高清| 国产精品爆乳在线播放 | 亚洲2022国产成人精品无码区| 亚洲国产av导航第一福利网| 欧美一级视频精品观看| 好看午夜一鲁一鲁一鲁| 精品女同一区二区三区| 正在播放强揉爆乳女教师| 日本阿v网站在线观看中文| 精品欧洲AV无码一区二区免费|