摘" " 要:【目的】探索不同植物生長調節(jié)劑處理對獼猴桃果實生長發(fā)育及采后品質的影響?!痉椒ā恳越鹌G為研究對象,授粉后25~30 d分別用不同質量濃度的赤霉素(GA3)、氯吡脲(CPPU)、三十烷醇(Tri)、萘乙酸(NAA)、吲哚乙酸(IAA)、6-芐氨基腺嘌呤(6-BA)、褪黑素(MT)和色氨酸(Trp)進行噴施處理,測定果實外觀和品質指標?!窘Y果】所有處理均顯著提高了果實單果質量,降低了果形指數。CPPU可促進果實成熟和淀粉積累,Tri和NAA分別抑制淀粉積累和延緩果實成熟。MT、Trp和NAA處理顯著提高了果實硬度,CPPU和NAA分別促進與抑制果實軟化和可溶性固形物含量。CPPU、Tri和Trp處理降低了抗壞血酸含量,MT處理提高了抗壞血酸含量。適宜濃度的GA3、NAA、MT、CPPU、IAA、Tri和Trp對不同糖組分的積累和有機酸組分的降解具促進作用?!窘Y論】不同的植物生長調節(jié)劑對獼猴桃果實的外觀和品質指標具有不同促進或抑制作用,適宜濃度的CPPU、NAA和MT復合處理有望提高金艷獼猴桃果實的綜合品質。
關鍵詞:獼猴桃;植物生長調節(jié)劑;果實發(fā)育;果實品質
中圖分類號:S663.4 文獻標志碼:A 文章編號:1009-9980(2024)11-2272-13
Effects of different plant growth regulators on fruit quality in Jinyan kiwifruit
MAO Jipeng1, 2, YAO Dongliang1, 2, GONG Xuchen1, 2, CHEN Lu3, GAO Zhu1, 2, 3, WANG Xiaoling1, 2*
(1Institute of Biological Resources, Jiangxi Academy of Sciences/Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Nanchang 330096, Jiangxi, China; 2Institute of Biological Resources, Jiangxi Academy of Sciences/Jiangxi Kiwifruit Engineering Research Center, Nanchang 330096, Jiangxi, China; 3Jinggangshan Institute of Biotechnology, Jiangxi Academy of Sciences, Ji'an 343016, Jiangxi, China)
Abstract: 【Objective】 Kiwifruit (Actinidia spp.) originated in China, is an important part of China’s fruit food in the “Big Food View” perspective. Kiwifruit has become one of the most popular fruits because of its unique flavor and rich nutrients such as vitamin C, amino acids, organic acids, soluble sugars and minerals. Plant growth regulators have many physiological effects, such as enhancing plant resistance, regulating fruit size, pigment accumulation level, saccharic acid component content, and maturation and senescence process. Improper use of plant growth regulators can easily lead to high malformed fruit rate, dark skin color, early physiological ripening, large inventory loss and low fruit quality, which leads to the decline of comprehensive quality of postharvest kiwifruit. The present experiment was undertaken to explore the effects of different plant growth regulators on the growth and postharvest quality of kiwifruit. 【Methods】 Jinyan kiwifruit was treated with different concentrations of GA3 (50, 100 and 200 mg·L-1), CPPU (5, 10 and 20 mg·L-1), triacotanol (5, 10 and 20 mg·L-1), NAA (50, 100 and 200 mg·L-1), IAA (20, 40 and 80 mg·L-1), 6-BA (25, 50 and 100 mg·L-1), melatonin (10, 20 and 40 mg·L-1) and tryptophan (100, 200 and 400 mg·L-1) after 25-30 d of pollination. The water treatment served as control (CK), and three plants were treated with each concentration of every plant growth regulator as three biological replicates. After 140 d of pollination, 20 fruits were selected every 2 d for the determination of soluble solid content. When the SSC content was higher than 6.5%, it was recorded as the physiological maturity stage of the treatment. At the physiological maturity stage of corresponding treatment, 120 healthy fruits were randomly selected from each plant for index determination. They were placed at room temperature until soft ripeness (80% of the fruits were less than 1.2 kg·cm-2 in hardness), and 9 fruits were randomly selected every 2 d for hardness index determination. After soft ripening, soluble solid content and titrable acid content were determined. The remaining fruits were crushed and mixed with liquid nitrogen and stored at -80 ℃ for the subsequent determination of physiological indexes. The fruit weight, fruit shape index, fruit hardness and starch content were measured at the physiological maturity stage of Jinyan kiwifruit. The soluble solid content, titrable acid content, ascorbic acid content, sucrose, fructose, glucose, citric acid, quinic acid, malic acid, total phenol and total flavone contents were measured at the soft ripening stage of the fruit. The effects of different plant growth regulators and concentrations on the above indexes were compared and analyzed. 【Results】 Different plant growth regulator treatments could significantly increase the single fruit weight, NAA treatment had the best effect, and compared with CK single fruit weight increased by 43.07%-55.78%. Tri and CPPU treatments were followed by 34.56%-43.07% and 24.07%-31.62% respectively. Compared with CK, CPPU treatment could advance the physiological maturity by 18-20 d, and NAA treatment could delay the physiological maturity by 6-8 d. Compared with CK, CPPU treatment could increase starch content by 8.53%-17.32%. Different concentrations of MT, Trp and NAA, 5 mg·L-1 of Tri, 25 mg·L-1 and 50 mg·L-1 of 6-BA treatment could significantly improve fruit hardness. Different concentrations of NAA, 200 mg·L-1 of GA3 and 25 mg·L-1 of 6-BA could significantly reduce the softening rate of fruit. NAA treatment had the best effect, the softening rate was reduced by 10.96%-16.44% compared with CK, and the softening period was extended by 3-5 d. CPPU treatment could promote the softening of fruit, and the softening rate increased by 13.69%-26.03% compared with CK, and the softening period was advanced by 4-6 d. Different concentrations of NAA, 100 mg·L-1 of 6-BA, 5 mg·L-1 of CPPU, 50 mg·L-1 and 100 mg·L-1 of IAA, 20 mg·L-1 of Tri, 100 mg·L-1 and 400 mg·L-1 of Trp could significantly increase the contents of titrable acid in fruit at soft ripening stage. Different concentrations of CPPU, NAA and Trp significantly reduced the ascorbic acid content at the soft ripening stage, and the treatment effect of CPPU was the best, which decreased the ascorbic acid content by 10.53%-14.47% compared with CK. Trp and NAA treatments decreased by 9.21%-11.84% and 6.24%-8.34%, respectively. 200 mg·L-1 of GA3, 200 mg·L-1 of NAA, 10 mg·L-1 and 20 mg·L-1 of MT treatments significantly increased the fructose content at soft ripening stage. The most significant effect was 10 mg·L-1 of MT, the fructose content increased by 17.43%, followed by 200 mg·L-1 of GA3, 20 mg·L-1 of MT and 200 mg·L-1 of NAA, and the fructose contents increased by 13.47%, 11.82% and 10.64%. Different concentrations of CPPU, 40 mg·L-1 of MT, 5 mg·L-1 of Tri and 400 mg·L-1 of Trp could significantly increase sucrose content at soft ripening stage. Compared with CK, CPPU treatment could increase the sucrose contents by 34.23%-41.23%. Different concentrations of MT, 20 mg·L-1 and 40 mg·L-1 of IAA treatments could significantly increase the glucose contents at soft ripening stage, and 20 mg·L-1 of IAA treatment had the best effect, followed by 10 mg·L-1 of MT treatment, which could increase the glucose contents by 28.39% and 26.59%, respectively. Different concentrations of CPPU and MT significantly reduced the contents of citric acid, quinic acid and malic acid at soft ripening fruits. Compared with CK, the contents of citric acid decreased by 8.75%-10.63% and 8.75%-15.01%, the contents of quinic acid decreased by 10.77%-15.38% and 9.23%-12.30%, and the contents of malic acid decreased by 14.29%-20.01% and 23.8%-24.76%, respectively. Different concentrations of NAA, MT, 20 mg·L-1 of Tri and 80 mg·L-1 of IAA increased the total phenol contents. Different concentrations of CPPU and MT increased the accumulation levels of total flavonoids by 22.56%-28.75% and 8.75%-15.00%, respectively, compared with CK. 【Conclusion】 Different concentrations of 6-BA, CPPU, GA3, IAA, MT, NAA, Tri and Trp could significantly increase fruit weight, but decrease fruit shape index. The contents of soluble solid, ascorbic acid, soluble sugar, organic acid, total phenol and total flavone were promoted or inhibited by different plant growth regulators or concentrations. CPPU treatment of 10 mg·L-1 had the best effect on the accumulation of starch and soluble solids, NAA treatment of 100 mg·L-1 had the best effect on the appearance and storage performance of fruits, and MT treatment had the best effect on the improvement of fruit flavor quality. The suitable concentrations of CPPU, NAA and MT combined treatments were expected to improve the comprehensive quality of kiwifruit.
Key words: Kiwifruit; Plant growth regulator; Fruit development; Fruit quality
獼猴桃(Actinidia spp.)原產于中國,在“大食物觀”背景下是中國水果食物的重要組成部分,因其獨特的風味及富含維生素C、氨基酸、有機酸、可溶性糖和礦物質等營養(yǎng)物質而成為備受大眾喜愛的水果之一[1-2]。據不完全統計,中國已經累計選育獼猴桃新品種近400個,栽培總面積20萬hm2,年產量超過250萬t(布瑞克農業(yè)大數據,2024)。中國雖是獼猴桃生產大國,卻非生產強國,主要表現為價格低廉、高品質果率低等[3]。金艷是由中國科學院武漢植物園獼猴桃學科組人員利用毛花獼猴桃和中華獼猴桃進行種間雜交選育而成,為江西地區(qū)的主栽品種之一[4]。生產上常用氯吡脲(CPPU)進行幼果期膨大處理,但因使用不當出現畸形果率高[5]、果皮色澤暗淡[6]、生理成熟期提前[7]、庫存損耗高等問題[8-9],從而導致采后獼猴桃果實綜合品質下降。
植物生長調節(jié)劑是一類由人工合成或天然提取,具有和植物體內激素相似生長發(fā)育調節(jié)作用的有機化合物的統稱。在果樹上常用的有CPPU[10-11]、6-芐氨基腺嘌呤(6-BA)[12-14]、赤霉素(GA3)[15-18]、吲哚乙酸(IAA)[15,19-20]、褪黑素(MT)[21-22]、萘乙酸(NAA)[23-25]、色氨酸(Trp)[26-27]和三十烷醇(Tri)[28]等,具有增強植物抗性及調控果實大小、色素積累水平、糖酸組分含量和成熟衰老進程等多種生理作用。筆者在本研究中以金艷獼猴桃為材料,開展不同植物生長調劑及質量濃度對果實生長發(fā)育和果實品質的影響研究,以期為綠色高效植物生長調節(jié)的開發(fā)利用提供理論基礎,從而促進獼猴桃產業(yè)的健康發(fā)展。
1 材料和方法
1.1 試驗材料與處理
以種植于宜春市奉新縣博士獼猴桃基地(E 114°45', N 28°34')的8年生金艷獼猴桃為試驗材料,于2023年5月底(授粉后25~30 d),根據文獻[11,13,16,19,22-23,26,28]報道分別采用不同質量濃度的植物生長調節(jié)劑[MT、CPPU、Tri、GA3、IAA、NAA、6-BA和Trp(北京索萊寶)]進行噴施處理,具體處理質量濃度如表1所示,以清水處理為對照。每種植物生長調節(jié)劑的每個質量濃度分別處理3株(計3個生物學重復),每株獼猴桃樹的留果量為800~900個。
1.2 取樣方法
授粉140 d后,每2 d取20個果實進行可溶性固形物含量的測定,當果實的可溶性固形物含量大于6.5%時記為該處理的生理成熟期;在對應處理的生理成熟期,每株分別隨機采取120個健康的獼猴桃果實,采摘后進行單果質量、淀粉含量、橫徑、縱徑和側徑指標的測定。常溫放置至軟熟狀態(tài)(硬度小于1.2 kg·cm-2),其間每2 d隨機抽取9個果實進行硬度指標測定。軟熟后進行可溶性固形物含量和可滴定酸含量的測定,剩余果實液氮處理粉碎混勻后-80 ℃保存用于后續(xù)生理指標的測定。
1.3 指標測定與方法
單果質量用千分之一電子天平測量;果實橫徑、縱徑和側徑用游標卡尺測量,果形指數計算方法:縱徑/橫徑;可溶性固形物含量的測定用數顯糖度計;可滴定酸含量的測定采用滴定法,具體步驟參考曹健康等[29]的報道;取果實赤道位置1.5 mm左右的切片,65 ℃烘干至恒質量,以干質量/鮮質量的比值計為干物質含量;采用GY-4型果實硬度計測定果實硬度;軟熟期的淀粉(Cat#BC0700)、總酚(Cat#BC1345)、類黃酮(Cat#BC1330)、葡萄糖(Cat#BC2500)、蔗糖(Cat#BC2460)和果糖(Cat#BC2450)含量的測定采用試劑盒法(北京索萊寶),步驟按說明書??鼘幩帷幟仕?、蘋果酸和抗壞血酸含量的測定采用高效液相色譜法進行,具體步驟參考周元等[30]的報道。
1.4 數據分析
使用 Microsoft Excel 2021 進行統計處理及作圖,使用SPSS17.0對數據進行差異顯著性分析。
2 結果與分析
2.1 不同處理對果實外觀指標的影響
授粉后25~30 d不同處理對生理成熟期金艷獼猴桃果實外觀指標的影響如表1所示。結果表明,不同植物生長調節(jié)劑處理均能顯著提高單果質量,NAA處理對提高單果質量的效果最佳,與對照相比可將單果質量提高43.07%~55.78%。其次是Tri和CPPU處理,可分別將單果質量提高34.56%~43.07%和24.07%~31.62%。此外,不同質量濃度處理效果差異明顯,100 mg·L-1的NAA處理效果顯著高于50 mg·L-1和200 mg·L-1,20 mg·L-1的Tri處理效果顯著高于5 mg·L-1和10 mg·L-1,10 mg·L-1和20 mg·L-1的CPPU處理效果顯著高于5 mg·L-1。不同質量濃度的CPPU、GA3、IAA、NAA、Tri及50 mg·L-1和100 mg·L-1的6-BA、40 mg·L-1的MT和100 mg·L-1的Trp處理均顯著降低了果形指數。
2.2 不同處理對生理成熟期及淀粉含量的影響
由圖1和圖2可知,與對照相比CPPU處理將金艷獼猴桃果實的生理成熟期提前了18~20 d,NAA處理則將生理成熟期延遲了6~8 d,其他植物生長調節(jié)劑對生理成熟期無顯著影響。CPPU處理對提高生理成熟期淀粉含量的效果最佳,與對照相比可將淀粉含量提高8.53%~17.32%,且5 mg·L-1處理效果顯著高于10 mg·L-1和20 mg·L-1。其次是10 mg·L-1的MT與50 mg·L-1、100 mg·L-1的6-BA處理,可分別將淀粉含量提高8.82%和6.51%~7.60%。不同質量濃度的Tri、25 mg·L-1的6-BA、100 mg·L-1和200 mg·L-1的NAA與100 mg·L-1的GA3處理則顯著降低了生理成熟期的淀粉含量。
2.3 不同處理對硬度及軟化速率的影響
不同處理對生理成熟期果實硬度的影響如圖3所示,結果表明,不同質量濃度的MT、Trp、NAA、5 mg·L-1的Tri、25 mg·L-1和50 mg·L-1的6-BA處理均可以顯著提高果實硬度。其中NAA的處理效果最佳,與對照相比可將果實硬度提高15.30%~16.37%。其次是MT處理,可將果實硬度提高5.24%~10.89%,且不同質量濃度MT的處理效果差異顯著,10 mg·L-1的處理效果顯著高于20 mg·L-1和40 mg·L-1。
不同處理對獼猴桃采后果實常溫條件下軟化速率的影響由表2可知。分析發(fā)現,不同質量濃度的NAA、200 mg·L-1的GA3和25 mg·L-1的6-BA處理均能顯著抑制獼猴桃采后果實的軟化速率。其中NAA處理效果最佳,與對照相比軟化速率降低了10.96%~16.44%,軟化周期延長了3~5 d。不同質量濃度的CPPU、200 mg·L-1的Trp、100 mg·L-1的GA3、40 mg·L-1的MT和20 mg·L-1的Tri則能顯著提高采后果實的軟化速率。CPPU處理的效果最顯著,與對照相比軟化速率提高了13.69%~26.03%,軟化周期提前了4~6 d。
2.4 不同處理對軟熟期果實品質的影響
2.4.1 不同處理對果實可溶性固形物含量的影響 不同處理對果實軟熟期可溶性固形物含量的影響如圖4所示。結果表明,不同質量濃度的CPPU處理均能顯著提高果實軟熟期可溶性固形物含量,且20 mg·L-1和5 mg·L-1的處理效果顯著高于10 mg·L-1,與對照相比將可溶性固形物含量提高了6.89%~15.04%。不同質量濃度的NAA和Tri處理則顯著降低了果實軟熟期可溶性固形物含量,與對照相比分別將可溶性固形物含量降低了4.21%~7.32%和3.70%~6.67%。其他植物生長調節(jié)劑處理則對果實軟熟期可溶性固形物含量無顯著影響。
2.4.2 不同處理對果實可滴定酸含量的影響 軟熟期金艷獼猴桃果實的可滴定酸含量介于1.16%~1.22%之間。不同處理對果實軟熟期可滴定酸含量的影響如圖5所示。結果表明,不同質量濃度的NAA、100 mg·L-1的6-BA、5 mg·L-1的CPPU、50 mg·L-1和100 mg·L-1的IAA、20 mg·L-1的Tri及100 mg·L-1和400 mg·L-1的Trp處理均能顯著提升金艷獼猴桃果實軟熟期可滴定酸含量。50 mg·L-1的GA3和20 mg·L-1的MT處理顯著降低了果實軟熟期可滴定酸含量。其他植物生長調節(jié)劑或質量濃度處理對果實軟熟期可定酸含量則無顯著影響。
2.4.3 不同處理對抗壞血酸含量的影響 不同處理對果實軟熟期抗壞血酸含量的影響如圖6所示。結果發(fā)現,不同質量濃度的CPPU、NAA和Trp處理均顯著降低了軟熟期金艷獼猴桃果實的抗壞血酸含量,但不同質量濃度之間的處理效果無顯著差異。其中CPPU的處理效果最為顯著,與對照相比將果實軟熟期抗壞血酸含量降低了10.53%~14.47%。其次是Trp和NAA處理,分別降低了9.21%~11.84%和6.24%~8.34%。不同質量濃度的MT和Tri處理則能顯著提高果實軟熟期抗壞血酸含量,分別提高了8.89%~10.53%和6.58%~9.21%。此外,80 mg·L-1的IAA處理也能顯著提高果實軟熟期抗壞血酸含量,其他植物生長調節(jié)劑或質量濃度則都對抗壞血酸的含量無顯著影響。
2.4.4 不同處理對可溶性糖含量的影響 不同處理對果實軟熟期可溶性糖含量的影響如圖7所示。結果表明,200 mg·L-1的GA3、200 mg·L-1的NAA、10 mg·L-1和20 mg·L-1的MT處理能顯著提高果實軟熟期果糖含量。其中效果最為顯著的是10 mg·L-1的MT,與對照相比將果實軟熟期果糖含量提高了17.43%,其次是200 mg·L-1的GA3、20 mg·L-1的MT和200 mg·L-1的NAA,分別將果實軟熟期果糖含量提高了13.47%、11.82%和10.64%。其他植物生長調節(jié)劑或質量濃度對果實軟熟期果糖含量無顯著影響。不同質量濃度的CPPU、40 mg·L-1的MT、5 mg·L-1的Tri和400 mg·L-1的Trp處理均能顯著提高軟熟期蔗糖含量。與對照相比,CPPU處理可將蔗糖含量提高34.23%~41.23%,且不同質量濃度間的處理效果無顯著差異。不同質量濃度的NAA、50 mg·L-1和200 mg·L-1的GA3處理則顯著降低了軟熟期蔗糖含量,與對照相比,NAA處理將軟熟期蔗糖含量降低了15.81%~22.21%。不同質量濃度的MT、20 mg·L-1和40 mg·L-1的IAA處理可顯著提高軟熟期葡萄糖含量,20 mg·L-1的IAA處理效果最佳,其次是10 mg·L-1的MT,可分別將果實軟熟期葡萄糖含量提高28.39%和26.59%。
2.4.5 不同處理對有機酸含量的影響 不同處理對軟熟期有機酸含量的影響如圖8所示。結果表明,不同質量濃度的CPPU和MT處理均顯著降低了軟熟期果實檸檬酸、奎寧酸和蘋果酸含量。與對照相比,檸檬酸含量分別降低了8.75%~10.63%和8.75%~15.01%,奎寧酸含量分別降低了10.77%~15.38%和9.23%~12.30%,蘋果酸含量分別降低了14.29%~20.01%和23.81%~24.76%。不同質量濃度的Trp則顯著提高了軟熟期檸檬酸、奎寧酸和蘋果酸含量,與對照相比檸檬酸、奎寧酸和蘋果酸含量分別提高了7.51%~13.75%、9.23%~13.85%和21.90%~29.05%。此外,不同質量濃度的NAA處理顯著提高了果實軟熟期奎寧酸和蘋果酸含量,100 mg·L-1的NAA處理顯著提高了果實軟熟期檸檬酸含量。
2.4.6 不同處理對總酚和總黃酮含量的影響 軟熟期金艷獼猴桃果實總酚和總黃酮含量分別介于98~126 mg·100 g-1之間。不同處理對軟熟期總酚和總黃酮含量的影響如圖9、圖10所示。結果表明,CPPU和GA3處理均顯著降低了軟熟期果實總酚含量,與對照相比分別降低了7.14%~8.93%和6.25%~12.51%。不同質量濃度的NAA、MT、20 mg·L-1的Tri和80 mg·L-1的IAA處理則顯著提高了果實軟熟期總酚含量。不同質量濃度的CPPU和MT處理均顯著提高了果實軟熟期果實總黃酮含量,與對照相比分別提高了22.56%~28.75%和8.75%~15.00%,且不同CPPU質量濃度處理之間無顯著差異,MT處理質量濃度越大總黃酮含量越高。不同質量濃度NAA、Trp、40 mg·L-1和80 mg·L-1的IAA處理則顯著抑制了果實軟熟期總黃酮的積累,與對照相比NAA和Trp處理分別將果實軟熟期總黃酮含量降低了10.00%~15.00%和8.75%~11.25%。其他植物生長調節(jié)劑或質量濃度則對果實軟熟期總酚和總黃酮含量無顯著影響。
3 討 論
植物生長調節(jié)劑因具有促進植株生長和果實發(fā)育、提高產量和抗性等生理作用而被廣泛應用于園藝植物的生產過程中[31]。本研究在果實外觀指標、生理成熟期、果實硬度,以及淀粉、可溶性固形物、可溶性糖、有機酸、總酚和總黃酮含量等方面系統地分析了不同植物生長調節(jié)劑及質量濃度處理對金艷獼猴桃果實發(fā)育和采后品質指標的影響。果實外觀指標是影響消費者喜好和商品價值的重要因素。研究表明,所有的處理均能顯著提高生理成熟期金艷獼猴桃果實的單果質量,這與上述植物生長調節(jié)劑在金奉(原奉黃1號)[9]、東紅[7]、紅陽[17]、秦美[6,8]和海沃德[6,18]等其他獼猴桃品種中的應用效果一致。然而除個別植物生長調節(jié)劑的處理質量濃度外,絕大部分的處理均顯著降低了果形指數,這與李圓圓等[6]和伍夢婷等[9]報道的研究結果一致。
生理成熟期、果實硬度和淀粉含量是影響采后果實品質形成和貯藏性能的關鍵因素。本研究中發(fā)現,CPPU處理在提高淀粉含量的同時,也提前了金艷獼猴桃的生理成熟期并降低了果實硬度。這可能是生產上CPPU處理可以提高軟熟期果實糖度但貯藏性能較差的原因之一。不同質量濃度的NAA處理則可以將金艷獼猴桃的生理成熟期延后6~8 d,這在以往關于NAA的應用研究中未見報道。結合CPPU和NAA這種相對立的結果,可為人工調控獼猴桃生理成熟期關鍵技術開發(fā)提供參考。
不同質量濃度的CPPU處理均能顯著提高軟熟期獼猴桃果實可溶性固形物含量,這與李圓圓[6]、熊浩等[7]和伍夢婷等[9]報道的研究結果一致。雖然不同植物生長調節(jié)劑或質量濃度對果實軟熟期可滴定酸含量的影響差異顯著,但可滴定酸含量均介于1.16%~1.22%之間,對果實風味品質形成的貢獻相對較少。不同質量濃度的CPPU、NAA和Trp處理均顯著降低了果實軟熟期抗壞血酸含量。李圓圓[6]研究發(fā)現5 mg·L-1的CPPU處理對秦美獼猴桃對抗壞血酸含量無顯著影響,10 mg·L-1和20 mg·L-1的CPPU處理則顯著降低抗壞血酸含量,3種質量濃度的CPPU處理均能降低海沃德獼猴桃抗壞血酸含量,初步說明不同獼猴桃品種對CPPU處理的響應程度不一致,這與本研究的結果基本一致。張春紅等[23]研究發(fā)現50~200 mg·L-1的NAA處理均能顯著提高藍莓果實的抗壞血酸含量。杜麗清等[26]也發(fā)現200 mg·L-1和600 mg·L-1的Trp處理能顯著提高菠蘿果實的抗壞血酸含量,這與本研究的結果相反,這說明NAA和Trp處理對不同品種水果的效果有很大差別。
可溶性糖和有機酸作為獼猴桃最為關鍵的風味物質,其含量的多少直接影響了軟熟期獼猴桃口感和風味。MT處理能顯著提高果實軟熟期果糖、蔗糖、葡萄糖、總酚和總黃酮含量,但同時降低了檸檬酸、奎寧酸和蘋果酸含量。賈潤普等[21]和胡容平等[32]研究發(fā)現適宜濃度的MT處理能顯著提高葡萄果實葡萄糖和果糖含量,李強等[33]也研究發(fā)現MT處理能顯著提高葡萄果實總酚和總黃酮含量。這與本研究的結果一致。但MT處理能降低有機酸組分含量的研究尚未見報道。CPPU處理能顯著提高軟熟期獼猴桃果實蔗糖含量,但對葡萄糖和果糖含量無顯著影響,同時能顯著降低果實軟熟期檸檬酸、奎寧酸和蘋果酸含量。關于CPPU處理對獼猴桃果實具體糖酸組分的影響研究尚未見報道,該結果為解析CPPU處理影響獼猴桃果實品質的研究提供了一定的理論基礎。不同質量濃度的NAA處理顯著抑制果實軟熟期蔗糖的積累與檸檬酸、奎寧酸和蘋果酸的降解。王西成等[24]研究也發(fā)現50 mg·L-1、100 mg·L-1和200 mg·L-1的NAA處理能顯著抑制可溶性糖組分的積累和有機酸組分的降解,這與本研究的結果一致。綜合表明,不同植物生長調節(jié)劑和質量濃度對金艷獼猴桃果實發(fā)育和采后品質指標含量具有不同的促進或抑制作用。
4 結 論
不同質量濃度的6-BA、CPPU、GA3、IAA、MT、NAA、Tri和Trp處理均能顯著提高果實的單果質量,但降低了果形指數。不同植物生長調節(jié)劑或質量濃度對獼猴桃可溶性固形物、抗壞血酸、可溶性糖、有機酸、總酚和總黃酮含量等果實品質指標含量具有不同的促進或抑制作用。10 mg·L-1的CPPU處理促進淀粉和可溶性固形物積累的效果最佳,100 mg·L-1的NAA處理提升果實外觀和貯藏性能的效果最佳,MT處理對提升果實風味品質的效果最佳,適宜質量濃度的CPPU、NAA和MT復合處理有望提高獼猴桃綜合品質。
參考文獻 References:
[1] WANG R C,SHU P,ZHANG C,ZHANG J L,CHEN Y,ZHANG Y X,DU K,XIE Y,LI M Z,MA T,ZHANG Y,LI Z G,GRIERSON D,PIRRELLO J,CHEN K S,BOUZAYEN M,ZHANG B,LIU M C. Integrative analyses of metabolome and genome-wide transcriptome reveal the regulatory network governing flavor formation in kiwifruit (Actinidia chinensis)[J]. New Phytologist,2022,233(1):373-389.
[2] XIONG Y,YAN P,DU K,LI M Z,XIE Y,GAO P. Nutritional component analyses of kiwifruit in different development stages by metabolomic and transcriptomic approaches[J]. Journal of the Science of Food and Agriculture,2020,100(6):2399-2409.
[3] 齊秀娟,郭丹丹,王然,鐘云鵬,方金豹. 我國獼猴桃產業(yè)發(fā)展現狀及對策建議[J]. 果樹學報,2020,37(5):754-763.
QI Xiujuan,GUO Dandan,WANG Ran,ZHONG Yunpeng,FANG Jinbao. Development status and suggestions on Chinese kiwifruit industry[J]. Journal of Fruit Science,2020,37(5):754-763.
[4] 胡新龍,金玲莉,王璠,王斯妤,吳庭觀,李小飛,陳東元,吳美華. 江西獼猴桃產業(yè)現狀及“十四五” 發(fā)展對策與建議[J]. 江西農業(yè)學報,2022,34(5):34-39.
HU Xinlong,JIN Lingli,WANG Fan,WANG Siyu,WU Tingguan,LI Xiaofei,CHEN Dongyuan,WU Meihua. Development status and suggestions on kiwifruit industry in Jiangxi province during “the 14th Five-Year Plan” period[J]. Acta Agriculturae Jiangxi,2022,34(5):34-39.
[5] WAN H L,KONG X B,LIU Y H,JIN F,HAN L X,XU M,LI X M,LI L,YANG J,LAI D N,NIE J Y. Residue analysis and effect of preharvest forchlorfenuron (CPPU) application on quality formation of kiwifruit[J]. Postharvest Biology and Technology,2023,195:112144.
[6] 李圓圓. 采前CPPU處理對獼猴桃采后品質及細胞超微結構的影響機制研究[D]. 楊凌:西北農林科技大學,2018.
LI Yuanyuan. Effect mechanism of preharvest CPPU treatment on postharvest quality and cell ultrastructure of kiwifruit[D]. Yangling:Northwest A amp; F University,2018.
[7] 熊浩,鄭浩,韓佳欣,苑馨予,李吉濤,鐘彩虹,張瓊. CPPU處理對獼猴桃果實品質的影響[J]. 植物科學學報,2022,40(1):74-83.
XIONG Hao,ZHENG Hao,HAN Jiaxin,YUAN Xinyu,LI Jitao,ZHONG Caihong,ZHANG Qiong. Effects of CPPU treatment on fruit quality in Actinidia[J]. Plant Science Journal,2022,40(1):74-83.
[8] 方金豹,黃宏文,李紹華. CPPU對獼猴桃果實發(fā)育過程中糖、酸含量變化的影響[J]. 果樹學報,2002,19(4):235-239.
FANG Jinbao,HUANG Hongwen,LI Shaohua. Influence of CPPU on kiwifruit sugar content and titratable acidity during fruit development[J]. Journal of Fruit Science,2002,19(4):235-239.
[9] 伍夢婷,鐘文奇,陶俊杰,陳雙雙,賈慧敏,徐小彪,黃春輝. 氯苯脲(CPPU)浸果對‘奉黃1號’獼猴桃品質的影響[J]. 中國南方果樹,2023,52(4):100-107.
WU Mengting,ZHONG Wenqi,TAO Junjie,CHEN Shuang-shuang,JIA Huimin,XU Xiaobiao,HUANG Chunhui. Effect of chlorphenylurea (CPPU) on the quality of ‘Fenghuang No. 1’ kiwifruit [J]. South China Fruits,2023,52(4):100-107.
[10] 李國田,張雪丹,孫山,安淼. 氯吡脲處理對‘泰山1號’獼猴桃采后果實呼吸和品質的影響[J]. 北方園藝,2020(12):52-57.
LI Guotian,ZHANG Xuedan,SUN Shan,AN Miao. Effects of CPPU on respiration intensity and fruit quality of ‘Taishan No. 1’ kiwifruit during storage[J]. Northern Horticulture,2020(12):52-57.
[11] WU L,LAN J B,XIANG X X,XIANG H Y,JIN Z,KHAN S,LIU Y Q. Transcriptome sequencing and endogenous phytohormone analysis reveal new insights in CPPU controlling fruit development in kiwifruit (Actinidia chinensis)[J]. PLoS One,2020,15(10):e0240355.
[12] 張利英,劉雪霞,朱昌華,甘立軍. KT、6-BA對紅顏草莓果實品質的影響[J]. 生物學雜志,2019,36(5):62-66.
ZHANG Liying,LIU Xuexia,ZHU Changhua,GAN Lijun. Effects of KT and 6-BA on the fruit quality in ‘Hongyan’ strawberry[J]. Journal of Biology,2019,36(5):62-66.
[13] 孫志偉. 花期噴施GA3和6-BA對“小目手撕”菠蘿采后果實品質的影響[D]. 昆明:云南農業(yè)大學,2023.
SHUN Zhiwei. Effects of spraying GA3 and 6-BA at flowering stage on postharvest fruit quality of “small eye hand-torn” pineapple [D]. Kunming: Yunnan Agricultural University,2023.
[14] ASíN L,VILARDELL P,BONANY J,ALEGRE S. Effect of 6-BA,NAA and their mixtures on fruit thinning and fruit yield in ‘Conference’ and ‘Blanquilla’ pear cultivars[J]. Acta Horticulturae,2010(884):379-382.
[15] 楊衛(wèi)民,杜京旗,趙君. 6-BA、IAA、GA3與ABA對木棗果實成熟衰老的調控作用[J]. 生物技術通報,2016,32(1):88-91.
YANG Weimin,DU Jingqi,ZHAO Jun. The regulation of 6-BA,IAA,GA3 and ABA on the ripening and senescence of Mu jujube’s fruits (Ziziphus jujuba L.)[J]. Biotechnology Bulletin,2016,32(1):88-91.
[16] 蔡仲慧,李秀杰,王悅,李勃,謝兆森. 赤霉素處理對陽光玫瑰葡萄果實生長動態(tài)及品質的影響[J]. 南方農業(yè)學報,2024,55(2):499-508.
CAI Zhonghui,LI Xiujie,WANG Yue,LI Bo,XIE Zhaosen. Growth dynamics observation and quality analysis of grape berry under different gibberellin treatments[J]. Journal of Southern Agriculture,2024,55(2):499-508.
[17] 楊海英. 赤霉素對獼猴桃果實采后成熟的調控及其分子機制研究[D]. 煙臺:魯東大學,2023.
YANG Haiying. Studies on regulation and molecular mechanism of gibberellin treatment on ripening of postharvest kiwifruit[D]. Yantai:Ludong University,2023.
[18] 尹翠波,周慶陽. GA3和CPPU對獼猴桃果實發(fā)育及品質的影響[J]. 福建果樹,2007(4):5-9.
YIN Cuibo,ZHOU Qingyang. Effects of GA3 and CPPU on fruit development and quality of kiwifruit[J]. Fujian Fruits,2007(4):5-9.
[19] 鐘曉紅,石雪暉,馬定渭,黃遠飛,戴思慧. IAA色氨酸處理對索非亞草莓營養(yǎng)生長和果實品質的調控[J]. 果樹學報,2004,21(6):565-568.
ZHONG Xiaohong,SHI Xuehui,MA Dingwei,HUANG Yuanfei,DAI Sihui. Study on the effects of tryptophan on the growth and fruit quality of Sophie strawberry cultivar[J]. Journal of Fruit Science,2004,21(6):565-568.
[20] LIU N N. Effects of IAA and ABA on the immature peach fruit development process[J]. Horticultural Plant Journal,2019,5(4):145-154.
[21] 賈潤普,王玥,李勃,李鎣男,姚玉新. 外源褪黑素處理對‘陽光玫瑰’葡萄果實品質的影響[J]. 植物生理學報,2022,58(10):2034-2044.
JIA Runpu,WANG Yue,LI Bo,LI Yingnan,YAO Yuxin. Effects of exogenous melatonin treatment on quality of ‘Shine Muscat’ grape berries[J]. Plant Physiology Journal,2022,58(10):2034-2044.
[22] 蘇金龍. 褪黑素對獼猴桃果實后熟衰老的調控及其生理機制研究[D]. 西安:西北大學,2021.
SU Jinlong. Studies on regulation and physiological mechanism of melatonin treatment on ripening and senescence of kiwifruit[D]. Xi’an:Northwest University,2021.
[23] 張春紅,吳文龍. NAA處理對藍莓果實發(fā)育和品質性狀的影響研究[J]. 中國南方果樹,2021,50(4):147-152.
ZHANG Chunhong,WU Wenlong. Effects of NAA on fruit development and quality traits of blueberry[J]. South China Fruits,2021,50(4):147-152.
[24] 王西成,吳偉民,趙密珍,錢亞明,王壯偉. NAA對葡萄果實中糖酸含量及相關基因表達的影響[J]. 園藝學報,2015,42(3):425-434.
WANG Xicheng,WU Weimin,ZHAO Mizhen,QIAN Yaming,WANG Zhuangwei. Effect of NAA treatment on sugar acid content and related gene expression in grape berries[J]. Acta Horticulturae Sinica,2015,42(3):425-434.
[25] 吳瓊,吳文龍,李維林,張春紅. NAA處理對黑莓果實品質及細胞壁酶活性的影響[J]. 北方園藝,2021(10):15-21.
WU Qiong,WU Wenlong,LI Weilin,ZHANG Chunhong. Effects of NAA treatment on fruit quality and cell wall degrading enzyme activities of blackberry fruits[J]. Northern Horticulture,2021(10):15-21.
[26] 杜麗清,姚艷麗,孫光明,張秀梅. 不同濃度IAA色氨酸處理對菠蘿果實品質發(fā)育的影響[J]. 熱帶作物學報,2014,35(3):433-437.
DU Liqing,YAO Yanli,SUN Guangming,ZHANG Xiumei. Different concentrations of IAA and tryptophan effects on the quality development of pineapple[J]. Chinese Journal of Tropical Crops,2014,35(3):433-437.
[27] WóJCIK P,FILIPCZAK J,WóJCIK M. Effects of prebloom sprays of tryptophan and zinc on calcium nutrition,yielding and fruit quality of ‘Elstar’ apple trees[J]. Scientia Horticulturae,2019,246:212-216.
[28] 吳建輝,陳清香,覃振強,王澤清. 0.1%三十烷醇對柑橘的生長調節(jié)作用[J]. 廣東農業(yè)科學,2009,36(7):141-142.
WU Jianhui,CHEN Qingxiang,QIN Zhenqiang,WANG Zeqing. Effect of growth regulator to citrus on applying 0.1% triacotanol[J]. Guangdong Agricultural Sciences,2009,36(7):141-142.
[29] 曹健康,姜微波,趙玉梅. 果蔬采后生理生化實驗指導[M]. 北京:中國輕工業(yè)出版社,2007.
CAO Jiankan,JIANG Weibo,ZHAO Yumei. Experiment guidance of postharvest physiology and biochemistry fruits and vegetables[M]. Beijing:China Light Industry Press,2007.
[30] 周元,傅虹飛. 獼猴桃中的有機酸高效液相色譜法分析[J]. 食品研究與開發(fā),2013,34(19):85-87.
ZHOU Yuan,FU Hongfei. Determination of organic acids in kiwifruit by reversed phase HPLC method[J]. Food Research and Development,2013,34(19):85-87.
[31] 高佳緣. 植物生長調節(jié)劑在果樹生產上的應用[J]. 黑龍江農業(yè)科學,2019(2):163-164.
GAO Jiayuan. Application of plant growth regulators in fruit tree production[J]. Heilongjiang Agricultural Sciences,2019(2):163-164.
[32] 胡容平,范中菡,董義霞,鐘莉莎,林立金,廖明安. 褪黑素對葡萄果實品質的影響[J]. 北方園藝,2022(4):39-44.
HU Rongping,FAN Zhonghan,DONG Yixia,ZHONG Lisha,LIN Lijin,LIAO Ming’an. Effects of melatonin on fruit quality of grape[J]. Northern Horticulture,2022(4):39-44.
[33] 李強,史星雲,馬宗桓,李春玲,趙連鑫,劉偉,張勤德. 褪黑素對葡萄農藝性狀及果實品質的影響[J]. 林業(yè)科技通訊,2021(12):32-36.
LI Qiang,SHI Xingyun,MA Zonghuan,LI Chunling,ZHAO Lianxin,LIU Wei,ZHANG Qinde. Effects of melatonin on agronomic traits and fruit quality of grape[J]. Forest Science and Technology,2021(12):32-36.