摘" " 要:【目的】探究不同發(fā)病程度對獼猴桃花部細(xì)菌和真菌微生物多樣性及群落結(jié)構(gòu)的影響,為獼猴桃潰瘍病的生物防治提供一定的基礎(chǔ)?!痉椒ā恳詵|紅獼猴桃不同潰瘍病發(fā)病程度(健康、中等、嚴(yán)重)的花組織為研究對象,運(yùn)用高通量測序技術(shù)進(jìn)行微生物組成和動態(tài)表征,探究潰瘍病不同發(fā)病程度對獼猴桃花細(xì)菌和真菌微生物多樣性及群落結(jié)構(gòu)影響?!窘Y(jié)果】隨著發(fā)病程度的加劇,細(xì)菌微生物多樣性下降;真菌微生物多樣性先上升后下降。顯著性研究結(jié)果表明,健康樣本中優(yōu)勢細(xì)菌為藍(lán)細(xì)菌、鞘氨醇單胞菌屬,優(yōu)勢真菌為被孢霉屬;中等發(fā)病程度樣本中優(yōu)勢細(xì)菌為Escherichia Shigella,優(yōu)勢真菌為鐮刀菌屬、曲霉屬、維希尼克氏酵母;嚴(yán)重發(fā)病程度樣本中的優(yōu)勢細(xì)菌為假單胞菌屬,優(yōu)勢真菌為鏈格孢屬、枝孢屬、線黑粉酵母屬。【結(jié)論】綜上可知,潰瘍病菌的入侵顯著改變了獼猴桃花的微生物群落結(jié)構(gòu)。被孢霉屬在健康樣本中顯著富集;鏈格孢屬、枝孢屬等菌屬在嚴(yán)重發(fā)病程度樣本中顯著富集。該研究結(jié)果為獼猴桃-潰瘍病病菌的互作機(jī)制研究及潰瘍病的生物防治奠定了理論基礎(chǔ)。
關(guān)鍵詞:獼猴桃潰瘍??;微生物組;發(fā)病程度;群落組成
中圖分類號:S663.4 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-9980(2024)11-2323-12
Microbial community structure and diversity of kiwifruit flowers infected by different degrees of bacterial canker
LIU Haohao1, 2, ZHONG Caihong2, LIU Wei1, LI Li2*, HUANG Lili1*
(1College of Plant Protection, Northwest A amp; F University, Yangling 712100, Shaanxi, China; 2Wuhan Botanical Garden, Chinese Academy of Sciences CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/CAS Engineering Laboratory for Kiwifruit Industrial Technology, Wuhan 430074, Hubei, China)
Abstract: 【Objective】 Kiwifruit canker is a severe bacterial disease that poses a significant threat to the kiwifruit industry causing by Pseudomonas syringae pv. actinidiae (Psa). This disease affects various parts of kiwifruit, including the vines, leaves, flowers and roots. Among these, the impact on the flowers is particularly critical, as it directly leads to yield loss in the affected year. Psa can damage the buds, petals and peels, causing the buds to fail to bloom, turn brown, and even fall off. Flower organs provide a conducive environment for microbial colonization. Consequently, microorganisms residing inside or on the surface of flower play a protective role against pathogen infection. Numerous studies have shown that environmental factors influence microbial community composition of plants. Among these factors, external pathogen invasion acts as the major selection pressure, significantly affecting floral microbial community structure. This study aimed to investigate changes in microbial diversity and community structure of floral bacteria and fungi under varying canker disease severity conditions, by using high-throughput sequencing. The results laid a theoretical foundation for understanding the interactive mechanisms between kiwifruit and Psa, as well as for developing biological control strategies for this disease. 【Methods】 In April and May, 2022, during the flowering period of the Donghong kiwifruit, which was also a highly-infected period for kiwifruit canker disease, samples were collected from a kiwifruit experimental orchard in Xijiadian Town, Danjiangkou City, Hubei province. Three disease severity levels were set as below: healthy, moderate and severe, respectively. High-throughput sequencing technology was employed to analyze the diversity and structure of bacterial and fungal microflora in these samples. Specifically, 16S rRNA and ITS1 gene sequencings were used to study bacterial and fungal communities, respectively. 【Results】 A total of 584 580 high-quality 16S rRNA sequences and 520 169 high-quality ITS1 sequences were obtained after quality control. Clustering of these sequences revealed 3410 bacterial operational taxonomic units (OTUs) and 12 986 fungal OTUs. Among the samples with three different disease severities, there were 37 common bacterial OTUs and 383 common fungal OTUs. The proportion of unique bacterial OTUs was 37.5% in healthy samples, 27.0% in moderately-diseased samples, and 18.6% in severely-diseased samples. For fungi, the unique OTUs accounted for 18.3%, 25.6% and 19.4%, respectively. Species classification analysis identified as 27 phyla, 55 classes, 134 orders and 210 families in the bacterial community, as well as 16 phyla, 52 classes, 118 orders and 252 families in the fungal community. As disease severity increased, the number of bacterial taxa at each classification level decreased. Conversely, the number of fungal OTUs initially increased and then decreased, which was consistent with the trend of OTUs quantity changes in samples with different degrees of disease incidence. Both the diversity index and the number of OTUs decreased as disease severity increased. Significant differences in bacterial diversity indices were observed among the different disease severities (plt;0.05). The diversity index and the number of OTUs initially increased with moderate disease severity and then decreased with severe disease severity. Notably, the fungal diversity index in severely-diseased samples was slightly higher than in healthy ones. Fungal diversity differed significantly between moderately-diseased samples and other levels (healthy and severe) (plt;0.05). In the bacterial community, samples with the same disease severity clustered closely, indicating good repeatability. Samples with different disease severities were significantly separated, suggesting distinct differences existed in bacterial microbial communities (plt;0.05). In the fungal community, healthy samples were significantly separated from infected samples (plt;0.05). Among diseased samples, those with moderate and severe disease severity showed some overlap but also possessed distinct differences, indicating similarities and differences in their microbial communities. Among the samples with different degrees of severity, the dominant bacteria genera were Pseudomonas and Cyanobacteria; the dominant fungal genera were Mortierella, Alternaria, Cladosporium and Fusarium. The relative abundances of Pseudomonas, Cladosporium, Alternaria and Filobasidium increased with disease severity, while the relative abundances of Cyanobacteria and Mortierella decreased. Significant differences in the relative abundances of Pseudomonas, Alternaria and Mortierella were observed among different samples (plt;0.05). 【Conclusion】 The findings of this study revealed significant changes in the microbial community structure of kiwifruit flowers in response to Psa invasion. The diversity and abundance of specific bacterial and fungal taxa were markedly influenced by the severity degrees of disease. The reduction in bacterial diversity and the initial increase followed by a decrease in fungal diversity suggested that disease degrees of severity exerted selective pressure on microbial communities. This pressure was beneficial for the proliferation of certain pathogenic microorganisms but inhibitive to others. The increased relative abundances of Pseudomonas, Cladosporium, Alternaria and Filobasidium in severely-diseased samples highlighted their potential roles in the disease progression. The significant differences in microbial communities between healthy and diseased samples underscore the potential for utilizing microbial indicators as diagnostic tools for early disease detection.
Key words: Kiwifruit bacterial canker; Microbiome; Disease severity; Community composition
獼猴桃(Actinidia Lindl.)富含維生素C,被稱為“水果之王”,深受大眾的喜愛。隨著獼猴桃產(chǎn)業(yè)的不斷發(fā)展,根據(jù)聯(lián)合國糧食及農(nóng)業(yè)組織(FAO)最新數(shù)據(jù)(http://www.fao.org/faostat/en/),2022年中國收獲面積近20萬hm2,占全球的70%;年產(chǎn)量238萬t,占全球的52%,種植面積和產(chǎn)量穩(wěn)居世界第一。由丁香假單胞菌獼猴桃致病變種(Pseudomonas syringae pv. actinidiae)侵染導(dǎo)致的獼猴桃潰瘍病,具有潛伏期長、傳播迅速、發(fā)生面積廣、預(yù)防和防治困難等特點(diǎn),已成為獼猴桃產(chǎn)業(yè)的毀滅性病害。獼猴桃潰瘍病可危害獼猴桃樹干、葉片、花器和根系[1];其中,病菌可危害花苞、花瓣、花梗,直接導(dǎo)致花蕾感病后不能張開,隨后變褐枯死并脫落,是導(dǎo)致園區(qū)當(dāng)年產(chǎn)量損失的直接因素;此外,病菌侵染雄花導(dǎo)致的花粉帶菌,是潰瘍病遠(yuǎn)距離快速傳播的最主要途徑,嚴(yán)重影響獼猴桃的產(chǎn)量[2-3]。目前化學(xué)防治仍是獼猴桃潰瘍病的主要防治方法[1],但是過量施用化學(xué)農(nóng)藥造成了病原菌抗藥性增強(qiáng)和生態(tài)環(huán)境污染,不利于獼猴桃產(chǎn)業(yè)持續(xù)健康的發(fā)展[2]。相比于化學(xué)防治,生物防治具有安全高效的優(yōu)點(diǎn),近年來逐漸成為獼猴桃潰瘍病防控的重要研究領(lǐng)域[3]。植物中的一些微生物與寄主植物經(jīng)長期的進(jìn)化,發(fā)展出一種互利共生關(guān)系。寄主植物能夠為微生物提供空間和營養(yǎng),微生物在促進(jìn)植物養(yǎng)分吸收、生長發(fā)育、對不良環(huán)境的抵抗等方面發(fā)揮相應(yīng)的功能[4-5]。植物表面或內(nèi)部存在的大量微生物作為植物的防線,可以通過競爭生態(tài)位[6-7]、產(chǎn)生抑菌物質(zhì)[8-9]和誘導(dǎo)植物的抗性[10-11]等多種作用機(jī)制抑制病原菌的生長,減輕病害對寄主的影響。
通過高通量測序技術(shù)對獼猴桃花進(jìn)行微生物組成和動態(tài)表征,可進(jìn)行潛在生防有益菌的篩選。Lee等[12]發(fā)現(xiàn)蘋果花際細(xì)菌中伯克霍爾德菌屬(Burkholderaceae)顯著富集,該菌對多種植物病原菌均表現(xiàn)出較強(qiáng)的拮抗效應(yīng)[13-14]。Fridman等[15]發(fā)現(xiàn)不動桿菌屬(Acinetobacter)在扁桃(Amygdalus communis)、葡萄柚(Citrus paradisi)和光煙草(Nicotiana glauca)的花蜜中顯著富集,該屬細(xì)菌兼具病菌拮抗及植物促生作用。此外,當(dāng)受到病原菌侵染時,有益菌會通過特有的分泌物或代謝產(chǎn)物在病原菌與植物的互作體系中發(fā)揮作用。Kong等[16]發(fā)現(xiàn)相較于感染歐文氏桿菌(Erwinia amylovora)后的蘋果花,健康花中成團(tuán)泛菌(Pantoea agglomerans)和P. allii顯著富集,成團(tuán)泛菌分泌的關(guān)鍵抗真菌化合物—Herbicolin A通過直接結(jié)合和破壞含有麥角甾醇的脂筏而發(fā)揮抑菌作用。
此前,對獼猴桃植株的微生物組研究主要集中在地下生態(tài)位,譬如根及根際土[17-19]。潰瘍病的發(fā)病癥狀主要集中在地上部分,而花作為潰瘍病重要的感病部位,目前對獼猴桃花際微生物還未見系統(tǒng)研究。因此,筆者擬針對不同潰瘍病發(fā)病程度下東紅獼猴桃品種花際樣品的細(xì)菌和真菌的群落結(jié)構(gòu)進(jìn)行研究,探究獼猴桃花際微生物群落對潰瘍病菌侵染的影響,以期為獼猴桃潰瘍病的生物防治提供新思路。
1 材料和方法
1.1 試驗材料和采樣地點(diǎn)
在湖北省十堰市丹江口市習(xí)家店鎮(zhèn)獼猴桃試驗園區(qū)進(jìn)行采樣。采集品種為中國科學(xué)院武漢植物園選育的紅肉獼猴桃品種東紅。根據(jù)花的發(fā)病癥狀,設(shè)置3個不同感病等級,其中F1對應(yīng)健康狀態(tài)(潰瘍病菌檢測為陰性);F2對應(yīng)中等發(fā)病程度(花瓣和萼片變成褐色,但能正常開放);F3對應(yīng)嚴(yán)重發(fā)病程度(花瓣和萼片變成褐色,且不能開放)。
于2022年4—5月東紅獼猴桃病情高發(fā)期,對不同發(fā)病程度的植株樣本的花進(jìn)行取樣。將園區(qū)分成3個樣地,每塊樣地中隨機(jī)選取同一發(fā)病等級的獼猴桃植株3株,共計9株。針對健康/中等/嚴(yán)重發(fā)病程度樣本,分別在每塊樣地的3份樣品中隨機(jī)選擇1份,將3塊樣地中選擇到的3份樣品混樣作為1個生物學(xué)重復(fù),其余2個生物學(xué)重復(fù)以此類推。最終獲得不同發(fā)病等級的生物學(xué)重復(fù)樣本共計9個。將上述采取的樣品裝入無菌袋中,并迅速放入-80 ℃超低溫冰箱進(jìn)行低溫冷凍。
1.2 DNA提取和測序
稱取2 g的花樣品,經(jīng)液氮冷凍后進(jìn)行研磨,放入2 mL離心管中。由北京百邁客生物科技有限公司進(jìn)行微生物DNA提取,并對細(xì)菌16s RNA(V3+V4區(qū))和真菌ITS1 RNA微生物進(jìn)行擴(kuò)增,擴(kuò)增引物如表1,使用Illumina novaseq 6000進(jìn)行測序。
1.3 序列數(shù)據(jù)處理與統(tǒng)計分析
利用QIIME2(versoin 2020.6)中DADA2方法將測序數(shù)據(jù)中的低質(zhì)量序列剔除,低質(zhì)量序列包括平均質(zhì)量分?jǐn)?shù)較低以及長度較短的序列,得到有效序列。利用Uparse軟件對不同樣本中有效序列進(jìn)行聚類,序列相似性超過97%的聚類成為OTUs。
(1)群落組成分析:在QIIME 1.91中,使用BLAST算法分別將細(xì)菌、真菌代表性序列與SILVA 參考數(shù)據(jù)庫(versoin 12.8)[20]及UNITE數(shù)據(jù)庫(versoin 7.0)進(jìn)行比對[21],通過物種注釋得到不同分類水平的微生物豐度數(shù)據(jù)。利用QIIME軟件生成不同分類水平上的物種豐度表,對不同發(fā)病程度的獼猴桃組織豐度大于1%的門和屬進(jìn)行統(tǒng)計,對比分析不同發(fā)病程度的微生物門屬的變化。
(2)微生物組多樣性分析:對不同發(fā)病程度的多樣性香農(nóng)指數(shù)(Shannon index)和豐富度Chao1指數(shù)進(jìn)行統(tǒng)計,評估序列文庫的α多樣性,使用QIIME(versoin 2020.6)(beta_diversity.py scripts)計算β多樣性指數(shù)。采用主坐標(biāo)分析法(PCoA)計算并可視化Bray-Curtis距離矩陣,分析不同發(fā)病程度樣本之間的相似性或差異性。
(3)微生物組間差異Lefse分析:首先使用非參數(shù)Kruskal-Wallis秩對不同發(fā)病程度樣本中豐度差異顯著的物種進(jìn)行表征,然后采用線性回歸分析(LDA)來評估每個組分(物種)豐度對差異貢獻(xiàn)的大小。
使用IBM SPSS Statics對不同樣本中的數(shù)據(jù)進(jìn)行單因素方差分析,分析結(jié)果用平均值和標(biāo)準(zhǔn)誤表示,并采用Duncan氏新復(fù)極差法對不同樣本之間的差異性是否顯著進(jìn)行檢驗。當(dāng)p<0.05時認(rèn)為不同樣本呈顯著差異。
2 結(jié)果與分析
2.1 測序結(jié)果
質(zhì)控后共獲得584 580條細(xì)菌16SrRNA和520 169個真菌ITS1高質(zhì)量片段。單一樣本細(xì)菌的序列數(shù)在61 141~69 967個之間,平均為64 953個序列。單一樣本真菌的序列數(shù)在48 990~60 651個之間,平均為57 796個。對上述序列進(jìn)行聚類,共檢測到3410個細(xì)菌OTUs和12 986個真菌OTUs。在不同發(fā)病程度花樣本中檢測到37個共同細(xì)菌OTUs和383個共同真菌OTUs(圖1)。在健康、中度發(fā)病和重度發(fā)病樣本中,細(xì)菌獨(dú)有的OTUs分別占37.5%、27.0%和18.6%,真菌獨(dú)有的OTUs分別占18.3%、25.6%和19.4%。對測序深度進(jìn)行分析,當(dāng)測序序列在30 000個以后,曲線的變化幅度趨于平緩,說明對更多的序列進(jìn)行檢測只能產(chǎn)生較少的OTUs,表明測序深度合理,可對花中的大部分物種進(jìn)行表征(圖2)。
2.2 不同發(fā)病程度獼猴桃花樣本微生物多樣性和群落結(jié)構(gòu)
為分析不同潰瘍病發(fā)病程度花細(xì)菌和真菌微生物群落的差異,對不同發(fā)病程度花樣本中細(xì)菌和真菌的α多樣性指數(shù)進(jìn)行分析(表2)。α多樣性分析結(jié)果表明,隨著感病程度的增加,細(xì)菌OTUs數(shù)量和豐富度指數(shù)下降;健康樣本中細(xì)菌的豐富度指數(shù)與感病程度樣本呈顯著差異(p<0.05);真菌的OTUs數(shù)量和豐富度指數(shù)先增加后減少。其中,中等發(fā)病程度樣本與其他樣本中的真菌豐富度指數(shù)呈顯著差異(p<0.05)。
為了更具體地描述不同發(fā)病程度對獼猴桃花部細(xì)菌和真菌群落結(jié)構(gòu)的影響,進(jìn)行了主坐標(biāo)分析(PCoA)。在細(xì)菌群落結(jié)構(gòu)中,第1主成分的累積方差貢獻(xiàn)率為95.11%,第2主成分的累積方差貢獻(xiàn)率為3.01%。在真菌群落結(jié)構(gòu)中,第1主成分的累積方差貢獻(xiàn)率為28.52%,第2主成分的累積方差貢獻(xiàn)率為14.93%。不同發(fā)病程度樣本之間的細(xì)菌群落呈極顯著差異(p<0.001)(圖3-A),健康樣本與中等發(fā)病或嚴(yán)重感病程度樣本之間的真菌群落均呈顯著差異(p<0.05)(圖3-B)。由此說明,潰瘍病病菌的入侵顯著改變了獼猴桃花細(xì)菌和真菌微生物的群落結(jié)構(gòu)。
2.3 獼猴桃潰瘍病對花際微生物群落組成的影響
在獼猴桃不同發(fā)病程度樣本中,共鑒定到細(xì)菌的27個門、55個綱、134個目和210個科,以及真菌的16個門、52個綱、118個目和252個科。在細(xì)菌群落中,與健康花相比,中等發(fā)病獼猴桃花的細(xì)菌各分類學(xué)水平數(shù)量有一定程度的下降;嚴(yán)重發(fā)病程度樣本中各分類水平數(shù)量進(jìn)一步下降。在真菌群落中,與健康花相比,中等感病程度花的真菌各分類水平數(shù)量有一定程度的上升;而在嚴(yán)重感病程度花樣本中的各分類水平數(shù)量有一定程度的下降;但整體數(shù)量仍高于健康樣本中的數(shù)量(表3)。
不同發(fā)病程度花樣本中的微生物組成不同。不同發(fā)病程度下細(xì)菌門水平上的群落組成及相對豐度如圖4-A所示,變形菌門所有樣本中相對豐度最高,藍(lán)細(xì)菌門、厚壁菌門、擬桿菌門、放線菌門次之。其中,變形菌門的相對豐度變化隨感病程度的變化最顯著,在中等、嚴(yán)重發(fā)病程度樣本中,變形菌門相對豐度分別為健康樣本的22.74倍、40.50倍;藍(lán)細(xì)菌門、厚壁菌門、擬桿菌門在健康樣本中相對豐度較高,與細(xì)菌的豐度指數(shù)變化趨勢相同。
在屬水平上,不同發(fā)病程度樣本中的假單胞菌屬、藍(lán)細(xì)菌屬、Ligilactobacillus、乳桿菌屬、鞘氨醇單胞屬相對豐度存在差異(圖4-B),隨著感病程度的增加,假單胞菌屬的相對豐度逐漸提升,在中等、嚴(yán)重發(fā)病程度樣本中的相對豐度分別為健康樣本的70.75倍、127.60倍。而藍(lán)細(xì)菌屬的相對豐度逐漸下降,在嚴(yán)重發(fā)病程度樣本中的相對豐度相較于健康樣本中下降了2.47%。對不同發(fā)病程度樣本中豐度變化較為明顯的假單胞菌屬進(jìn)行差異性分析,結(jié)果顯示,假單胞菌屬在嚴(yán)重發(fā)病程度樣本與感病水平較低樣本(健康和中等發(fā)病水平)中的相對豐度呈顯著差異(p<0.05)(圖5-A)。
在真菌群落門水平上(圖6-A),健康樣本中子囊菌門和擔(dān)子菌門的相對豐度低于感病樣本;在不同發(fā)病樣本中,子囊菌門和擔(dān)子菌門有小幅度的下降;而被孢菌門和羅茲菌門在健康樣本中的相對豐度高于感病花組織的相對豐度,在不同發(fā)病樣本,被孢菌門和羅茲菌門的相對豐度有小幅度的提升。
在屬水平上(圖6-B),被孢霉屬在健康樣本中的相對豐度高于感病樣本;而枝孢屬、鏈格孢屬、枝孢屬在嚴(yán)重發(fā)病程度樣本中相對豐度較高,鏈格孢屬和枝孢屬相對豐度相較于健康樣本中提高了4.62%和2.42%。曲霉屬和維希尼克氏酵母在中等發(fā)病程度樣本中的相對豐度較高。對不同樣本中豐度變化較為明顯的被孢霉屬、鏈格孢屬和枝孢屬進(jìn)行差異性分析,結(jié)果顯示,健康樣本中被孢霉屬和鏈格孢屬的相對豐度與感病樣本呈顯著差異(圖5-B、D);而不同發(fā)病程度的枝孢屬差異不顯著(圖5-C)。
2.4 不同發(fā)病程度花際微生物差異物種分析
利用LefSe(LDA Effect Size)對不同發(fā)病程度花微生物群落的差異物種進(jìn)行分析,結(jié)果如圖7-A 所示,健康樣本中的差異物種為黃色土源菌、Pedobacter、藍(lán)細(xì)菌和豐祐菌屬;隨著感病程度的增加,中等發(fā)病程度中無差異物種;假單胞菌屬為嚴(yán)重發(fā)病程度樣本中的主要差異物種。
對真菌群落差異貢獻(xiàn)較大的物種進(jìn)行分析,如圖7-B所示,健康樣本中的差異物種為糞殼菌目、子囊菌門和被孢霉屬。隨著感病程度的增加,中等發(fā)病程度中的差異物種為球腔菌屬、附球菌屬、亞隔孢殼科;鏈格孢屬為嚴(yán)重發(fā)病程度樣本中的差異物種。
3 討 論
大量研究表明,外部病原物入侵作為主要的選擇壓力影響植物微生物群落的構(gòu)建[22-23]。目前,花部微生物對病原菌侵入的響應(yīng)機(jī)制的研究較少,可參照葉際微生物應(yīng)對病原菌侵入的響應(yīng)結(jié)果進(jìn)行分析。筆者使用高通量測序技術(shù)對不同發(fā)病程度的獼猴桃花中的微生物群落結(jié)構(gòu)進(jìn)行表征,研究結(jié)果與柑橘黑點(diǎn)病菌侵入葉際時葉際微生物群落變化規(guī)律一致,整體微生物群落的均勻程度顯著降低[24]。
前期研究表明,植物組織中微生物門水平的相對豐度存在差異,會導(dǎo)致寄主對病原菌的抗性不同[25]。本研究結(jié)果表明,不同發(fā)病程度獼猴桃花樣本中的微生物門水平的相對豐度存在顯著差異。厚壁菌門可以促進(jìn)氮素循環(huán)幫助寄主吸收營養(yǎng),還可產(chǎn)生一些代謝產(chǎn)物抑制病原菌的生長[26]。本研究結(jié)果表明,隨感病程度增加,花樣本中厚壁菌門的相對豐度下降;推測厚壁菌門的含量顯著下降可能與獼猴桃寄主感染潰瘍病后抗病能力下降有關(guān),在青枯病病菌侵染番茄和黑脛病病菌侵染煙草過程中觀察到相同的現(xiàn)象[27-28]。被孢菌門可以分解纖維素和木質(zhì)素,是碳循環(huán)的重要參與者,前期研究中發(fā)現(xiàn)健康樣本中被孢菌門的相對豐度最高,可能是因為被孢菌門可提高碳源或有機(jī)磷的含量,豐富的碳源可以招募一些如放線菌[29-30]等益生菌。筆者在本研究中同樣發(fā)現(xiàn),在獼猴桃花的健康樣本中被孢菌門的相對豐度較高,可能是獼猴桃樹對潰瘍病抗性較強(qiáng)的原因之一。
變形菌門中多為病原菌,含量變化可能與發(fā)病程度增加直接相關(guān),其中假單胞菌屬中包含導(dǎo)致獼猴桃潰瘍病的重要病原菌——丁香假單胞菌獼猴桃致病變種。筆者在本研究中發(fā)現(xiàn),獼猴桃花樣本中的假單胞菌含量在不同發(fā)病程度中存在顯著差異,隨著感病程度的增加逐漸上升。除了一些致病菌外,該屬中多個熒光假單胞菌被報道為植物的有益促生菌,可以通過產(chǎn)生抗生素以及與病原菌爭奪營養(yǎng)元素來抑制病原菌的生長[31-33]。無論作為病原菌或者益生菌,假單胞菌屬均與獼猴桃潰瘍病的發(fā)生存在相關(guān)性。
真菌中的鏈格孢屬包含大量病原菌,其中鏈格孢菌也是獼猴桃軟腐病的病原菌[34],可以侵染獼猴桃的葉片及花。在本研究中,隨著病害程度增加,獼猴桃花中的鏈格孢屬含量顯著上升;推測該屬侵染后留下的傷口可能有助于潰瘍病病菌對獼猴桃植株的侵染,此外該菌可能與潰瘍病病菌協(xié)同侵染,加重病害的發(fā)生[35]。被孢霉屬可以產(chǎn)生花生四烯酸(arachidonic acid,ARA),ARA作為一種不飽和脂肪酸,可以誘導(dǎo)多種植物對病原菌產(chǎn)生防御反應(yīng)[36]。本研究中被孢霉屬在健康樣本中顯著富集,可能是因為被孢霉屬促進(jìn)養(yǎng)分的吸收,增強(qiáng)了樹勢,從而提高了對潰瘍病菌的抵抗能力。季也蒙畢赤酵母可在植物的傷口處快速定殖,對傷口形成起保護(hù)作用,阻礙病原菌侵染,同時還可提高寄主對病原菌抗性相關(guān)的酶活性,從而提高病原菌抗性[37]。筆者在本研究中同樣發(fā)現(xiàn),季也蒙畢赤酵母在健康樣本中的含量較高,可能抑制了潰瘍病病菌在傷口的附著,從而降低潰瘍病的發(fā)生。
4 結(jié) 論
筆者通過高通量測序技術(shù)研究了不同潰瘍病發(fā)病程度下獼猴桃花部的微生物群落,發(fā)現(xiàn)潰瘍病病菌的入侵改變了獼猴桃花部的微生物群落結(jié)構(gòu),降低了細(xì)菌的多樣性,提高了真菌的豐富度。被孢霉屬等有益菌在健康樣本中富集,假單胞菌屬在嚴(yán)重發(fā)病程度樣本中富集。與健康的樣本相比,細(xì)菌中變形菌門及真菌中子囊菌門和擔(dān)子菌門的相對豐度與發(fā)病程度呈正相關(guān);被孢菌門、厚壁菌門和藍(lán)細(xì)菌門相對豐度與發(fā)病程度呈負(fù)相關(guān)。獼猴桃感染潰瘍病后期花可能通過招募有益微生物來抵抗?jié)儾〔【那秩?,增?qiáng)植株抗病性。本研究結(jié)果有助于從微生態(tài)的角度探明獼猴桃潰瘍病的發(fā)病機(jī)制,此外,研究中發(fā)現(xiàn)的一些潛在的益生菌株可為獼猴桃潰瘍病的生物防治提供一定的研究方向。
參考文獻(xiàn) References:
[1] 杜貞娜,程斐,郭懷宇,臧威,孫劍秋,郭天榮. 獼猴桃潰瘍病病原菌的研究進(jìn)展[J]. 紹興文理學(xué)院學(xué)報,2022,42(2):50-55.
DU Zhenna,CHENG Fei,GUO Huaiyu,ZANG Wei,SUN Jianqiu,GUO Tianrong. Research progress on pathogen of kiwifruit canker[J]. Journal of Shaoxing University,2022,42(2):50-55.
[2] 韓明麗,張志友,陳麗萍,錢偉紅,李艷冬,趙根. 獼猴桃潰瘍病發(fā)生的影響因素及其防治方法[J]. 湖南農(nóng)業(yè)科學(xué),2013(21):77-80.
HAN Mingli,ZHANG Zhiyou,CHEN Liping,QIAN Weihong,LI Yandong,ZHAO Gen. Influencing factors and control method for bacterial canker disease of kiwifruit[J]. Hunan Agricultural Sciences,2013(21):77-80.
[3] 田野,李麗麗,杜春梅,李黎,田立娟,申健,斯克里普琴科 N V,劉德江. 獼猴桃潰瘍病的研究進(jìn)展[J]. 江蘇農(nóng)業(yè)科學(xué),2023,51(15):8-15.
TIAN Ye,LI Lili,DU Chunmei,LI Li,TIAN Lijuan,SHEN Jian,SCRIPCENCO N V,LIU Dejiang. Research progress of kiwifruit canker disease[J]. Jiangsu Agricultural Sciences,2023,51(15):8-15.
[4] 游雨欣,戴德江,羅金燕,朱潔,李斌. 獼猴桃潰瘍病防治策略的研究現(xiàn)狀與展望[J]. 浙江農(nóng)業(yè)科學(xué),2022,63(6):1322-1328.
YOU Yuxin,DAI Dejiang,LUO Jinyan,ZHU Jie,LI Bin. Research status and prospect of control strategies for kiwifruit canker[J]. Journal of Zhejiang Agricultural Sciences,2022,63(6):1322-1328.
[5] 李黎,鐘彩虹,李大衛(wèi),張勝菊,黃宏文. 獼猴桃細(xì)菌性潰瘍病的研究進(jìn)展[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報,2013,32(5):124-133.
LI Li,ZHONG Caihong,LI Dawei,ZHANG Shengju,HUANG Hongwen. Research progress on bacterial canker disease of kiwifruit[J]. Journal of Huazhong Agricultural University,2013,32(5):124-133.
[6] SHAFI J,TIAN H,JI M S. Bacillus species as versatile weapons for plant pathogens:A review[J]. Biotechnology amp; Biotechnological Equipment,2017,31(3):446-459.
[7] GE A H,LIANG Z H,XIAO J L,ZHANG Y,ZENG Q,XIONG C,HAN L L,WANG J T,ZHANG L M. Microbial assembly and association network in watermelon rhizosphere after soil fumigation for Fusarium wilt control[J]. Agriculture,Ecosystems amp; Environment,2021,312:107336.
[8] KWAK M J,KONG H G,CHOI K,KWON S K,SONG J Y,LEE J,LEE P A,CHOI S Y,SEO M,LEE H J,JUNG E J,PARK H,ROY N,KIM H,LEE M M,RUBIN E M,LEE S W,KIM J F. Rhizosphere microbiome structure alters to enable wilt resistance in tomato[J]. Nature Biotechnology,2018,36(11):1100-1109.
[9] MAZURIER S,CORBERAND T,LEMANCEAU P,RAAIJMAKERS J M. Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt[J]. The ISME Journal,2009,3(8):977-991.
[10] 佐長賡,王靜怡,牛新湘,劉萍,管力慧,黨文芳,楊紅梅,楚敏,王寧,林青,王有武,婁愷,史應(yīng)武. 內(nèi)生菌與根際細(xì)菌對棉花的促生與誘導(dǎo)抗病作用[J]. 西南農(nóng)業(yè)學(xué)報,2022,35(4):757-763.
ZUO Changgeng,WANG Jingyi,NIU Xinxiang,LIU Ping,GUAN Lihui,DANG Wenfang,YANG Hongmei,CHU Min,WANG Ning,LIN Qing,WANG Youwu,LOU Kai,SHI Yingwu. Effects of endophytes and rhizosphere bacteria on cotton growth promotion and disease resistance induction[J]. Southwest China Journal of Agricultural Sciences,2022,35(4):757-763.
[11] 農(nóng)倩,張雯龍,藍(lán)桃菊,蘇琴,陳艷露,張艷,覃麗萍,謝玲. 一株抗香蕉枯萎病DSE菌株的篩選鑒定及抗病機(jī)理初探[J]. 熱帶作物學(xué)報,2017,38(3):559-564.
NONG Qian,ZHANG Wenlong,LAN Taoju,SU Qin,CHEN Yanlu,ZHANG Yan,QIN Liping,XIE Ling. Screening and identification of dark septate endophyte strain L-14 and its mechanism of banana Fusarium wilt disease resistance[J]. Chinese Journal of Tropical Crops,2017,38(3):559-564.
[12] LEE H J,KIM S H,KIM D R,CHO G,KWAK Y S. Dynamics of bacterial communities by apple tissue:Implications for apple health[J]. Journal of Microbiology and Biotechnology,2023,33(9):1141-1148.
[13] 王瑜. 伯克霍爾德氏菌CR7防治小麥赤霉病的作用機(jī)制初探[D]. 楊凌:西北農(nóng)林科技大學(xué),2023.
WANG Yu. A preliminary study on the mechanism of Burkholderia CR7 in the control of Fusarium head blight[D]. Yangling:Northwest A amp; F University,2023.
[14] 于靜,宋新穎,李瑩,何康,郭志青,許曼琳,張霞,遲玉成. 伯克氏菌對群結(jié)腐霉引起的花生果腐病的生防潛力[J]. 花生學(xué)報,2023,52(2):52-60.
YU Jing,SONG Xinying,LI Ying,HE Kang,GUO Zhiqing,XU Manlin,ZHANG Xia,CHI Yucheng. Biocontrol potentiality of endophytic Burkholderia cepacia against peanut pod rot caused by Pythium myriotylum[J]. Journal of Peanut Science,2023,52(2):52-60.
[15] FRIDMAN S,IZHAKI I,GERCHMAN Y,HALPERN M. Bacterial communities in floral nectar[J]. Environmental Microbiology Reports,2012,4(1):97-104.
[16] KONG H G,HAM H,LEE M H,PARK D S,LEE Y H. Microbial community dysbiosis and functional gene content changes in apple flowers due to fire blight[J]. Plant Pathology Journal,2021,37(4):404-412.
[17] 歐光敏,鄭良豹,梁紅,周玲艷. 獼猴桃林下套種大豆土壤微生物群落結(jié)構(gòu)分析[J]. 廣東農(nóng)業(yè)科學(xué),2024,51(1):63-72.
OU Guangmin,ZHENG Liangbao,LIANG Hong,ZHOU Lingyan. Analysis of interplanting soybean under kiwifruit forest on soil microbial community structure[J]. Guangdong Agricultural Sciences,2024,51(1):63-72.
[18] 朱海云,馬瑜,柯楊,李勃. 不同種植年限獼猴桃園土壤微生物功能多樣性研究[J]. 微生物學(xué)雜志,2019,39(5):64-72.
ZHU Haiyun,MA Yu,KE Yang,LI Bo. Functional diversities of soil microbial community in kiwifruit orchards of different planting years[J]. Journal of Microbiology,2019,39(5):64-72.
[19] 吳文能,李勇,雷霽卿,王瑞. 高通量測序技術(shù)對獼猴桃葉斑病微生物多樣性研究[J]. 北方園藝,2020(20):21-26.
WU Wenneng,LI Yong,LEI Jiqing,WANG Rui. Microbial diversity of kiwifruit leaf spot disease by high-throughput sequencing[J]. Northern Horticulture,2020(20):21-26.
[20] QUAST C,PRUESSE E,YILMAZ P,GERKEN J,SCHWEER T,YARZA P,PEPLIES J,GL?CKNER F O. The SILVA ribosomal RNA gene database project:Improved data processing and web-based tools[J]. Nucleic Acids Research,2013,41(Database issue):D590-D596.
[21] K?LJALG U,LARSSON K H,ABARENKOV K,NILSSON R H,ALEXANDER I J,EBERHARDT U,ERLAND S,H?ILAND K,KJ?LLER R,LARSSON E,PENNANEN T,SEN R,TAYLOR A F S,TEDERSOO L,VR?LSTAD T,URSING B M. UNITE:A database providing web-based methods for the molecular identification of ectomycorrhizal fungi[J]. New Phytologist,2005,166(3):1063-1068.
[22] CHAPELLE E,MENDES R,BAKKER P A H M,RAAIJMAKERS J M. Fungal invasion of the rhizosphere microbiome[J]. The ISME Journal,2016,10(1):265-268.
[23] FERNáNDEZ-GONZáLEZ A J,CARDONI M,CABANáS C G L,VALVERDE-CORREDOR A,VILLADAS P J,F(xiàn)ERNáNDEZ-LóPEZ M,MERCADO-BLANCO J. Linking belowground microbial network changes to different tolerance level towards Verticillium wilt of olive[J]. Microbiome,2020,8(1):11.
[24] DEYETT E,ROLSHAUSEN P E. Temporal dynamics of the sap microbiome of grapevine under high pierce’s disease pressure[J]. Frontiers in Plant Science,2019,10:1246.
[25] XI H,SHEN J L,QU Z,YANG D Y,LIU S M,NIE X H,ZHU L F. Effects of long-term cotton continuous cropping on soil microbiome[J]. Scientific Reports,2019,9:18297.
[26] R?DECKER N,POGOREUTZ C,VOOLSTRA C R,WIEDENMANN J,WILD C. Nitrogen cycling in corals:The key to understanding holobiont functioning?[J]. Trends in Microbiology,2015,23(8):490-497.
[27] LEE S M,KONG H G,SONG G C,RYU C M. Disruption of Firmicutes and Actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease[J]. The ISME Journal,2021,15(1):330-347.
[28] 吳壽明,高正鋒,白茂軍,潘首慧,范成平,董延鑫,楊索,王瑩,陳汶,楊小龍,岑浩,田玉琴,昝建朋,吳海,呂芬. 煙草黑脛病不同發(fā)病程度與根際微生物間的響應(yīng)關(guān)系[J]. 中國土壤與肥料,2023(7):223-231.
WU Shouming,GAO Zhengfeng,BAI Maojun,PAN Shouhui,F(xiàn)AN Chengping,DONG Yanxin,YANG Suo,WANG Ying,CHEN Wen,YANG Xiaolong,CEN Hao,TIAN Yuqin,ZAN Jianpeng,WU Hai,Lü Fen. Response between different incidence of tobacco black shank disease and rhizosphere microorganisms[J]. Soil and Fertilizer Sciences in China,2023(7):223-231.
[29] KOECHLI C,CAMPBELL A N,PEPE-RANNEY C,BUCKLEY D H. Assessing fungal contributions to cellulose degradation in soil by using high-throughput stable isotope probing[J]. Soil Biology and Biochemistry,2019,130:150-158.
[30] 喬喬,王淮,姚日生,朱慧霞,鄧勝松. 長孢被孢霉PFY降解木質(zhì)素的初步研究[J]. 化工進(jìn)展,2012,31(增刊1):80-85.
QIAO Qiao,WANG Huai,YAO Risheng,ZHU Huixia,DENG Shengsong. Degradation of lignin by Mortierella elongata PFY[J]. Chemical Industry and Engineering Progress,2012,31(Suppl. 1):80-85.
[31] 代鵬,陳海琴,顧震南,張灝,陳永泉,陳衛(wèi). 高山被孢霉生產(chǎn)多不飽和脂肪酸發(fā)酵條件的研究進(jìn)展[J]. 食品工業(yè)科技,2014,35(5):354-359.
DAI Peng,CHEN Haiqin,GU Zhennan,ZHANG Hao,CHEN Yongquan,CHEN Wei. Research progress in fermentation condition for polyunsaturated fatty acids by Mortierella alpina[J]. Science and Technology of Food Industry,2014,35(5):354-359.
[32] 汪心玉,蘆鈺,邱艷紅,張海軍,張力群,李健強(qiáng),王紅陽,羅來鑫,徐秀蘭. 熒光假單胞菌2P24防控瓜類果斑病機(jī)制初探[J]. 中國生物防治學(xué)報,2023,39(3):575-584.
WANG Xinyu,LU Yu,QIU Yanhong,ZHANG Haijun,ZHANG Liqun,LI Jianqiang,WANG Hongyang,LUO Laixin,XU Xiulan. Preliminary study on the control mechanism of Pseudomonas fluorescens 2P24 on bacterial fruit blotch[J]. Chinese Journal of Biological Control,2023,39(3):575-584.
[33] 施河麗,譚軍,譚紹安,彭五星,尹忠春,祁高富,向必坤. 熒光假單胞菌緩解植煙土壤酸化效果及對煙草青枯病的防治作用[J]. 煙草科技,2023,56(2):19-25.
SHI Heli,TAN Jun,TAN Shaoan,PENG Wuxing,YIN Zhongchun,QI Gaofu,XIANG Bikun. Effects of Pseudomonas fluorescens on alleviating soil acidification and controlling tobacco bacterial wilt[J]. Tobacco Science amp; Technology,2023,56(2):19-25.
[34] LI L,PAN H,CHEN M Y,ZHANG S J,ZHONG C H. Isolation and identification of pathogenic fungi causing postharvest fruit rot of kiwifruit (Actinidia chinensis) in China[J]. Journal of Phytopathology,2017,165(11/12):782-790.
[35] 馮中紅,孫廣宇. 鏈格孢屬及相關(guān)屬分類研究新進(jìn)展[J]. 菌物研究,2020,18(4):294-303.
FENG Zhonghong,SUN Guangyu. Advances in the classification of Alternaria and related genera[J]. Journal of Fungal Research,2020,18(4):294-303.
[36] EROSHIN V K,DEDYUKHINA E G. Effect of lipids from Mortierella hygrophila on plant resistance to phytopathogens[J]. World Journal of Microbiology and Biotechnology,2002,18(2):165-167.
[37] YAN Y,ZHANG X Y,ZHENG X F,APALIYA M T,YANG Q Y,ZHAO L N,GU X Y,ZHANG H Y. Control of postharvest blue mold decay in pears by Meyerozyma guilliermondii and it’s effects on the protein expression profile of pears[J]. Postharvest Biology and Technology,2018,136:124-131.